油雾发生器的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油雾润滑是一种先进的润滑方式,与传统润滑方式相比,能够使设备达到高效率、低故障、节能与环保运行。为了进一步发展不同类型的油雾润滑装置,本课题引入了一种新型的油雾发生器——气流式超声波油雾发生器。该油雾发生器的雾化机理是超声波雾化,即利用空气射流通过谐振腔,喷射出高速气流,产生高频率,高振幅的剧烈振动的超声波,同时通过附加液哨,来强化雾化的一种喷雾技术,能得到更小的油雾颗粒。
     本文简述了超声波雾化机理和超声波雾化喷嘴的研究进展情况,并介绍了几种不同类型超声波雾化喷嘴的结构特点;通过研究分析超声波雾化喷嘴的结构和加工工艺,设计了气流式超声波油雾发生装置;因为气流雾化喷嘴在工业应用中较为广泛,所以结合现有的雾化喷嘴自行设计制造了二流外混式雾化喷嘴。为了检测雾化器的雾化性能,特搭建了实验台;并在实验部分着重对气流式雾化喷嘴进行测试。在实验研究过程中,以油雾粒径为衡量油雾发生器雾化效果的重要指标,并选择压缩空气压力和针阀与喷孔的距离为气流雾化器雾化效果的最主要的影响因素。通过正交实验,确定最佳雾化效果时的进气压力值和针阀顶端和喷口的距离值,同时确定哪个是最关键的影响因素。
     除了雾化器本身的结构,液体的物理性质对雾化效果也有很大的影响。在数学模型中可以定性的分析出表面张力和液体黏度对雾化效果的影响;通过在气流雾化喷嘴基础上的实验,确定表面张力和黏度对雾化效果的影响,最后将理论分析的结果和实验得出的结果做以比较。这对以后更加深入的研究雾化效果的影响因素,提供了实验支持。
     总之,本文对超声雾化喷嘴的设计具有一定的指导意义,但由于超声雾化机理较复杂,有待于更深入的研究。
In comparison with tradtitional lubrication method, oil mist lubrication is more advanced for its high efficiency, low malfactuion and little polution to environment. For the further development of various types of oil mist generator, an absolutely new oil mist generator, air-flowing type oil mist generator, is introduced. Its mechanism of atomization is ultrasonic atomization, which depends on the air jeting into resonance cavity. Because of the rushing air with high velocity, ultrasonic wave of high frequancy and large amplitude is generated. In addition, liquid whistle is designed in its structure for the magnification of ultrasonic wave that aims to atomize oil into smaller droplets.
     Atomization mechanism and the development of ultrasonic atomizer is introduced. Furthermore, structures of various types of atomizer are presented. Based on these theories and experience, a new ultrasonic oil mist atomizer is designed and manufactured. Experiment platform is constructed for the measurement of atomizer's performance. Afterwards, the air-flowing type atomizer is chosen as the experiment object for the practical application. In the experiment, oil mist diameter is selected as the measurement standard and the two elements, air pressure and the distance between the end of pin valve and outlet, as the primary influence. Finally, the most inportant influence element and values of the two elements when atomizer performs best are fixed by the orthogonal method.
     Besides the structure of atomizer, physical charateristics of liquid meanwhile can not be neglected. In the mathematical model, the influence from surface tension and viscosity can be analyzed qualitively. The influence can also be showed by experiment upon liquids with the different physical parameters. By comprising the outcomes from both theory and experiment, the thesis comes to a final conclusion. This contributes a lot to the understanding of elements that can influence the atomization.
     All in all, the thesis can play a guiding role in ultrasonic atomizer design. However, the research needs to be further continued due to my limited exploration.
引文
1.L.别尔格曼.超声[M],北京:国防工业出版社,1964.
    2.董浚修.润滑原理及润滑油[M],北京:烃加工出版社,1987.
    3.梁强.细水雾灭火系统及雾化喷嘴研究[D],天津:河北工业大学,2005.
    4.[日]原田正一,尾崎省太郎.射流工程学[M],北京:科学出版社,1977.
    5.欧风.合理润滑技术手册[M],北京:石油工业出版,1992.
    6.胡邦喜.设备润滑基础[M],北京:冶金工业出版社,2002.
    7.任福琳.油雾润滑装置开发及润滑机理的研究[D],沈阳:东北大学,2003.
    8.戴振东.摩擦体系热力学引论[M],北京:国防工业出版社,2002.
    9.王汝霖.润滑剂摩擦化学[M],北京:中国石化出版社,1994.
    10.王彦林.油雾润滑装置研发及工程软件研究[D],沈阳:东北大学,2004.
    11.姜树春.油雾润滑系统的设计[J],北京:重型机械,2002,No.1:32-35.
    12.张晨辉,林亮智.润滑油应用及设备润滑[M],北京:中国石化出版社 2002
    13.颜志光.润滑材料与润滑技术[M],北京:中国石化出版社,2001.
    14.陈燕生.摩擦学基础[M],北京:北京航空天大学出版社,1991.
    15.王喜忠.喷雾干燥[M],北京:化学工业出版社,2003.
    16.赵承庆,姜毅.气体射流动力学[M],北京:北京理工大学出版社,1997.
    17.P.A.汤普森.可压缩流体动力学[M],北京:科学出版社,1986.
    18.O.Pinkus,B.Sternlicht,Theory of Hydrodynamic Lubrication[D],1981.
    19.刘联胜.气泡雾化喷嘴的雾化特性及其喷嘴两相流的实验与理论研究,天津:天津大学,2001.
    20.安辉.内混式双流体渣油雾化喷嘴的试验研究[D],大连:大连理工大学,2003.
    21.梁强.细水雾灭火系统及喷嘴的实验研究[D],天津:河北工业大学,2005.
    22.刘广文.喷雾干燥实刚技术大全[M],北京:中国轻工业出版社,2001.
    23.侯凌云,侯晓春.喷嘴技术手册[M],北京:中国石化出社,2002.
    24.原鲲,陈丽芳.水煤浆多级喷嘴的雾化和流动特性[J],燃烧科学与技术,2003,9(1):77-80.
    25.仇性启,王宗明,王丽娟等.气动旋流雾化原油喷嘴雾化特性实验研究[J],石油机 械,2001,29(2):5-7.
    26.王宗明.气动旋流雾化喷嘴流动特性[J],石油化工设备,2005,34(3),4-6.
    27.金桂兰.几种重油催化裂化进料高效雾化喷嘴的分析比较[J],石油化工技术,2000,21(4):4-6.
    28.田春霞,仇性启,崔运静.喷嘴雾化技术进展[J],工业加热,2005,34(4):39-42.
    29.马大猷.声学手册[M],北京:科学出版社,1983.
    30.冯若.超声手册[M],南京:南京大学出版社,1999.
    31.应崇福.超声学[M],北京:科学出版社,1974.
    32.孙晓霞.超卢波雾化喷嘴的研究进展[J],工业炉,2004,26(1):19-32.
    33.陈全英,颜世彪.杆射哨超声雾化燃烧器的实验研究[J],应用声学,1990,9(5):37-41.
    34.马其良,张松寿.超卢波雾化油喷嘴雾化性能的试验研究[J],工业炉,2000,22(2):6-7.
    35.朱永刚,王兴甫.超声波喷嘴试验研究[J],推进技术,1997,18(3):68-72,107.
    36.Kalsnhikn Yamamnlnrtnl.Burer with Ultrasnnic Vilwator[M],USA:Patent 4,165,961,1979.
    37.Timothy Wayne Paschall,Paul A.Gaynor.Application of and Improvement in Motors Using Oil Mist Lubricated Bearings[J].IEEE 2003,0-7803-7956-X/03,169-177.
    38.Robert R.Perron.The Design and-Application of a reliable Ultrasonic Atomizer[J].IEEE,Transactions on Sonics and Ultrasonics,Vol.SU-14,No.4,October 1967.
    39.Andrew J.Hewitt,Spray Optimization through Application and Liquid Physical Property Variables-I[J],Environmentalist(2008)28:25-30.
    40.F.Barreras,H.Amaveda,A.Lozano.Transient High-Frequency Ultrosonic Water Atomizer[J],Experiments in Fluids,33(2002) 405-413.
    41.S.C.Tsai,P.Luu,A.Teshome,P.Childs,C.S.Tsai.Ultrosound-controlled Taylor-mode Breakup of Liquid Jet[J].1997 IEEE Ultrasonics symposium,769-772.
    42.U.Shavit.Gas-liquid Interaction in the Liquid Breakup Region of Two-fluid Atomization[J],Experiments in Fluids,31(2001) 550-557.
    43.罗曾义,邓文海 悬臂式簧片哨工作特性的研究[J],声学技术,1996,(4):166-169.
    44.刘联胜,吴晋湘,韩振兴,傅茂林.内超声气泡雾化喷嘴实验研究[J],燃烧科学与技术,2002,8(2):156-158.
    45.魏振军.新型超声波火嘴[J],石油化工设计技术,1996,17(3):51-52.
    46.宿风明.超声雾化喷嘴的实验及理论研究(D],天津:河北工业大学,2002.
    47.吴中.超声波在高粘性重油喷嘴雾化中的应用[J],冶金设备,2001,130(6):68-69.
    48.张绍坤 王景甫 马重芳 史杨.流体动力式超声波喷嘴雾化特性的实验研究[J],石油机械,2007,35(7):1-7.
    49.张丽丽.冲击式气流喷嘴雾化模型[J],武汉理工大学学报,Vol.29 No.8 Aug.2007.
    50.严春吉.可压缩气体中的三维粘性液体射流雾化机理[J],内燃机学报,Vol.25(2007)No.4
    51.夏允庆,程华定.杆式声雾化器雾化特性的试验研究[J],航空动力学报,1995,10(1):93-95.
    52.王晓倩.雾化喷嘴及其设计简析[J],煤矿机械,Vol 29,No.3 Mar.2008.
    53.Amit Lal.Micromachined Silicon Ultrasonic Atomizer[J],IEEE Ultrasonic Symposium,1996(2):339-342.
    54.HarveyL,Berger.Ultrasonic Nozzles Take Pressure out of Atomizing Processes[D],Research & Development-September,1984.
    55.LefebvreA H.Atomization and Sprays.Hemisphere[D],New York,1989:87-88.
    56.BRACCO F V.Modeling of Engine Spray[M],SAE Paper.850394,1985.
    57.REITZRD,BraccoFV.Mechanism of Atomization of a Liquid Jet[J],Phys.Fluids,1982,25(10):1730-1742.
    58.Shirley C.Tsai,Patrick Luu,Paul Childs and Chen S.Tsai.Ultrasound-Modulated Twin-Fluid Atomization of a Liquid Jet[J],IEEE TRANSACTIONS ON ULTRASONICS,VOL.46,NO.1,JANUARY 1999:139-143.
    59.LEFEBVREAH.Spray Characteristics of Aerated-Liquid Pressure Atomization[J],AIAA-87-0063,1983.
    60.黄晖.超声雾化系统的雾化性能测试[J],压电与声光,Vol.26 No.1 Feb.2004
    61.陈文彤.超声速气流中喷嘴雾化的实验与理论研究[D],长沙:国防科技大学,2002.
    62.姜树春.油雾润滑系统的设计[J],重型机械,2002 No.1:32-36
    63.S.C.Tsai,P.Childs.Air-assisted Ultrasonic Atomization.IEEE Ultrasonics Symposium 1996,1005-1008.
    64.张利平.液压气动系统设计手册[M],北京:机械工业出版社,1997.
    65.张展。机械设计通用手册[M],北京:中国劳动出版社,1994
    66.成大先.机械设计手册[M],第1,2,3,4,5卷,北京:化学工业出版社,2000.
    67.叶玉驹.机械制图手册[M],北京:机械工业出版社,2008
    68.王德忠,黄震,张连方.激光技术在燃油喷雾测试中应用的进展[J],激光技术,1995,19(1):27-32.
    69.王宝亮 孙志远 龚允怡.液体燃料颗粒测量技术的研究[J],小型内燃机,1999,28(1):35-39.
    70.向绍安.油雾浓度检测器在发动机工况监测中的应用[J],计量与测试技术.1991.
    71.刘鸿,王家骅.超声波雾化喷嘴的试验研究[J],江苏工业学院学报.2005,17(1):31-33.
    72.张小艳,王小文.超声雾化性能的试验研究与回归分析[J],工业安全与环保,2000,28(2):8-12.
    73.高允彦.正交及回归试验设计方法[M],沈阳:冶金工业出版社,1988.
    74.张平.MATLAB基础与应用简明教程[M],北京:北京航空航天大学出版社,2001.
    75.姚悦.高黏度流体气力雾化机理及实验研究[D],杭州:浙江大学,2006.
    76.吕晓林.超声波油雾发生器的理论及实验研究[D],沈阳:东北大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700