落叶松枯梢病的生物防治与分子检测初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了长白山、完达山、小兴安岭地区落叶松枯梢病梢栖真菌的群落结构,应用形态学和分子生物学的方法对真菌进行了鉴定,并利用所分离到的真菌筛选出拮抗菌株并进行了林间生物防治试验;以梢栖真菌的序列为基础,针对落叶松枯梢病(Botryosphaeria laricina(Sawada)Y.Z.Shang)设计特异引物,初步探索出了落叶松枯梢病分子检测的方法。
     (1)用形态学和分子生物学的方法,对落叶松枯梢病病原真菌(B.laricina)进行鉴定,并获取NCBI基因登录号:EU442284。经DNAman比对小兴安岭地区、长白山地区、完达山地区三个地点所获得的菌株,ITS区域相似度为100%。
     (2)从落叶松病/健康梢上共分离到子囊菌3属(Botryosphaeria、Chaetomium和Sordaria),有丝分裂菌15属。夏季梢栖真菌与冬季梢栖真菌相比,多出7种有丝分裂菌。冬季落叶松枯梢病/健康梢上分离率最高的为Alternaria,Pestalotiopsis,以及Epicoccum,分别为32.2%,21.8%和19%:夏季落叶松枯梢病/健康梢上的优势种类为Alternaria,其次为Tolura和Epicoccum,其分离率分别为32.0%,18.O%和14.0%。3年生病梢上种类略为丰富,而1年生健康枝条上种类相对较少。B.laricina主要分布于1年生梢部;健康及感病未发病的2、3年梢部,均有Chaetomium、Sordaria和Trichoderma出现,各个季节病/健康梢均部有分布的种有:Epicoccum、Alternaria、Trichoderma、Chaetomium和Sordaria,共5属。
     (3)根据拮抗系数、抑菌率、被覆盖程度和防治预试验的综合评价确定Sordaria fimicola、Trichoderma atroviride和Chaetomium globosum为生防菌。野外防治试验表明,综合比较防治效果为S.fimicola>代森锰锌400倍液>T.atroviride>C.globosum。三种菌剂在50%喷洒浓度时,真菌多样性最大;防治区真菌群落数量明显少于非防治区群落数量;非防治区同期梢栖真菌分离结果显示在健康梢部,分离到大量Trichoderma、Chaetomium,说明在自然界中Trichoderma、Chaetomium本身对B.laricina有较强的抑制作用。
     (4)通过对落叶松梢栖真菌ITS序列的分析,设计出特异引物ITSA1与ITSB1。该特异引物可以将落叶松枯梢病病原菌与其它9种(属)落叶松梢栖真菌分别开,具有较好的特异性和较高的灵敏性,初步建立了落叶松枯梢病的分子检测方法。
In this paper, the fungal community structures on the healthy shoot and shoot infected with shoot blight of larch were studied in the Changbai Mountain, Wanda Mountain and Xiaoxing'an Mountain. The morphological and molecular biological methods were applied in the identification of the fungi. Fungi strains with antagonistic abilities were screened and used in the biological control of larch shoot blight. Specific primers were designed to identify the pathogen of larch shoot blight (Botryosphaeria laricina(Sawada) Y.Z. Shang) based on the ITS sequence of the branch-habiting mycoflora. It was proved to be an effective method in the detection of larch shoot blight.
     (1) Botryosphaeria laricina, one of the pathogens for larch shoot blight, was identified by the combination of morphological and molecular biological methods. The ITS sequence of B. laricina was deposited in GenBank (accession No. EU442284). Alignments of ITS sequences were analyzed using DNAman among different B. laricina strains isolated from Changbai Mountain, Wanda Mountain and Xiaoxing'an Mountain. The result showed that there was a 100% similarity in the ITS regions of these strains.
     (2) Three ascomycetes (Botryosphaeria, Sordaria and Chaetomium) and fifteen mitosporic fungi were isolated from the disease/health shoot. There were seven kinds of mitosporic fungi isolated in summer more than those isolated in winter. The most isolated fungi from the diseased/healthy shoot in winter was Alternaria, followed by Pestalotiopsis and Epicoccum, with separation rates of 32.2%, 21.8% and 19%, respectively; while the dominant species in summer was Alternaria, followed by Tolura and Epicoccum, with separation rates of 32.0%, 18.0% and 14.0%, respectively. There are more kinds of fungi on the 3-year old diseased shoot, and less on the 1-year old healthy shoot. B. laricina was mainly located on the 1-year old shoot. On the healthy shoot, 2 or 3-years old shoot which were infected but not caused disease, there were different degrees on the separation of Chaetomium, Sordaria and Trichoderma. Five genus were isolated on all shoots, which were Epicoccum, Alternaria, Trichoderma, Chaetomium and Sordaria.
     (3) Sordaria fimicola, Trichoderma atroviride and Chaetomium globosum were identified as the biocontrol fungi based on the overall evaluation of antagonistic coefficient, inhibitory rate, extent of coverage and indoor infection experiment. The field biocontrol test showed that the comprehensive control effects were S. fimicola> Mancozeb 400 times> T. atroviride> C. globosum. The greatest diversity of fungi was found when the three inocula were sprayed with a concentration of 50%. The species diversity of mycoflora in the controlled zone was significantly less than that in the non-controlled zone. The result showed that a large number of Trichoderma and Chaetomium were isolated from the healthy shoot in the non-controlled during the same period, indicating that both Trichoderma and Chaetomium had an inhibitory effect on B. laricina in nature.
     (4) A pair of specific primers: ITSA1 and ITSB1 was designed through the analysis of the ITS sequence of branch-habiting mycoflora of larch. B. laricina could be distinguished from other 9 species of (genus) fungi on shoot of larch by molecular methods using the specific primers. It was proved to be an effective and sensitive method in the molecular detection of larch shoot blight.
引文
[1]国家林业局办造字[2004]59号文件发布第4号《公告》森林植物检疫对象,2004
    [2]袁嗣令.中国乔灌木病害[M].北京:科学出版社,1997
    [3]伊藤一雄.林木图说新讲[M].地球出版社株式会社,1964:264-304
    [4]吉田兼吉.东北地方针叶树的菌类[J].林试研究,1950:46-126
    [5]苑健羽.落叶松真菌病害[M].北京:科学出版社,1990:1-1
    [6]尚衍重.落叶松枯梢病菌分类地位的探讨[J].真菌学报,1987,6(4):248-249
    [7]周仲铭.林木病理学[M].北京:中国林业出版社,1990:148-150
    [8]黑龙江省落叶松枯梢病科研组.落叶松枯梢病的研究[J].东北林学院学报,1979(1):32-42
    [9]孙宝贵,黄培发.落叶松枯梢病防治技术的大面积应用[J].森林病虫通讯,1990,(4):29,21
    [10]王永民,刘国荣等.落叶松枯梢病检疫技术的研究[J].林业科学研究,1992,5(6):652-658
    [11]延边防治枯梢病协作组.落叶松人工幼林枯梢病防治试验初报[J].吉林林业科技,1991(94):34-36
    [12]野村一高,岸田昭雄.日本落叶松当年生枝条化学成分的研究(Ⅵ)酚类化合物的季节变化与抗枯梢病的关系[J].日本林学会志,1978,(60):273-280
    [13]赵经周,于文喜,王乃玉.落叶松枯梢病国内外研究的现状[J].林业科技,1995,20(5):23-25
    [14]黄永青,邵力平,马俊莹.树栖真菌群落多样性研究Ⅰ.--红松芽、叶及短枝栖真菌群落组成分析[J].菌物系统,1997,16(3):182-188
    [15]贺字典,高玉峰。生防菌在植物病害防治中的研究进展(综述)[J].河北职业技术师范学院学报,2003,17(2):56-59
    [16]郑福庆,黄文生,王彬,等.植物病害生物防治研究进展[J].江西植保,1998,21(3):29-33
    [17]唐文华.国外生物防治研究进展.植物保护[J],1988,14(4):43-44
    [18]Wen C J.Studies on the taxonomy of the genus Trichoderma in southwestern China [J].Acta Mycologica Sinica,1993,12(2):118-130
    [19]徐同,钟静萍.木霉对土传病原真菌的拮抗作用[J].植物病理学报,1993,23(1):63-67
    [20]唐永庆,许艳丽,等.木霉制剂的生防应用研究及发展前景[J].黑龙江农业科学,2008(1):111-113
    [21]赵国其,林福呈,陈卫良,等.绿色木霉对西瓜枯萎病苗期的控制作用[J].浙江农业学报,1998,10(4):206-209
    [22]薛宝娣,李娟,陈永聋.木霉菌CTR-5对病原真菌的拮抗机制和防治效果研究[J].南京农业大学学报,1995,18(1):31-36
    [23]Viterbo,A.,Harel,M.,Horwitz,B.A.,Chet,I and Mukherjee,P.K.Trichoderm a mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance[J]. Appl.Environ Microbiol,2005,71:6241-6246
    [24]Sanz,L.,Montero,M.,Redondo,J.,Llobell,A.and Monte,E.Exp- ression of an alpha-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum[J].FEBS J.,2005,272:493-499
    [25]高克祥,刘晓光,姜培红,等.木霉对杨树水泡溃疡病的拮抗作用[J].安徽农业大学学报,1999,26(增刊):80-84
    [26]何邦令,李超,王庆华,等.木霉菌和毛壳菌对板栗疫病的康生作用[J].森林病虫,2006,(3)4-7
    [27]Katan J,Ginzburg C,Assaraf M.Pathogen Weakening as a Component of Integrated Control[M]//Wenhua T,Cook R J,Rovira A.Advances in Biological Control of Plant Diseases.北京:中国农业大学出版社,1996:320-326
    [28]李敏,杨谦,王疏,等.哈茨木霉与多菌灵复合使用对水稻苗期立枯病的防治[J].浙江大学学报(农业与生命科学版),2009,35(1):65-70
    [29]田连生,冯树波.耐药性木霉菌株的筛选及其对灰霉病的防治[J].生物技术,2005,15(5):26-28
    [30]Aggarwal R,Tewari A,Srivastava K,et al.Role of antibiosis in the biological control of spot blotch(Cochlibolus sativus) of wheat by Chaetomium globosum [J].Mycopathologia,2004,157(4):368-377
    [31]Cullen D,Berbee F M,Andrews J H.Chaetomium globosum antagonizes the apple scab pathogen,Venturia inaequalis under field conditions[J].Canadian Journal of Botany,1984,62(9):1814-1818
    [32]万慧,刘晓光,曹荣花,等.螺旋毛壳ND35抗生素的产生及其在病害生物防治中的作用[J].植物保护学报,2007,34(1):51-56
    [33]迟玉杰,杨谦.毛壳菌对植物病害的生物防治及存在的问题[J].农业系统科学与综合研究,2002,18(3):215-218
    [34]Walter D,Gindrat D.Biological control of damping off of sugarbeet and cotton with Chaetomiurn globosum or a fluorescent Pesudomonas sp.[J].Canadian Journal of Microbiology,1988,34(4):631-637
    [35]Di Pietro A,Gut-Rella M,P Pachlatko J,et al..Role of antibiotics produced by Chaetomium globosum in biocontrol of Ptyhium ultimum,a causal agent of damping off[J].Phytopathology,1992,82:131-135
    [36]Soytong K.Application of a new broad spectrum biological fungicide for environmental plant protection[A].In:Biological Control and Biotechnology[C].Harbin:Heilongjiang Science and Technology Press,2003:70-85
    [37]YANG.Evaluation of Chaeromium for biological control of Fusarium wilt of tomato in P.R.China[A].In:Biological Control and Biotechnology[C].Harbin:Heilongjiang Science and Technology Press,2003:25-36
    [38]张海燕,杨谦.角毛壳菌生物防治相关基因筛选.中国生物防治,2007,23(2):191-194
    [39]Hubbard JP,Harman GE,Eckenrode CJ.Interaction of a Biological Control Agent,Chaetomuim globosum,With seed Coat Microflora.Canadian Journal of Microbiology[J],1982,28(4):431-437
    [40]方中达.普通植物病理学[M].北京:农业出版社,1978
    [41]Duncan J.M.and Torrance L.Techniques for the rapid detection of plant pathogens[M].Blackwell scientific publications,1992:1-235
    [42]Nygaard,S.L.et al.Isozyme variability among isolates of Phytophthora megasperma[J].Phytopathology,1989,79:773 -780
    [43]刘曙照,李清跣.稻瘟病生理小种酷酶同工酶特性的研究[J].植物病理学报,1992,22(2):179-183
    [44]陈伟群,张天宇.十字花科上的链格抱属真菌同工酶凝胶电泳分析[J].真菌学报,1994,13(4):295-302
    [45]谢云陆:何礼远.马铃薯环腐病鉴定和检测技术的初步研究[J].植物病理学报,1987,17(4):22-24
    [46]De Boer S H,M E McNaughton.Evaluation of immunofluorescence,with monoclonal antibodies for detecting latent bacterial ring rot infections[J].American Potato Journal,1986,63:533-543
    [47]De Boer S H,A Wieczorek,A Kummer.An ELISA test for bacterial ring ort of potato with a new monoclonal antibody[J].Plant Dis,1988,72:874-878
    [48]Kim W K,Mauthe W.Isolation of high molecular weight DNA and double-stranded RNAs from fungi[J].CAN J BOT.1990,68:1898-1902
    [49]Moller E M,Bahnwec G,Sandermann H,et al.A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi[J].Nucleic Acids Research,1992,20(22):6115-6116
    [50]Reader U,Broda P.Rapid preparation of DNA from filamentous fungi[J].Letter in Applied Microbiology.1985,1:17-20
    [51]Innis M A,Gelfand D H,Sninsky J J,et al.PCRprotocols:A guide to methods and application[M].New York:Academic Press Inc,1990,283-287
    [52]朱衡,瞿峰,朱立煌.利用氯化苄提取适用于分子生物学分析的真菌DNA[J].真菌学报,1994,13(1):34-40
    [53]匡治州,许杨.核糖体rDNS ITS序列在真菌学研究中的应用[J].生命的化学,2004,24(2):120-122
    [54]刘春来,文景芝.rDNS-ITS在植物病原真菌分子检测中的应用[J].东北农业大学学报.2007,38(1):101-106
    [55]Christophe Roux,Nathalie sejalon-Delmas,Monique Martins,Agnes Parguey-Leduc,Robert Dargent,Guillaume Becard.Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences[J].FEMS Microbiology Letters,1999,(180):147-155
    [56]Nazar R N,Hu X,Schmidt J,Culham Dand Robb J.Potentialuse of PCR amplified ribosomal intergenic sequences in the detection and differentiation of Verticillium wilt pathogen[J].Physiological and Molecular Plant Pathology,1991,39:1-11
    [57]章初龙,徐同.T.harzianum及其近缘种的分子系统学研究[J].生物多样性,2003,11(1):10-19
    [58]陈永青,姜子德,戚佩坤.RAPD分析与ITS序列分析在拟茎点霉分类鉴定上的应用[J].菌物系统,2002,21(1):39-46
    [59]王英,顾军,刘维达.用内转录间隔区通用引物的聚合酶链反应快速测定念珠菌菌种[J].临床皮肤科杂志,2003,32(2):69-71
    [60]杨腊英,黄华平等.香蕉炭疽菌rDNA ITS区的分子鉴定与检测[J].植物病理学报,2006,36(3):219-225
    [61]程水明.香菇高基因组高分子量DNA的提取[J].生物技术通报,2006,(5):84-86
    [62]T.J.White,T.Bruns,S.Lee.et al.Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics.PCR Protocols:A Guide to Method and applications[J].Academic Press,Inc.,1990,38:315-322
    [63]Okane I,Nakagiri A,Ito T.Identity of Guignardia sp.inhabiting ericaceous plants[J].Canadian Journal of Botany,2001,79:101-109
    [64]巴尼特.有丝分裂菌分类图解[M].北京:科学出版社,1977:1-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700