rhG-CSF动员和骨骼肌电刺激促进大鼠骨折愈合及其可能机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在骨科领域,如何加快骨折愈合、治疗骨不连和骨折的延迟愈合是该领域的热点问题,本文研究目的旨在探讨经皮骨骼肌电刺激联合干细胞动员对大鼠骨折愈合过程中骨重建及细胞增殖的影响及其可能机制。
     方法:选取3月龄大鼠(由西安交通大学实验动物管理中心提供)80只,体重180g~220g。随机分为4组,每组20只:骨折模型组(A组);模型+动员剂组(B组);模型+电刺激组(C组);模型+动员剂+电刺激组(D组)。各组均采用国家标准啮齿类动物干燥饲料喂养,自由饮食。用自制造模支架建立大鼠胫骨闭合性骨折模型,刺激模型参照吕晓宇和彭亮刺激模式相结合并略加改动建立大鼠的电刺激模型。骨折后分2周、4周、6周和8周取材,制成不脱钙硬组织切片和脱钙骨切片,运用四环素和茜素红双荧光标记、特殊染色、免疫组织化学SABC法检测骨组织在骨折愈合过程中结构的变化、钙的沉积、成骨情况及细胞因子和细胞增殖相关蛋白的表达。
     结果:
     1用大鼠闭合性骨折造模支架造成大鼠胫骨中段骨折,经X光片判断,成功建立了大鼠胫骨中段闭合性骨折模型。
     2 rhG-CSF和(或)骨骼肌电刺激可促进大鼠骨折愈合后的功能恢复。骨折后单纯rhG-CSF作用和单纯骨骼肌电刺激以及rhG-CSF联合骨骼肌电刺激作用均可促进骨折愈合后的功能恢复,而rhG-CSF联合骨骼肌电刺激促进大鼠骨折愈合后的功能恢复效果最显著。
     3 rhG-CSF和(或)骨骼肌电刺激可使大鼠骨折愈合后软骨骨痂数量增多,骨组织钙化发生较早,骨折愈合程度较好,尤其以电刺激组和电刺激+动员剂组效果更明显。提示,骨折后进行骨骼肌电刺激协同骨髓干细胞动员,可以增加骨折愈合早期的软骨细胞数量促进软骨内成骨,加速骨折愈合。
     4单纯rhG-CSF动员和单纯电刺激均可使患肢骨2次标记线间距随愈合时间延长而逐渐增加,和模型组相比较显著性升高,单位面积相对荧光强度结果显示,单纯干预组可影响骨折愈合进程中钙盐的沉积,促进骨基质钙化。
     5 rhG-CSF动员和骨骼肌电刺激联合作用可使患肢骨2次标记线间距逐渐增大,在造模后第6周达到峰值。提示在骨折中后期钙盐沉积量最大;与单纯干预组比较患肢骨2次标记线间距显著性增大,表明联合干预比单纯干预更有助于骨折愈合。
     6 rhG-CSF动员和骨骼肌电刺激对骨折大鼠骨组织细胞生长因子表达产生影响。骨折愈合初期软骨和骨细胞bFGF和c-kit显著性升高;单纯电刺激和电刺激联合动员干预,可促进软骨和骨细胞的c-kit表达在第4周达到峰值,而单纯动员剂组在第6周到峰值;各组TGF-β_1和bFGF均在第6周阳性表达达到峰值;在骨折愈合后期各细胞因子表达均有所下降,但仍高于对照组。表明单纯刺激和联合刺激方式均可不同程度促进骨诱导因子的表达,促进骨折愈合。
     7 rhG-CSF动员和骨骼肌电刺激对骨折大鼠骨组织增殖相关蛋白表达产生影响。电刺激和动员剂联合作用后,PCNA、BrdU和ki-67在骨折愈合过程中表达逐渐升高,表明细胞增殖相关蛋白在骨折愈合各时期均有表达,但在不同时期表达细胞的种类不同,早期主要是分裂期的间充质干细胞及软骨细胞,后期是成骨细胞。在rhG-CSF作用的大鼠骨折愈合早期BrdU阳性表达并不显著,后期有所升高,PCNA和ki-67则持续高表达;单纯电刺激组细胞增殖相关蛋白的表达也随骨折愈合表达逐渐升高,尤其BrdU表达升高具有极显著性差异。表明,单纯电刺激与单纯干细胞动员相比更有利于骨髓干细胞的增殖及分化。二者联合作用后PCNA、BrdU和ki-67表达峰值出现在第6周,提示双重促进作用使细胞增殖数量增加,且处于有丝分裂期的细胞数量较多,有利于骨组织的重建。
     结论:
     骨骼肌电刺激改善骨折处周围的力学环境,在骨折部位形成微动效应,为成骨作用提供力学条件,可使大鼠骨折愈合后软骨骨痂数量增多,骨组织钙化发生较早,患肢骨2次标记线间距随愈合时间延长而逐渐增加,骨折愈合程度较好,促进骨折愈合后的功能恢复。在此过程中,TGF-β_1、PCNA和BrdU表达显著性升高,电刺激促进局部细胞因子的分泌和释放,加速骨折愈合。因此,采用早期微动方式的骨折愈合效果优于传统的石膏夹板绝对固定方式。
     rhG-CSF动员自体骨髓干细胞,促进骨髓间充质干细胞和造血干细胞的释放并向骨折部位迁移,增加干细胞向成骨、成软骨方向的分化,促进软骨内成骨、骨基质钙化和骨折部位血管新生,加速骨折愈合,促进大鼠骨折愈合后的功能恢复。在此过程中,骨折愈合初期软骨和骨细胞TGF-β_1、bFGF、PCNA、BrdU和ki-67在第6周达到峰值;在骨折愈合后期各细胞因子表达均有所下降,但仍高于对照组。因此,采用早期自体骨髓干细胞动员方式促进骨折愈合的效果优于传统的石膏夹板绝对固定方式。
     rhG-CSF动员和骨骼肌电刺激联合作用后,既可促进骨髓间充质干细胞和造血干细胞的释放并向骨折部位迁移,增加干细胞向成骨、成软骨方向的分化,又保证了骨生长所需要的力学环境,改善局部的血液循环,加快骨改建进程:二者均可加强骨诱导因子和细胞增殖相关蛋白的表达,进而缩短骨折愈合时间。因此,骨骼肌电刺激引起的微动效应和干细胞动员促进骨折愈合的效果优于单纯骨骼肌电刺激、rhG-CSF动员和传统的石膏夹板绝对固定等方式。
Objective: In the orthopedic field, how to accelerate fracture healing, treatment of nonunion and delayed union fractures is a hot issue. This paper aims to investigate the effect of percutaneous electrical stimulation of skeletal muscle combine stem cell mobilization on bone remodeling and cell proliferation in rat fracture healing process and its possible mechanism
     Method: we used 80 male SD rats, 3-month-age(provided by Xi'an JiaoTong University Medical School animal administrative center), and the weight was about 280~320g. then randomly divided them into 4 groups, each 20: Fracture model group (A group); model + mobilizing agent group (B group); model + electrical stimulation group (C group); model + mobilizing agent + electrical stimulation group (D group). All of them used the national standards murine dry feed, free drink and eat. Find support from the manufacturer with the establishment of rat model of closed fracture of tibia and stimulate lv xiao yu reference model and the Peng Liang stimulation mode and slightly changes the combination of a rat model of electrical stimulation. After fracture at 2,4,6,8 weeks to produce non-decalcified hard tissue and decalcified bone slices, the use of tetracycline and alizarin red double-fluorescent labeling, special staining, immunohistochemical SABC assay of bone tissue in the fracture healing process of structural change in calcium deposition and osteoblast cell proliferation and cytokine-related protein expression.
     Results:
     1 Rats closed fracture model caused by stent fracture of the middle tibia in rats by X-ray to determine: successful establish a rat closed fracture model of the middle tibia
     2 rhG-CSF and (or) electrical stimulation of skeletal muscle can promote functional recovery after fracture healing in rats. After fracture,the role of rhG-CSF alone and a simple electrical stimulation of skeletal muscle, as well as rhG-CSF combined of skeletal muscle stimulation all promote functional recovery after fracture healing, and the effect of rhG-CSF combined electrical stimulation of skeletal muscle is the most significant
     3 rhG-CSF and (or) electrical stimulation of skeletal muscle to cause the increase in the number of cartilage after fracture healing in rat. Bone tissue calcification occurs earlier, better fracture healing, especially to electrical stimulation and electrical stimulation + mobilizing agent group more obvious effects. Suggest that: after fracture electrical stimulation and bone marrow stem cell mobilization synergy, to increase the early fracture healing of the cartilage cells in the promotion of cartilage into bone, to accelerate fracture healing.
     4 pure rhG-CSF mobilization and simple electrical stimulation make the affected limb 2 labeling line spacing with the healing time and gradually increased, and compared to the model group significant increase,the unit area relative fluorescence intensity showed that: a simple intervention group can affect the fracture healing process of the deposition of calcium to promote bone matrix calcification.
     5 rhG-CSF mobilization combined electrical stimulation of skeletal muscle can make 2 labeling line spacing is gradually increasing, and the peak to appeared in the six weeks after fracture. It suggests that calcium deposition in the latter half of the largest; compared with the pure intervention group 2 tag line spacing increased significantly, indicating that associate intervention is more than simply contribute to fracture healing.
     6 rhG-CSF mobilization and skeletal muscle electrical stimulation on fractured rats the expression of cell growth factor have an impact. Early fracture healing, in cartilage and bone cells, bFGF and c-kit significantly increased; simple electrical stimulation and electrical stimulation of joint mobilization intervention can promote cartilage and bone cells of c-kit expression in the fourth weeks to reach the peak, and the simple mobilization agent group reach peak in 6 weeks; each group TGF-β1 and bFGF to reach peak expression in the 6 weeks; fracture healing in the latter part of the expression of cytokines has declined, but still higher than control group. This showed that the simple way to stimulate and co-stimulation may be different levels to promote the expression of bone-inducing factor to promote fracture healing.
     7 rhG-CSF mobilization and skeletal muscle electrical stimulation have an impact on bone fracture in rats the expression of proliferation-related proteins.After electrical stimulation and combine with mobilization agents, PCNA, BrdU, and ki-67 in fracture healing process of a gradual increase in expression, indicating that cell proliferation-related proteins in fracture healing are the expression of the period, but at different times in different types of cells, the early period of the main division of mesenchymal stem cells and cartilage cells, the latter is the osteoblast. RhG-CSF in the role of early fracture healing in rats the expression of BrdU-positive is not significant, the latter has increased, PCNA and ki-67 expression continued high; simple electrical stimulation of group cell proliferation-associated protein expression with the progressive fracture healing increased, particularly, increased expression of BrdU with a very significant difference. Showed that electrical stimulation alone and compared to pure stem cell mobilization of bone marrow stem cells is more conducive to the proliferation and differentiation. After the joint role of both, PCNA, BrdU, and ki-67 expression peak appeared in the first six weeks, suggesting a dual role in promoting cell proliferation increase in the number of mitosis and in view of the cells are more conducive to the bone remodeling.
     Conclusions:
     Electrical stimulation of skeletal muscle to improve the fracture mechanics of the environment around the fracture site.The formation of micro-effect role for osteoblast-mechanical conditions of fracture healing in rats can callus after the increase in the number of cartilage, bone tissue calcification occurred in early, limb 2nd bone markers with the line spacing to extend the healing time and a gradual increase in the degree of fracture healing is better, the promotion of fracture healing after functional recovery. In this process, TGF-81, PCNA and BrdU expression increased significantly, and promote local cytokine secretion and release, to accelerate fracture healing. Therefore, the use of early forms of micro-fracture healing better than the traditional way of plaster splint is absolutely fixed.
     rhG-CSF mobilized autologous bone marrow stem cells to promote bone marrow-derived mesenchymal stem cells and the release of hematopoietic stem cells migrate to the fracture site, increasing stem cells into osteoblasts, the direction of differentiation into cartilage, promoting cartilage endochondral bone, bone matrix calcification and fracture of parts of new the number of blood vessels, accelerate fracture healing, fracture healing in rats after the promotion of functional recovery. During this process, the early fracture healing of cartilage and bone cells, TGF-β1, bFGF, PCNA, BrdU, and ki-67 in the first six weeks to reach the peak; fracture healing in the latter part of the expression of cytokines has declined, but still higher than the control group. Therefore, early use of autologous bone marrow stem cell mobilization to promote fracture healing is better than the traditional plaster splint means absolutely fixed.
     rhG-CSF mobilization and the joint role of skeletal muscle after electrical stimulation, can promote bone marrow-derived mesenchymal stem cells and the release of hematopoietic stem cells migrate to the fracture site, increasing stem cells into osteoblasts, the direction of differentiation into cartilage and bone growth by ensuring the needs for the mechanical environment, improve local blood circulation, speed up the process of bone remodeling; both of which will enhance bone-inducing factor and cell proliferation-related protein expression, thereby shortening the time to fracture healing. Therefore, the skeletal muscle caused by electrical stimulation of the micro-effects and the mobilization of stem cells to promote fracture healing better than the effect of electrical stimulation of skeletal muscle, rhG-CSF mobilization and traditional plaster splint, such as absolutely fixed.
引文
[1]邓红文,刘耀中.骨生物学前言[M].北京:高等教育出版社,2006:22.
    [2]Langdahl BL,Stenkjaer L,Carstens M,et al.ACAG repeat polymorphism in the androgen receptor gene is associated with reduced bone mass and increased risk of osteoporotic fractures[J].Calcif Tissue Int,2003,73(3):237-243.
    [3]Frenkel SR,Saadeh PB,Mehrara BJ,et al.Transforming growth factor beta superfamily members:role in cartilage modeling[J].Plast Reconstr Surg,2000,105(3):980-990.
    [4]Worster AA,Nixon A J,Brower-Toland BD,et al.Effect of transforming growth factor betal on chondrogenic differentiation of cultured equine mesenchymal stem cells[J].Am J Vet Res,2000,61(9):1003-1010.
    [5]Worster AA,Brower-Toland BD,Fortier LA,et al.Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-betal in monolayer and insulin-like growth factor-Ⅰ in a three-dimensional matrix[J].J Orthop Res,2001,19(4):738-749.
    [6]Wildemann B,Haas NP,Raschke M,et al.IGF-I and TGF-betal incorporated in a poly(D,L-lactide) implant coating maintain their activity over long-term storage-cell culture studies on primary human osteoblastlike cells[J].Biomaterials,2004,25(17):3639-3644.
    [7]史炜镔,杜宁,符诗聪,等.转化生长因子β1在骨折愈合过程中的表达[J].中国骨伤,2000,13(8):453-455.
    [8]Tatsuyama K,Maezawa Y,Baba H,et al.Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone[J].Eur J Histochem,2000,44(3):269-278.
    [9]Bourque WT,Gross M,Hall BK.Expression of four growth factors during fracture repair[J].Int Dev Biol,1993,37(4):573-579.
    [10]Eingartner C,Coerper S,Fritz J,et al.Growth factors in distraction osteogenesis.Immuno-histological pattern of TGF-batal and IGF-I in human callus induced by distraction osteogenesis[J].Int Orthop,1999,23(5):253-259.
    [11]Cho TJ,Gerstenfeld LC,Einhorn TA.Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing [J].J Bone Miner Res,2002,17(3):513-520.
    [12]Steinbrech DS,Mehrara BJ,Rowe NM,et al.Gene espression of TGF-beta,TGF-beta receptor,and extracellular matrix proteins during membranous bone healing in rats[J].Plast Teconstr Surg,2000,105(6):2028-2038.
    [13]Garcia-Maya M,Anderson AA,Kendal CE,et al.Ligand concentration is adriver of divergent signaling and pleiotropic cellular responses to FGF[J].J Cell Physiol,2006,206(2):386-393.
    [14]Wang JS.Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants[J].Acta Orthop Scand Suppl,1996,269:1-33.
    [15]Clarke SA,Brooks RA,Lee PT,et al.The effect of osteogenic growth factors on bone growth into a ceramic filled defect around an implant[J].J Orthop Res,2004,22(5):1016-1024.
    [16]Baddoo M,Hill K,Wilkinson R,et al.Characterization of mesenchymal stem cell isolated from murine bone marrow by negative selection[J].J Cell Biochem,2003,89(6):1235-1249.
    [17]Delany AM,Canalis E.Basic fibroblast growth factor destabilizes osteonectin mRNA in osteoblast[J].Am J Physiol,1998,274(3Pt1):734-740.
    [18]Chen WJ,Jingushi S,Aoyama I,et al.Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae[J].J Bone Miner Metab,2004,22(4):303-309.
    [19]潘贵超,温建民,潘贵春.骨形态发生蛋白-2的研究进展[J].中国中医骨伤科杂志,2006,14(6):78-80.
    [20]杨树青,王志强,张志刚,等.骨形态发生蛋白2在骨修复中的应用[J].中国临床康复,2006,10(17):146-148.
    [21]郁卫东.骨形态发生蛋白-2在骨形成过程中的作用机制[J].中国临床解剖学杂志,2000,18(1):82-83.
    [22]Li G,Bouxsein ML,Luppen,C,et al.Bone consolidation is enhanced by rhBMP-2in a rabbit model of distraction osteogenesis[J].J Orthop Res,2002,20(4):779-788.
    [23]Bostrom MP,Lane JM,Berberian WS,et al.Immunolocalization and expression of bone morphogenetic protein 2 and 4 in fracture healing[J].J Orthop Res,1995,13(3):357-367.
    [24]Onishi T,Ishidou Y,Nagamine T,et al.Distinct and overlapping patterns of localization of bone morphogenetic protein(BMP) family members and a BMP typeⅡreceptor during fracture healing in rats[J].Bone,1998,22(6):605-612.
    [25]Maga G,Hubscher U.Proliferating cell nuclear antigen(PCNA):a dancer with many partners[J].J Cell Sci,2003,116(15):3015-3060.
    [26]Hall PA,Almendral JM,Huaebsch D,et al.Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin secton[J].Pathol,1990,162(2):258-294.
    [27]宋南萌,桑建利,徐恒.增殖细胞核抗原(PCNA)的分子结构及其生物学功能研究进展[J].自然科学进展,2006,16(10):1201-1209.
    [28]Kurki P,Vandedaan M,Dollbeare F,et al.Immunohistochemical study of proliferating cell nuclear antigen(PCNA) in tumor and their relation[J].Cell Res,1986,166(1):209-219.
    [29]Bravo R,Frank R,Blundell P,et al.Cyclin/PCNA is the auxilliary protein of DNA Polvmerase-delta[J].Nature.1987.326(6112):515-517.
    [30]黄孝文,肖红俊,汪吉宝,等.用BrdU标记技术观察大鼠内淋巴囊的S期细胞[J].中国组织化学与细胞化学杂志,2002,11(41:403-404.
    [31]冯善伟,姚晓黎,李中,等.BrdU体外标记大鼠骨髓间充质干细胞的研究[J].第一军医大学学报,2005,25(2):184-186.
    [32]王小蕊,侯相麟,席亚明,等.成人骨髓间充质干细胞的鉴定与体外BrdU标记[J].中国组织工程研究与临床康复,2008,12(21):4131-4135.
    [33]Fonatsch C,Duchrow M,Rieder H,et al.Assignment of the human Ki-67 gene (MK167) to 10q25-qter[J].Genomics,1991,11(2):476-477.
    [34]刘波,李运海,栾文忠,等.P16蛋白和Ki-67抗原在人脑胶质瘤中的表达及其意义[J].北京大学学报(医学版),2003,35(2):223-224.
    [35]陈强华,张凤秀.增殖细胞核抗原Ki-67与肿瘤[J].现代肿瘤医学,2004,12(2):170-171.
    [36]裴雪涛.干细胞生物学[M].北京:科学出版社,2003:8-9.
    [37]Pereira RF,Halford KW,O'Hara MD,et al.Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone cartilage and lung in irradiated mice[J].Proc Natl Acad Sci USA,1995,92(11):4857-4861.
    [38]Pereira RF,O'Hara MD,Laptev AV,et al.Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta[J].Proc Natl Acad Sci USA,1998,95(3):1142-1147.
    [39]黄开,章庆国,蔡国锋.成骨细胞与诱导剂对骨髓基质干细胞的增殖与成骨分化的影响[J].中国修复重建外科杂志,2006,20(2):125-129.
    [40]殷晓雪,陈仲强,郭昭庆,等.人骨髓间充质干细胞定向分化为成骨细胞及其鉴定 [J].中国修复重建外科杂志,2004,18(2):88-91.
    [41]Jendelova P,Herynek V,DeCroos J,et al.Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles[J].Magn Reson Med,2003,50(4):767-776.
    [42]李其庆,齐瑞,唐骅.自体骨髓移植治疗骨不连及延迟愈合18例[J].中国医师杂志,2003,5(6):802.
    [43]董怀启,薛斌.自体骨髓移植治疗骨折延迟愈合和骨不连的临床应用观察[J].中国矫形外科杂志,2000,7(6):558.
    [44]Li GT,Peng ZX,Zhang GH,et al.Study on combined transplantation of rabbit's marrow stroma cells and hematomas in bone healing[J].Zhongguo Gu Shang,2008,21(11):839-841.
    [45]Hladki W,Lorkowski J,Trybus M,et al.Results of autogenous bone marrow grafting in disorders of bone healing and bone defectives[J].Przegl Lek,2008,65(1):25-28.
    [46]Herbertson A,Aubin JE.Dexamethason alter the subpopulation make up of rat bone marrow stromal cell culture[J].J Bone Miner Res,1995,10(2):285-294.
    [47]Weller S,Hontzsch D,Frigg R.Epiperiostal,percutaneous plate osteosynthesis.A new minimally invasive technique with reference to"biological osteosythesis"[J].Unfallchirurg,1998,101(2):115-121.
    [48]石恩东,李传平,候训凯,等.从骨折的机械固定到生物学固定[J].2007,21(1):30-31.
    [49]Kenwright J,Richardson JB,Cunningham JL,et al.Axial movement and tibial fractures.A controlled randomised trial of treatment[J].J Bone Joint Surg Br,1991,73(4):654-659.
    [50]Pacicca DM,Patel N,Lee C,et al.Expression of angiogenic factors during distraction osteogenesis[J].Bone,2003,33(6):889-898.
    [51]Sarmiento A.450 dosed fractures of the distal third of the tibia treated with a functional brace[J].Clin Orthop Relat Res,2004(428):261-271.
    [52]吴艳春,高厚超.下肢骨折病人的自我康复锻炼方法[J].护理研究,2003,17(7):834.
    [53]Vicente-Rodriquez G.How does exercise affect bone development during growth [J].Spors Med,2006,36(7):561-569.
    [54]Robling AG,Burr DB,Turner CH.Partitioning a dally mechanical stimulus into discrete loading bouts improves the osteogenic response to loading[J].J Bone Miner Res,2000,15(8):1596-1602.
    [55]Jansen JH,Weyts FA,Westbroek I,et al.Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts[J].J Cell Biochem,2004,93(3):542-551.
    [56]Song G,Ju Y,Shen X,et al.Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells[J].Colloids Surf B,Biointerfaces,2007,58(2):271-277.
    [57]Fermor B,Gundle R,Evans M,et al.Primary human osteoblast proliferation and prostaglandinE2 release in response to mechanical strain in vitro[J].Bone,1998,22(6):637-643.
    [58]Burr DB,Milgrom C,Fyhrie D,et al.In vivo measurement of human tibial strains during vigorous activity[J].Bone,1996,18(5):405-410.
    [59]Tang L,Lin Z,Li YM.Effects of different magnitudes of mechanical strain on Osteoblasts in vitro[J].Biochem Biophys Res Commun,2006,344(1):122-128.
    [60]Miyauchi A,Gotoh M,Kamioka H,et al.Alpha Vbeta3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes[J].Bone Miner Metab,2006,24(6):498-504.
    [61]Min Su,Hui Jiang,Ping Zhang,et al.Knee-Loading Modality Drives Molecular Transport in Mouse Femur[J].Annal of Biomedical Engineering,2006,34(10):1600-1606.
    [62]Sakai K,Mohtai M,lwamoto Y.Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells:modulation by cation channel blockades[J].Calcif Tissue Int,1998,63(6):515-520.
    [63]Pavalko FM,Gerard RL,Ponik SM,et al.Fluid shear stress inhibits TNF-alphainduced apoptosis in osteoblasts:a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3[J].J Cell Physiol,2003,194(2):194-205.
    [64]Genetos DC,Geist DJ,Liu D,et al.Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts[J].J Bone Miner Res,2005,20(1):41-49.
    [65]Zhang P,Shigeo M.Tanaka,Hui Jiang,et al.Disphyseal bone formation in murine tibiae in response to knee loading[J].J Appl Physiol,2006,(100):1452-1459.
    [66]Zhang P,Min SU,Shigeo M.Tanaka,et al.Knee loading stimulates cortical bone formation in murine femurs[J].BMC Musculoskeletal Disorders,2006,7(73):1471-2474.
    [67]江建明,孙炜,吴一民,等.低频振动下成人成骨细胞动力学响应的研究[J].中华物理医学与康复杂志,2002,24(10):613-616.
    [68]Toma CD,Ashker S,Grey ML,et al.Signal tmnsduction of mechanicals timuli is dependent on microfilament integrity:identification of osteopontin as a mechanically induced gene in osteoblast[J].Bone Miner Res,1997,12(6):1626-1636.
    [69]Brand RA,Stanford CM,Nicolella DP.Primary adult human bone cells do not respond to tissue(continuum) level strains[J].J Orthop Sci,2001,6(3):295-301.
    [70]Chan CW,Qin L,Lee KM,et al.Low intensity pulsed ultrasound accelerated bone remodeling during consolidation stage of distraction osteogenesis[J].J Othop Res,2006,24(2):263-270.
    [71]Shimazaki A,Innui K,Azuma Y,et al.Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits[J].J Bone Joint Surg Br,2000,82(7):1077-1082.
    [72]Azuma Y,Ito M,Harada Y,et al.Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus[J].J Bone Miner Res,2001,16(4):671-680.
    [73]Chan CW,Qin L,Lee KM,et al.Dose-dependent effect of low-intensity pulsed ultrasound on callus formation during rapid distraction osteogenesis[J].J Othop Res,2006,24(11):2072-2079.
    [74]Machen MS,Tis JE,Inoue N,et al.The effect of low intensity pulsed ultrasound on regenerate bone in a less-than-rigid biomechanical environment[J].Biomed Mater Eng,2002,12(3):239-247.
    [75]Sun JS,Hong RC,ChangWH,et al.In vitro effects of low intensity ultrasound stimulation on the bone cells[J].J BiomedMater Res,2001,57(3):449-456.
    [76]Morel J,Combe B,Francisco J,et al.Bone mineral density of 704 amateur sportsman involved in different physical activities[J].Osteoporos,2001,12(2):152-157.
    [77]Merli LA,Santos MT,Genovese WJ,et al.Effect of low-intensity laser irradiation on the process of bone repair[J].Photomed Laser Surg,2005,23(2):212-215.
    [78]Nissan J,Assif D,Gross MD,et al.Effect of low intensity laser irradiation on surgically created bony defects in rats[J].J Oral Rehabil,2006,33(8):619-924.
    [79]Nunez SC,Nogueira GE,Ribeiro MS,et al.He-Ne laser effects on blood microcirculation during wound healing:a method of in vivo study through laser Doppler flowmetry[J].Lasers Surg Med,2004,35(5):363-368.
    [80]Fredericks DC,Smucker J,Petersen EB,et al.Effects of direct current electrical s timulation on gene express ion of os teopromotive factors in apoterolateral spinal fusion model[J].Spine,2007,32(2):174-181.
    [81]王前,郑磊.电刺激促进成骨细胞粘附特性的实验研究[J].暨南大学学报(自然科学版),2000,21(1):46-49.
    [82]Ciombor DM,Aaron RK.The role of electrical stimulation in bone repair[J].Foot Ankle Clin,2005,10(4):579-593.
    [83]Wang Q,Zhong S,Ouyang J,et al.Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions[J].Clin Orthop Relat Res,1998,(348):259-268.
    [84]高越,胡海翔.复合中药制剂促进大鼠骨折愈合的实验研究[J].科学技术与工程,2007,7(6):1164-1166.
    [85]江树连,丁锷,李保泉,等.消瘀接骨散促进骨折愈合的实验研究[J].中国骨伤,2000,13(12):720-721.
    [86]罗秀夏.骨折迟缓愈合的中医辨证论治体会[J].中华中医药杂志,2005,20(10):610-611.
    [87]沈祥春,张贵林,任光友.抗骨折方促进实验大鼠骨折愈合作用的研究[J].中华中医药杂志,2007,22(5):285-288.
    [88]何赞厚,刘庆思,陈芝喜.中药驳骨煎剂对骨折小鼠~(45)Ca和~(32)P水平的影响[J].广州中医药大学学报,1998,15(4):278-280.
    [89]张建国,陈良金,蒋文跃,等.外敷中药对骨折愈合微血管重建的影响[J].中国骨伤,2000,13(2):86-87.
    [90]沈海琦,马勇.“接骨灵”促进骨折愈合的扫描电子显微镜的初步观察[J].镇江医学院学报,1999,9(3):345-348.
    [91]董海辉,周建光,陈谊斌,等.跌打接骨片促进实验性骨折愈合的骨组织形态计量学研究[J].中药新药与临床药理,2001,12(4):259-262.
    [92]史炜镔,符诗聪,杜宁,等.丹参有效部位对骨折愈合过程中胶原基因表达的影响[J].中国中西医结合杂志,2000,20(4):269-271.
    [93]Ferguson C,Alpern E,Miclau T,et al.Does adult fracture repair recapitulate embryonic skeletal formation[J].Mech Dev,1999,87(1-2):57-66.
    [94]张宪郁,徐皓,陈建梅.骨髓间充质干细胞在骨损伤治疗中的应用进展[J].实用医学杂志,2008,24(5):691-692.
    [95]封卫兵,谢明,刘艳萍,等.骨损伤刺激对骨髓间充质干细胞增殖的影响[J].中国临 床康复,2006,10(25):56-58.
    [96]Taylor KF,Inoue N,Rafiee B,et al.Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model[J].J Orthop Res,2006,24(1):2-10.
    [97]Inoue N,Ohnishi I,Chen D,et al.Effect of pulsed electromagnetic fields(PEMF) on late-phase os teotomy gap healing in a canine tibial model[J].J Orthop Res,2002,20(5):1106-1114.
    [98]费琴明,陈统一,陈中伟.大鼠胫骨标准骨折模型的制作[J].上海实验动物科学,2002,22(1):10-11.
    [99]周晓中,董启榕,张健.大鼠股骨闭合骨折模型的制作[J].东南大学学报(医学版),2007,26(1):60-62.
    [100]彭亮,尚禹,梁颖,等.经皮肌肉电刺激对尾部悬吊大鼠骨丢失防护的初步研究[J].航天医学与医学工程,2007,20(1):7-10.
    [101]吕晓宇,郝选明.电刺激对失用性肌萎缩肌肉肌力与肌电影响的生物学效应[J].中国临床康复,2006,10(30):34-36.
    [102]杨敏,曾展军,杨杰华.骨髓干细胞动员与缺血心肌血管再生[J].中国临床康复,2005,9(19):71-74.
    [103]陈运贤,欧瑞明,钟雪云.粒细胞集落刺激因子动员骨髓干细胞治疗大鼠急性心肌梗塞[J].中国病理生理杂志,2002,18(1):1-3.
    [104]晏凯利,曾秋棠,李宾公.自体骨髓干细胞动员治疗大鼠实验性心肌梗死[J].中国介入心脏病学杂志,2005,13(5):322-324.
    [105]朱进才,任战平,李旭奎,等.电刺激活化牙槽骨成骨细胞增殖功能的实验研究[J].西安交通大学学报(医学版),2003,24(4):300-305.
    [106]邓廉夫,马璟,郭洪敏,等.功能性电刺激在实验性骨折愈合过程中的作用[J].骨与关节损伤杂志,1997,12(2):95-97.
    [107]Pezzetti F,De Mattei M,Caruso A,et al.Effects of pulsed electromagnetic fields on human chondrocytes:an in vitro study[J].Calcif Tissue Int,1999,65(5):396-401.
    [108]Ciombor DM,Lester G,Aaron RK,et al.Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins[J].J Orthop Res,2002,20(1):40-50.
    [109]Aaron RK,Wang S,Ciombor DM,et al.Upregulation of basal TGFβ1 levels by EMF coincident with chondrogenesis implications for skeletal repair and tissue engineering[J].J Orthop Res,2002,20(2):233-240.
    [110]段小军,杨柳,周跃,等.增强型绿色荧光蛋白标记技术对骨折后骨髓间充质干细胞的迁移示踪[J].中国修复重建外科杂志,2006,20(2):102-106.
    [111]周志玲,袁进国,刘英飞,等.自体骨髓干细胞移植治疗骨不连[J].中国临床康复,2006,10(29):22-23.
    [112]李贵涛,彭湛贤,张国红,等.兔骨髓基质细胞和骨血肿块移植促进骨折愈合的研究[J].中国骨伤,2008,21(11):839-841.
    [113]Gronthos S,Zannettino AC,Hay SJ,et al.Molecular and cellular characterization of highly purified stromal stem cells derived from human bone marrow[J].J Cell Sci,2003,116(Pt9):1827-1835.
    [114]Lou J,Xu F,Merkel K,et al.Gene th.erapy:adenovirus-mediated human bone morphogenetic protein-.2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo[J].J Orthop Res,1999,17(1):43-50.
    [115]Bozlar M,Aslan B,Kalaci A,et al.Effects of human glanulocyte-colony stimulating factor on fracture healing in rats[J].Saudi Meal J,2005,26(8):1250-1254.
    [116]Muraglia A,Cancedda R,Quarto R.Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model[J].J Cell Sci,2000,113(Pt7):1161-1166.
    [117]王福科,刘流,赵德萍,等.大鼠骨髓和脂肪来源间充质干细胞的成骨特性比较[J].中国组织工程研究与临床康复,2008,12(47):9306-9310.
    [118]许丽丽,杨乃龙.体外诱导人骨髓间充质干细胞向成骨细胞的分化[J].中国组织工程研究与临床康复,2008,12(38):7483-7486.
    [119]胡运生,马保安,李文海,等.绿色荧光蛋白标记基因体内示踪骨髓间充质干细胞的分化[J].中国修复重建外科杂志,2007,21(6):633-637.
    [120]王占朝,侯淑勋.电刺激促进骨折愈合的研究现状[J].中国医刊,2005,40(7):51-53.
    [121]张兴毅.被动运动与电刺激联合作用防治去神经大鼠骨质疏松的研究[J].成都体育学院学报,2008,34(11):75-77.
    [122]Inoue N,Ohnishi I,Chen D,et al.Effect of pulsed electromagnetic fields(PEMF)on late-phase osteotomy gap healing in a canine tibial model[J].J Orthop Res,2002,20(5):1106-1114.
    [123]Park SH,Silva M.Neuromuscular electrical stimulation enhances fracture healing:results of an animal model[J].J Orthop Res,2004,22(2):382-387.
    [124]Fredericks DC,Nepola JV,Baker JT,et al.Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model[J].J Orthop Trauma,2000,14(2):93-100.
    [125]王嫣.促进骨折愈合的方法及其生物学机制[J].现代临床医学生物工程学杂志,2006,2(2):216-218.
    [126]李伟,熊国欣,连建学,等.干扰电流促进骨折愈合的实验研究[J].中华物理医学与康复杂志,2002,24(9):529-532.
    [127]刘献祥,王建云,张俐.骨折愈合及其加速骨折愈合的方法[J].中国中医骨伤科杂志,1998,6(6):43-46.
    [128]梅强,阴小龙,李永革,等.髓腔内恒定低压直流电刺激修复兔挠骨缺损的实验研究[J].西安交通大学学报(医学版),2005,26(2):169-171.
    [129]Derubeis AR,Cancedda T.Bone marrow stromal cells(BMSCs)in bone engineening:limitations and recent advances[J].Ann Biomed Eng,2004,32(1):160-165.
    [130]屠锦雯,张晓玲.生物力学信号对骨髓间充质干细胞体内外成骨分化的影响[J].国际骨科学杂志,2008,29(4):253-256.
    [131]陈东明,吴华,祝文涛,等.电磁场刺激对骨髓间充质干细胞即刻早期基因表达的影响[J].中国组织工程研究与临床康复,2008,12(38):7417-7421.
    [132]赵红斌,吕同德,马敬,等.机械力对间充质干细胞向成骨细胞分化的力学响应机制研究[J].生物化学与生物物理进展,2007,34(7):718-723.
    [133]Schmidmaier G,Wildernann B,Ostapowicz D,et al.Long-term effects of local growth factor(IGF-I and TGF-batal)treatment on fracture healing.A safety study for using growth factors[J].J Orthop Res,2004,22(3):514-519.
    [134]孙玉鹏,陆裕朴,胡蕴玉,等.牛血小板TGF-β提取、纯化及其诱导小鼠股骨成骨作用[J].中华骨科杂志,1995,15(9):610-613.
    [135]刘道德.骨折愈合过程及相关细胞因子[J].四川解剖学杂志,2006,14(4):46-48.
    [136]Pertovaara L,Kaipainen A,Mustonen T,et al.Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cell[J].J Biol Chen,1994,269(9):6271-6274.
    [137]朱建民,金宗达.β转化生长因子对骨折愈合的调节作用[J].中国骨伤,1994,7(5):47-48.
    [138]许超,李琪佳.生长因子对骨髓基质干细胞诱导的成骨细胞的生物学特性[J].第四军医大学学报,2007,28(14):1338-1340.
    [139]Centrella M,et al.β转化生长因子与骨改建[J].《国外医学》创伤与外科基本问 题分册,1992,13(4):199-203.
    [140]Wildemann B,Schmidmaier G,Brenner N,et al.Quantification,localization,and expression of IGF-I and TGF-betal during growth factor stimulated fracture healing[J].Calcif Tissure Int,2004,74(4):388-397.
    [141]潘建成,游逸丰.低强度脉冲超声对骨折愈合过程中转化生长因子-β表达的影响[J].实用医学杂志,2007,23(4):467-470.
    [142]Pei Xian-wu,Wang Kun-zheng,Yan Hong-wei,et al.Transforming growth factorbatal expression in callus and the effect of callus bone graft on the post-operative function[J].Chinese Journal of Clinical Rahabilitation,2006,10(5):149-151.
    [143]Gao J,Dennis JE,S.olchaga LA,et al.Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow derived mesenchymal stem cells[J].Tissue Eng,2001,7(4):363-371.
    [144]Schmal H,Mehlhorn AT,Fehrenbach M,et al.Regulative mechanisms of chondrocyte adhesion[J].Tissue Eng,2006,12(4):741-750.
    [145]Wong WC,Yu Y,Wallace AL,et al.Use of a polymeric device to deliver growth factors to a healing fracture[J].ANZ J Surg,2003,73(12):1022-1027.
    [146]Clarke SA,Brooks RA,Lee PT,et al.The effect of osteogenic growth factors on bone growth into a ceramic filled defect around an implant[J].J Orthop Res,2004,22(5):1016-1024.
    [147]Nakajima F,Nakajima,A,Ogasawara A,et al.Effects of a single percutaneous injection of basic fibroblast growth factor on the healong of a closed femoral shaft fracture in the rat[J].Calcif Tissue Int,2007,81(2):132-138.
    [148]Tokuda H,Kozawa O,Uematsu T.Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts:divergent regulation by p42/p44mitogenactivated protein kinase and p38 mitogenactivated protein kinase [J].J Bone Miner Res,2000,15(12):2371-2379.
    [149]Chaudhary LR,Hruska KA.The cell survival signal Akt is differentially activated by PDGF-BB,EGF,and FGF-2 in osteoblastic cells[J].J Cell Biochem,2001,81(2):304-311.
    [150]Tang CH,Yang RS,Huang TH,et al.Enhancement of fibronectin fibrilogenesis and bone formation by basic fibroblast growth factor via protein kinase Cdependent pathway in rat osteoblasts[J].Mol Pharmacol,2004,66(3):440-449.
    [151]Heng BC,Cao T,Stanton LW,et al.Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro[J].J Bone Miner Res,2004,19(9):1379-1394
    [152]Debiais F,Lefevre G,Lemonnier J,et al.Fibroblast growth factor-2 induces osteoblast survival through a phosphatidylinositol 3-kinase-dependent,beta-cateninindependent signaling pathway[J].Exp Cell Res,2004,297(1):235-246.
    [153]Sugimoto K,Adachi Y,Moriyama K,et al.Induction of the expression of SCF inmouse by lethal irradiation[J].Growth Factors,2001,19(4):219-231.
    [154]Lapidot T,Dar A,Kollet O.How do stem cells find their way home[J].Blood,2005,106(6):1901-1910.
    [155]Chao EY,Inoue N,Elias JJ,et al.Enhancement of fracture healing by mechanical and surgical intervention[J].Clin Orthop Relat Res,1998,355:163-178.
    [156]Goodship AE,Cunningham JL,Kenwright J,et al.Strain rate and timing of stimulation in mechanical modulation of fracture healing[J].Clin Orthop Relat Res,1998,355:105-115.
    [157]Kenwright J,Gardner T.Mechanical influences on tibial fracture healing[J].Clin Orthop Relat Res,1998,355:179-190.
    [158]Rubin CT,Mcleod KJ,Titus L,et al.Formation of osteoblast-like cells is suppressed by low frequency,low intensity electric fields[J].J Orthop Res,1996,14(1):7-15.
    [159]Lee JH,Mcleod KJ.Morphologic responses of osteoblast-like cells in monolayer cultureto ELF electromagnetic fields[J].Bioelectromagnetics,2000,21(2):129-136.
    [160]夏志道,常超英,房世源,等.骨折愈合中的软骨骨痂—形态学演变及超微结构观察[J].中国骨伤,1994,7(6):10-12.
    [161]崔猛,陈建庭.血小板衍生生长因子促进鼠骨早期修复中增殖细胞核抗原与c-Jun蛋白的表达[J].中国临床康复,2006,10(41):53-55.
    [162]黄莉明,张娇,章庆国.5-BrdU标记的骨髓间充质干细胞对大鼠创面愈合的作用研究[J].中国美容医学,2008,17(4):527-530.
    [163]Petit I,Szyper-Kravitz M,Nagler A,et al.G-CSF induces stem cell mobilization bydecreasing bone marrow SDF-1 and upregulating CXCR4[J].Nat Immunol,2002,3(7):687-694.
    [164]Kollet O,Spiegel A,Peled A,et al.Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+)stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice[J].Blood,2001,97(10):3283-3291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700