基于人工甜味受体模型的甜味识别机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜味是食品科学的一个基本问题,甜味感官特征的评价一直依赖于人的感官品评。由于品评人员个体、性别及阅历等生理和心理的差异,很大程度上制约了对甜味感受真实、客观的表达。而且,基于实验条件的限制和甜味感觉的特殊性,人们至今没有完整理解甜味分子的感受机理。而在甜味抑制剂研究方面,虽然人们对甜味抑制剂作用位点达成了共识,但有关甜味抑制物质起作用的机制是竞争性的还是非竞争性的,仍然没有统一的结论。
     本课题组前期以富勒醇C60(OH)18作为人工甜味化学受体模型,运用等温滴定量热(ITC)方法探索甜味识别的热力学,研究结果表明富勒醇对人工甜味剂、天然甜味剂都具有较好的识别效果,其作为模型化合物研究甜味机理具有可行性。本论文进一步运用感官品评、ITC、核磁共振(NMR)和分子模拟(MS)等多种实验手段共同研究人工甜味受体模型与甜味抑制剂,甜味异构体、甜味增强剂的识别作用,以期获得甜味机理方面更多的信息。
     本课题研究的内容有:
     (1)人工甜味化学受体模型与甜味抑制剂作用的研究
     采用甜味抑制剂(HPMP)和十四种常用甜味剂,通过前期建立的人工甜味受体模型ITC滴定模式,获得抑制过程中热力学参数,实验结果表明富勒醇优先自发识别HPMP,疏水作用力在识别过程中起着重要作用,HPMP和甜味剂同富勒醇的结合具有竞争性。
     采用“快速作用-有无法”的品评模式进行HPMP感官实验,通过比较加入甜味抑制剂前后甜味剂察觉阈值,发现HPMP对不同结构甜味剂的抑制效果不同,离子对其作用无明显影响,抑制效果可以用Ⅰk(甜味抑制度)量化表示。
     比较富勒醇识别过程中热力学参数与Ⅰk,发现热力学平衡常数的比值(K1/K2)与Ⅰk有一定的相关性,K1/K2比值越大,甜味抑制度Ⅰk越高,由此佐证了甜味抑制机理可能是甜味抑制物质竞争地与味蕾受体结合产生的。实验结果进一步说明利用人工受体模型研究甜味机理的有效性。
     (2)人工甜味受体模型与甜味剂异构体作用的研究
     通过ITC、NMR和MS等技术共同研究富勒醇与单糖异构体的作用,实验结果表明在溶液中多种单糖异构体共存的情况下,富勒醇与p型异构体结合更稳定,优先与之形成氢键,此过程中释放出的能量可以提供α型异构分子转化成p型异构分子所需的构象转化能,打破溶液中原有的变旋平衡,向生成p型异构体的方向移动,导致溶液中p型异构体比例明显增加。因此可以推测,单糖分子接近味蕾受体时,可能也引起甜味剂异构体的平衡移动,导致异构体的比例发生变化,具体表现为各种糖类异构体的甜度差异。
     (3)人工甜味化学受体模型与甜味增强剂作用的研究
     通过MS手段进行富勒醇分子与甜味增强剂的相互作用的研究,结果表明甜味增强剂与富勒醇形成氢键后,还与甜味分子形成较强氢键,这样就拉近了甜味分子与富勒醇的距离,增强了甜味分子与富勒醇的氢键强度,使其更好地与富勒醇进行识别。因此可以推测,甜味增强剂在与味蕾受体结合的同时,还能与甜味分子形成较强氢键,从而增强了甜味分子与味蕾受体的识别作用,实际表现为增强剂单独使用不产生甜味,但和甜味剂共同使用能有效增强甜感。
     (4)不同结构的人工甜味受体模型与甜味剂相互作用的研究
     通过分子动力学模拟,对现有人工甜味受体模型C60(OH)18进行结构优化,实验结果表明富勒醇随碳数增加碳球笼体积增大,在理想稀溶液中,分子表面疏水作用力增加,无法更好与甜味分子识别;富勒醇羟基数的增加会使其与单糖分子的结合能增加,识别作用更加明显,但是羟基数过多会减小分子表面疏水作用力,分子表面的羟基因为距离过近会相互吸引形成分子内,增大识别过程中噪音能量,不利于富勒醇分子与单糖分子的识别作用。因此,结构优化结果表明C60(OH)20更适合作为人工甜味受体模型。
     总之,本文在前期研究的基础上,采用多种实验手段,进一步利用富勒醇作为人工甜味受体的模型化合物研究了它与甜味剂异构体、甜味抑制剂和甜味增强剂的相互作用,在目前人们未能获得甜味蛋白精细结构之前,研究结果对于理解甜味识别、甜味抑制机理和甜味增强机理具有一定的意义,同时也丰富了甜味机理研究的仿生化学。
Sweet taste is a basic issue of food science while evaluation of sweetness organoleptic property always relies on panelist sensory evaluation. Nobody has completely understood sense mechanism of sweet molecules due to limited experimental condition and specialty of sweet taste. Although researchers have made some agreement on acting spot of sweetness inhibitor in relating researches, there's still no uniformed conclusion regarding whether sweetness inhabiting mechanism is competitiveness or not.
     Recently, our team used C60(OH)18 as a synthetic sweetness receptor model, and isothermal titration calorimetry (ITC) as a tool to discover the thermodynamic mechanism of the molecular recognition of sweetness. The result showed a fullerenols-based synthetic model can effectively recognize both artificial and natural sweeteners. Our model truly helps to understand the mechanism of the recognition of sweetness.
     This thesis further applies multiple experimental approaches such as sensory evaluation, ITC, NMR(Nuclear Magnetic Resonance) and MS(molecular simulate) to research on recognition of artificial receptor model, sweetness inhibitor, sweetness isomer and sweetness enhancer in order to obtain more information about mechanism of sweetness. The main research work is as follows:
     (1) Research on Artificial Receptor Model and Sweetness Inhibitor
     The thermodynamics of the mimetic interaction of HPMP and 14 sweeteners with fullerenols as a synthetic sweet receptor model was elucidated by ITC technique. Thermodynamic parameters revealed that fullerenols recognize HPMP firstly on account of hydrophobic force, and competitive binding with fullerenols do exist when the sweeteners and HPMP are presented in the solution concurrently.
     "rapid action-yes or no way" sensory evaluated method was conducted to get the threshold value of each sweetener. The efficiency of HPMP inhibiting each sweetener was expressed by the change of sweetness intensity. Test result implied that the inhibitor showed discriminating inhibition effect on each sweet compound, and ion has no significant effect on suppressive effectivity (Ik)
     The combined results of sensory evaluation and ITC thermodynamics revealed that the larger value of the ratio of two equilibriums constant K1/K2, the more effectively HPMP inhibit the sweetness of the sweetener. Thus the results proof that maybe the HPMP suppressive effect on human sweet taste by a competitive mechanism. Further certification of the artificial sweet receptor is a useful model that helps to provide chemical information of sweetness recognized mechanism.
     (2) Research on Artificial Receptor Model and Sweetness Isomers
     Reaction of fullerenols and monosaccharides isomer is jointly researched by application of ITC, NMR and MS technology. Experimental result shows that fullerenols andβ-isomer has more stable coalition and can form hydrogen bond preferentially while multiple monosaccharides isomers existing in solution at meantime. Such process can release necessary conformation conversion energy for a-isomers transfer intoβ-isomers thus to break original mutarotation balance of solution and shift toward generating direction ofβ-isomers, causing significant increase ofβ-isomers in solution. Therefore it can be attributed that monosaccharides molecular may cause equilibrium shifting of sweet isomer when approaching taste buds receptors, then proportion change of isomer may incur and specifically expressed as sweetness difference of various sweet isomers.
     (3) Research on Artificial Sweetness Chemical Receptor Model and Sweetness Enhancer
     Researches on interactions of fullerenols module and sweetness reinforcing agent has been conducted by MS approach. The result shows that sweetness reinforcing agent can form relatively strong hydrogen bond after forming hydrogen bond with fullerenols,hence, distance between sweet module and fullerenols is shortened while hydrogen bond intensity of sweet module and fullerenols is improved for better recognition with fullerenols. It can be estimated that sweet reinforcing agent can form relatively strong hydrogen bond while combing with taste buds receptor to improve recognition of sweet module and taste buds receptor.
     (4) Research on Interactions Between Artificial Sweet Receptor Model with Different Structures and Edulcorator
     Structural optimization of artificial sweetness receptor model C60(OH)18 by molecular dynamics simulation shows that fullerenols grows along with enlarging size of carbon spheres. Hydrophobic interaction increases on module surface in idea diluted solution; therefore we're unable to make better identification with sweetness module. Increasing fullerenols hydroxyl groups will improve binding energy of monosaccharides molecular and more obvious recognition, but excessive hydroxide numbers will decrease hydrophobic interaction increases on module surface. Hydroxid on module surface will make interaction to form intramolecular and increase noise energy during recognition process, therefore make against to recognition reaction of polyhydroxy fullerenols module and monosaccharides molecular. Hence, structural optimization result shows that C60(OH)20 is more suitable to be used as artificial sweetness receptor model.
     In conclusion, the thesis applies multiple experimental approaches to further study interactions among fullerenols which is used as model compound of artificial sweetness receptor, edulcorator isomer, sweetness inhibitor and sweetness reinforcing agent. The research result has certain significance for people to understand sweetness inhibitor, sweetness inhibiting mechanism and sweetness strengthening mechanism before as certaining fine structure of sweet protein while also enriches biomimetic chemistry of sweetness mechanism study.
引文
[1]Ernest O., Rollin G M. Simple relations between the constitution of aliphatic compounds and their sweet taste [J]. Journal of the American Chemical Society,1916,855-867.
    [2]励建荣,蔡成岗.食品工业中甜味剂的应用[J].食品研究与开发,2003,24(4),18-20.
    [3]郑建仙,李璇,袁尔东等.高效甜味剂[M].中国轻工业出版社,2009,2-16.
    [4]Stuart A. The taste of sugars [J]. Neuroscience and Biobehavioral Reviews,2008,32,1024-1043.
    [5]Joseph G B., Alexander M F. Biochemistry of sweet taste transduction [J]. Food Chemistry,1996,56(3), 199-207.
    [6]Montmayeur J P., Matsunami H. Receptors for bitter and sweet taste [J]. Current Opinion in Neurobiology,2002,12,366-371.
    [7]Jayaram C., Mark A H., Nicholas J P., et al. The receptors and cells for mammalian taste [J]. Nature, 2006,444,288-294.
    [8]Eggers S C., Acree T E., Shallenberger R S. Sweetness chemoreception theory and sweetness transduction [J]. Food Chemistry,2000,68,45-49.
    [9]王璋,许时婴,江波等.食品化学[M].中国轻工业出版社,2003,137-172.
    [10]关谨.甜味剂的应用现状及发展前景[J].当代化工,2002,31(2),89-91.
    [11]John E H. Transdisciplinary perspectives on sweetness [J]. Chemosensory perception,2008,1,48-57.
    [12]刘成.食品添加剂应用大全[M].北京工业大学出版社,1994,48-57.
    [13]朱海霞,郑建仙.甜菊糖的酶法改性[J].中国食品添加剂,2004,1,21-27.
    [14]郑建仙.功能性甜味剂[J].中国食品添加剂,1991,14,1-3.
    [15]王中华.食品化学[M].上海科学技术文献出版社,2008,46-58.
    [16]钟细娥,王庆华,吕振岳.甜味抑制剂在食品工业的应用[J].食品添加剂,2005,10,50-51.
    [17]Rutt S., Lee I S. Plant derived triterpenoid sweetness inhibitors [J]. Joumal of Ethnophamacology, 1995,47,9-26.
    [18]Niranjan P S, Shashi B M. Triterpenoid saponins from grmnema sylvestre [J]. Phytochemistry,1996, 41(4),1181-1185.
    [19]Schiffman S S., Booth B J., Sattely E A., et al. Selective inhibition of sweetness by sodium salt of ±2-(4-methoxyphenoxy) propanoic acid [J]. Chemical Senses,1999,24,439-447.
    [20]Susan S S. Receptors that mediate sweetness:Inferences from biochemical electrophysiological and psychophysical data [J]. Pure and Applied Chemistry,1997,69,701-708.
    [21]Kinghorn A D., Compadre C M. Alemative Sweeteners [M]. New York, Elsevier,2001,134-139
    [22]Jiang P., Cui M., Snyder L A., et al. Lactisole Interacts with the Transmembrane Domains of Human T1R3 to Inhibit Sweet Taste [J]. Journal of Biological Chemistry,2005,280(15),15238-15246.
    [23]Shallenberger R S., Acree T E. Molecular theory of sweet taste [J]. Nature,1967,216,480-482.
    [24]Shallenberger R S. The AH-B glycophore and general taste chemistry [J]. Food Chemistry,1996,56, 209-214.
    [25]Shallenberger R S. Sweetness theory and its application in the food industry [J]. Food Technology,1998, 52,72-76.
    [26]Kier L B. A molecular theory of sweet taste [J]. Journal of Pharmaceutical Sciences,1972,61(9), 1394-1397.
    [27]Suami T., Hough L. Molecular mechanisms of sweet taste,2:Glucopyranose, fructopyranose and sucrose [J]. Journal of Carbohydrate Chemistry,1991,10,851-860.
    [28]Kier L B., Molecular connectivity in structure-activity analysis [M]. New York:Wiley,1986.
    [29]Temussi P A. Three-dimensional mapping of the sweet taste receptor site [J]. Journal of Medicinal Chemistry,1978,21,1154-1158.
    [30]Goodman M., Coddington J., Mierke D F. A Model for the Sweet Taste of Stereoisomeric Retro-Inverso and Dipeptide Amides [J]. Journal of the American Chemical Society,1987,109, 4712-4714.
    [31]Tinti J M., Nofre C. In Sweeteners:Discovery, Molecular Design and Chemoreception [J]. ACS Symposium Series,1992,61,1394-1397.
    [32]Montmayeur J P., Liberles S D., Matsunami H., et al. A candidate taste receptor genenear a sweet taste locus [J]. Nature,2001,4,492-498.
    [33]Li X., Staszewski L., Xu H., et al. Human receptors for sweet and umami taste [J]. Proceedings of the National Academy of Sciences,2002,99,4692-4696.
    [34]Kunishima N., Shimada Y., Tsuji Y., et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor [J]. Nature,2000,407,4692-4696.
    [35]Morini G., Bassoli A., Temussi P A. From small sweeteners to sweet proteins:anatomy of the binding sites of the human T1R2-T1R3 receptor [J]. Journal of Medical Chemistry,2005,48,971-977.
    [36]Matsunami H., Buck L B. A family of candidate taste receptors in human and mouse [J]. Nature,2000, 404(6),601-603.
    [37]Cristian A P., Huang L Q., Rong M Q., et al. A transient receptor potential channel expressed in taste receptor cells [J]. Nature,2002,1,8-10.
    [38]Karen G., Thais L A., Maria I. X-ray spectrometry and chemometrics in sugar classification, correlation with degree of sweetness and specific rotation of polarized light [J]. Analytica Chimica Acta.,2007,595, 170-175.
    [39]Mahawanich A T., Schmidbt S J. Molecular mobility and perceived sweetness of sucrose, fructose and glucose solutions [J]. Food Chemistry,2004,84,169-179.
    [40]Alan R K., Ruslan P., Subbu P., et al. A QSPR study of sweetness potency using the CODESSA program [J]. Croatica Chemica Acta,2002,75(2),475-502.
    [41]Warren R M., Pfaffmann C. Suppression of sweet sensitivity by potassium gymnemate [J]. Journal of Applied Phycology,1959,14,40-42.
    [42]Koch R B., Desaiah D., Cutkomp L K. Inhibition of ATPases by gymnemic acid [J]. Chemico-Biological Interactions,1973,7(2),121-125.
    [43]Dateo J., Long L J., George P. Gymnemic Acid:the Antisaccharine Principle of Gyrnnerna syluestre, Studies on the Isolation and Heterogeneity of Gymnemic Acid A1 [J]. Journal of Agricultural and Food Chemistry 1973,21,899-903.
    [44]Cagan R H., Morris J A. Purification of monellin, the sweet principle of Dioscoreophyllum cumminsii [J]. Biochimica Biophysica Acta,1972,261,114-122.
    [45]Simone D A., Roberta S., Temuss P A., et al. Toward the Understanding of MNEI Sweetness from Hydration Map Surfaces [J]. Biophysical Journal,2006,90,3052-3061.
    [46]Mathlouthi M., Angiboust J F., Kacurakova M., et al. Structural studies on sweet taste inhibitors: lactisole, DL-2(4methoxyphenoxy)-propanoic acid [J]. Journal of Molecular Structure,2001,326, 25-34.
    [47]Dzendolet E. Theory for the mechanism of action of "miracle fruit." [J]. Perception and Psychophysics, 1969,6,187-188.
    [48]Jiang P., Cui M., Zhao B., Liu Z., et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste [J]. Journal of Biological Chemistry,2005,280,15238-15246.
    [49]Marcel W., Bernd B., Wolfgang M. Valine 738 and lysine 735 in the fifth transmembrane domain of rTaslr3 mediate insensitivity towards lactisole of the rat sweet taste receptor [J]. BMC Neuroscience, 2005,6(22),1-7.
    [50]许铭飞,官文超.水溶性多羟基富勒烯及其衍生物的合成与性能研究[D].武汉:华中科技大学,2004.
    [51]Kroto H W., Heath J., O'brien S C., et al. C60:Buckminsterfullerene [J]. Nature,1985,318,162-163.
    [52]Kratschmer W., Lamb L D., Fostiropoulos K., et al. C60:a new form of carbon [J]. Nature,1990,347, 354-358.
    [53]Li J., Atsuo T., Masaki O., et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides [J]. Journal of the Chemical Society, Chemical Communications,1993,1784-1785.
    [54]Chueh S C., Lai M K., Chen S C., et al. Fullerenols in canine renal preservation-Apreliminary report [J]. Transplantation Proceedings,1997,29,1313-1316
    [55]Nakamura E., Isobe H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience [J]. Accounts of Chemical Research,2003,36(11),807-815.
    [56]Chiang LY, Lu FJ, Lin JT. Free Radical Scavenging Activity of Water-soluble Fullerenols [J]. Journal of the Chemical Society, Chemical Communications,1995,12,1283-1284.
    [57]孙大勇,刘子阳,郭兴华.水溶性富勒醇对活性氧自由基的清除[J].科学通报,1997,42(8),836-840.
    [58]Chen Z X., Guo G M., Deng S P. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet taste receptor model [J]. Journal of Agricultural and Food Chemistry,2009,57,2945-2954.
    [59]Weber P C., Salemme F R. Applications of calorimetric methods to drug discovery and the study of protein interactions [J]. Current Opinion in Chemical Biology,2003,13,115-121.
    [60]Liu M., Zhu L Y., Qu X K., et al. Studies on the binding of paeonol and two of its isomers to human serum albumin by using microcalorimetry and circular dichroism [J]. Journal of Chemical Thermodynamics,2007,39,1565-1570.
    [61]Raman C S., Allen M J., Nall B T. Enthalpy of antibody-cytochrome c binding [J]. Biochemistry,1995, 34,5831-5838.
    [62]Tsumoto K., Ogasahara K., Ueda Y., et al. Role of Tyr-residues in the contact region of anti-lysozymemonoclonal antibody HyHEL10 for antigen binding [J]. Journal of Biological Chemistry, 1995,270,18551-18557.
    [63]Tsumoto K., Ogasahara K., Ueda Y., et al. Role of salt bridge formation in antigen antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10 [J]. Journal of Biological Chemistry,1996,271,32612-32616.
    [64]Keown M B., Henry A J., Ghirlando R., et al. Thermodynamics of the interaction of human immunoglobulin E with its high-affinity receptor [J]. Biochemistry,1998,37,8863-8868.
    [65]Chiang LY, Lu FJ, Lin JT. Free Radical Scavenging Activity of Water-soluble Fullerenols [J]. Journal of the Chemical Society, Chemical Communications,1995,12,1283-1284.
    [66]Wu M L, Morgan W T. Thermodynamics of heme-induced conformational changes in hemopexin:Role of domain-domain interactions [J]. Protein Science,1995,4,29-34.
    [67]Yokota A, Takenake H, Nodatoh Y., et al. Thermodynamics of the reconstitution of tuna cytochrome c from two peptide fragments [J]. Protein Science,1998,7,1717-1727.
    [68]Spink C H., Chaires J B. Heavy metal effect on DNA from salmon [J]. Journal of the American Chemical Society,1997,119,10920-10928.
    [69]Griko Y V., Remata D P. Energetics of solvent and ligand-induced conformational changes in a-lactalbumin [J]. Protein Science,1999,8,554-561.
    [70]Hileman R E., Jennings R N., Linhardt R J. Thermodynamic analysis of the heparin interaction with a basic cyclic peptide using isothermal titration calorimetry [J]. Biochemistry,1999,37,15231-15232.
    [71]Ross P D., Rekharsky M V. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes [J]. Biophysical Chemistry,1996,71,2144-2154.
    [72]于德泉.核磁共振波谱分析[M].北京,化学工业出版社,1989,27-29.
    [73]吴兴惠,项金钟.现代材料计算与设计教程[M].北京,电子工业出版社,2002.
    [74]Hu Y., Liu H L., Molecular Engineering and Chemical Engineering [J].Progress in Chemistry,1995, 7(3),235-251.
    [75]Deem M W., Recent Contributions of Statistical Mechanics in Chemica Engineering [J]. AIChE Journal, 1998.44(12),2569-2596.
    [76]Li Y G., Liu J C. Molecular Simulation and Chemical Engineering [J]. Modern Chemical Industry,2001, 21(7),10-13.
    [77]Liu Z., Huang S., Wang W. Molecular Computational Science:New Paradigm of Chemica Engineering [J]. Journal of Chemical Industry and Engineering,2003,54(4),464-476.
    [78]McCabe C., Kalyuzhnyi Y V., Cummings P T. Thermodynamic Properties of Freely-jointed Hard-sphere Multi-Yukawa Chain Fluids:Theory and Simulation [J]. Fluid Phase Equilibria,2002,194,185-196.
    [79]Allen M P., Tildesley D J. Computer Simulations of Liquids [M]. Oxford:Clarendon Press,1987.
    [80]Frenkel D., Smit B. Understanding Molecular Simulation:From Algorithms to Applications [M]. San Diego:Acadamic Press,1996.
    [82]黄建蓉,崔炳群,梁莹.甜味剂的感官评价[J].中国食品添加剂,2007,1,128-130.
    [83]周奇,原通磊.甜度味觉阈值研究[J].重庆理工大学学报,2010,4,36-39.
    [84]Birch G G., Muaton S L. Use of the "SMURF" in taste analysis [J]. Chemical Senses,1981,6,45-52.
    [85]Pfaffmann C., Bartoshuk L M., Mceurney D H. Taste psychophysics [J]. Chemical Senses,1971, 75-101
    [86]Reverend F M., Hidrio C, Fernandes A., et al. Comparison between temporal dominance of sensations and time intensity results [J]. Food Quality and Preference,2008,19,74-178.
    [87]Chekmeneva E., Prohens R., Diaz J M., et al. Thermodynamics of Cd2+ and Zn2+ binding by the phytochelatin (y-Glu-Cys)4-Gly and its precursor glutathione [J]. Analytical Biochemistry,2008,375, 82-89.
    [88]Fang Y P., Saphwan A A., Glyn O P., et al. Binding behavior of calcium to polyuronates:Comparison of pectin with alginate [J]. Carbohydrate Polymers,2008,72,334-341.
    [89]Calvino A M. Perception of sweetness:the effects of concentration and temperature [J]. Physiology Behavior,1986,36,1021-1028.
    [90]Stone H, Oliver S, Kloehn J. Temperature and pH effects on the relative sweetness of suprathreshold mixtures of dextrose and fructose [J]. Percept Psychophys,1969,5,257-260.
    [91]Ly A., Drewnowski A. PROP (6-n-Propylthiouracil) tasting and tensory responses to caffeine, sucrose, neohesperidin dihydrochalcone and chocolate [J]. Chemical Senses,2001,26,41-47.
    [92]Susan S S., Elizabeth A S., Brevick G G., et al. Effect of temperature, pH, and ions on sweet taste [J]. Physiology Behavior,2000,68,469-481.
    [93]Moskowitz H R., The sweetness and pleasantness of sugars [J]. The American Journal of Psychology, 1971,84,387-405.
    [94]Mart R J., Liem K P., Webb S J. Magnetically-controlled release from hydrogel-supported vesicle assemblies [J]. Chemical Communications,2009,2287-2289.
    [95]Arieh B N. Hydrophobic Interaction [M]. New York:Plenum Press,1980
    [96]Jeffrey G A. An introduction to hydrogen bonding [M]. New York:Elsevier,1997,27-46.
    [97]Arthur W A., Alice P G. Physical Chemistry of Surfaces [M]. New York:wiley,1997.
    [98]Cooperman B S., Lennarz M D. Encyclopedia of Biological Chemistry [M]. New York:Elsevier.2004, 68-73.
    [99]Damak S., Rong M., Yasumatsu K., et al. Detection of sweet and umami taste in the absence of taste receptor T1R3 [J]. Science,2003,301,850-853.
    [100]Desiraju G R., Steiner T. The weak hydrogen bonds [M]. Oxford University press,2001.
    [101]Mahawnich T., Schmidt S J. Molecular mobility and the perceived sweetness of sucrose, fructose, and glucose solutions [J]. Food Chemistry,2004,84,169-179.
    [102]Lindley M G., Walters F T. Sweetners Discovery Molecular Design and Chemoreception [M]. American Chemistr Society Symposium Series:New York,1991,450.
    [103]Astley T., Birch G G., Drew M G., et al. Computer modelling studies of the water-structuring properties of carbohydrates and the sweetness response [J]. Food Chemistry,1996,56,231-240.
    [104]Fraaue J., Zvelindovsky A V. Computational Soft Nanotechnology with Mesodyn [J]. Molecular Simulation,2004,30 (4),225-238.
    [105]Giovanni M P., Andrea D., Sabrina P., et al. Modeling the Multivalent Recognition between Dendritic Molecules and DNA:Understanding How Ligand "Sacrifice" and Screening Can Enhance Binding [J]. Journal of the American Chemical Society,2009,131,9686-9694
    [106]Allen M P., Tidesley D J. Computer Simulation of Liquids [M]. Clarendon Press, Oxford, England, 1987.
    [107]Frenkel D., Simt B. Understanding Molecular Simulation [M]. Academic Press, San Diego, USA, 1996.
    [108]Leach A R. Molecular Modeling [M]. Addison Wesley Longman Limititted, England,1996.
    [109]Burkert U., Allinger N.L. Molecular Mechanics [M]. American Chemical Society, Washington D.C., USA,1982.
    [110]Tollean U.Forcefield-based Simulation [M]. MSI, San Diego, USA,1997.
    [111]Shallenberger R S., Acree T E. Sweet Taste of D and L-Sugers and Amino-acids and the Steric Nature of their Chemo-receptor Site [J]. Nature,1969,221,555-557.
    [112]Augustin P.D. An early sugar chemist [J]. Journal of Chemical Education,1940,17,153.
    [113]Momcilo Miljkovic. Isomerization of Sugars [M]. Springer, New York,2009,95-111.
    [114]Derek H. The Development of Carbohydrate Chemistry and Biology [J]. Carbohydrate Chemistry, Biology and Medical Applications,2008,221,1-28.
    [115]张丽明.水峰抑制(WEFT)技术在NMR中研究糖类化合物的变旋现象[J].核技术,1991,14, 464-467.
    [116]Asa Ostlund, Bernin D., Nordstierna L., et al. Chemical shift imaging NMR to track gel formation. [J]. Journal of Colloid and Interface Science,2010,344,238-240.
    [117]Willam A.B. NMR Spectroscopy in the Study of Carbohydrates:Characterizing the Structural Complexity. [J]. Wiley Periodicals, Inc.Concepts Magn Reson Part A,2003,19A,1-19.
    [118]Xiao J., Fang G., Ji G., et al. Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives [J]. Chinese Science Bulletin,2005,50,21-26.
    [119]Sanja T., Silva D., Vesna J., et al. Tissue-protective effects of fullerenol C60(OH)24 and amifostine in irradiated rats [J]. Colloids and Surfaces B:Biointerfaces,2007,58,39-43.
    [120]Ouyang J Y., Suat H G., Hendry I E., et al. Dynamic mechanical behavior and optical limiting property of multifunctional fullerenol/polymer composite [J]. Chemical Physics Letters,2002,366, 24-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700