黑河中游张掖盆地地下水开发风险评价及调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
张掖盆地位于黑河干流中游地区,是黑河流域水资源利用程度最高和利用量最大的地区,也是控制黑河流域水循环演化的关键地带。但由于水资源不合理的开发利用造成张掖盆地地表水被过度引用于农业灌溉,使得黑河流域水资源矛盾日益显著,并造成生态环境十分脆弱的下游地区情况更加恶化。为了拯救下游天然绿洲,改善生态环境,在国务院于2001年8月批准的《黑河流域近期治理规划》中明确规定了必须保证正义峡下泄水量。这就要求张掖盆地应加大区域地下水开采,增加地下水在总用水量中的比率,合理优化配置水资源。另外,近年来张掖甘州城区及周边地区出现地下水位持续上升现象,给城区建设带来较大危害,而有些灌区则存在较严重的超采现象,不同地段的地下水开发利用状况差异很大。对张掖盆地按灌区进行地下水开发风险评价,据此探讨出地下水资源可持续开发利用的途径,对研究区地下水资源合理开发利用有着重要的研究意义。
     本文围绕地下水开发风险问题,分析了其主要的影响因素。由于张掖盆地的地下水系统有其独特的特点,在地下水开发风险综合评估指标体系时综合参考了前人的研究成果以及研究区地下水系统的具体情况,所构建的地下水风险评价指标体系在结构上与前人有一定的共同点,同时也有其独特之处且适用于张掖盆地地下水开发风险的研究。采用地下水风险突变评价模型进行张掖盆地地下水开发风险评价。首先按照突变模型评价法的评价步骤,将各指标原始数值按隶属度函数法转换为0-1的突变级数,然后按归一公式由单项指标层向目标层逐层向上综合计算。评价结果显示,张掖盆地各灌区的地下水开发风险值介于0.6257-0.8339之间,按风险划分等级标准,均属中度风险区。
     为调控地下水开发风险,本文建立了地下水数值模拟模型。通过对模型的识别与校正,观测孔水位拟合误差符合精度要求,说明对张掖盆地含水层的概化、水文地质参数的确定、源汇项的处理是合理的,所建立的模型可以用来进行地下水数值模拟和动态预报。根据黑河流域中下游分水方案,按各灌区地下水的开采潜力状况设计地下水开采方案,并将其输入到校正好的数值模型中进行运行。结果表明:按规划增加地下水开采量,虽然泉水溢出量有减少的趋势(泉水溢出量有现状的56448×104m~3/a减少到51245×104m~3/a,减少了9.2%);但由于地下水位的降低,潜水蒸发量得到有效控制,由28924×1041113降低到20683×104m~3,降低了28.5%。另外,增加地下水开采量,一方面激化了地表水对地下水的河道补给,补给量有现状年的31450×104m~3/a增加到34014×104m~3/a,;但另一方面由于地下水渠系利用系数高于地表水渠系综合利用系数,加大开采地下水可置换出地表水,根据地表水一地下水的换算关系计算出增加地下水开采量7600×104m~3,可节约地表水1.01×108m~3,扣除河道对地下水的补给增长量2564×104m~3,能使河道年径流量增加7536×104m~3,不仅提高了水资源利用效率,还保障了正义峡下泄水量。在化解地下水开发风险的同时,还获得环境和社会效益,实现水资源、生态环境和社会经济的可持续发展。
Zhangye Basin is iocated in the middle reaches of Heihe River and is the area with the highest utilization degree and largest utilization amount of water resources in Heihe River Basin, it is also the key region controlling the evolution of water cycle in this basin area. However, surface water in Zhangye Basin was over irrigated which was caused by the population growth and economic development, making the Heihe River Basin water resources become more and more serious and the fragile ecological environment situation become worse and worse downstream. In order to save and improve the ecological environment of natural oasis downstream, the State Council approved the "Recent Management and Planning of Heihes River Basin" in August 2001 and clearly states the need to ensure the discharged water in Zhengyixia. This requires the increase of the exploitation of groundwater in Zhangye basin and the ratio of groundwater in the total water consumption, as well as the program to optimization and the allocation of water resources. In addition, in recent years, the groundwater level of Ganzhou City in Zhangye and the surrounding areas continued to rise, which brought greater harms to the city building; there exists the phenomenon of more serious over-exploitation in some irrigation and phenomenon of great variation within the development and utilization of groundwater in different sections. Therefore, making risk assessments of groundwater irrigation development in Zhangye Basin and thus exploring sustainable ways to the use and development of groundwater resources are of great significations to the study of rational development and utilization of groundwater resources in the research region.
     In this paper, our study focuses on the risk of groundwater development, with the analysis of its main effective factors. Due to the particular characteristics of groundwater system in Zhangye Basin, we have taken previous research results and specific circumstances of groundwater system into consideration within the comprehensive evaluation index system of groundwater development risks. Therefore, the index system is same to the previous system on the aspect of structure, however, its specific characteristics are suitable to the research of assessment of groundwater development risks. On the base of catastrophe theory, we use catastrophe evaluation model to evaluate the groundwater development risks in Zhangye Basin. Firstly, convert the original index value of membership function to mutation series of 0 to 1 in accordance with the evaluation steps. Then make comprehensive calculation from single index layer to target layer using normalized formula. Assessment results showed that risk values of groundwater development in each irrigation region within the groundwater system in Zhangye Basin were between 0.6257-0.8339, which belonged to the moderate risk area (0.5-0.85) according to the grade criteria of risk category.
     In order to control the groundwater development risks, numerical evaluation model was established. By the identification and calibration of this model we found that the water level values of observation wells were meet to the accuracy needs. Those above indicated that the generalization of aquifer layers, identification of hydrologic geology parameters and the treatment of terms of source and sink were reasonable. Therefore, the model established could be used to make simulation and dynamic forecasts of groundwater. According the scheme of diversion of water in the middle and lower reaches of Heihe River watershed, we determine the increase or decrease of the amount of groundwater development in accordance with the potentiality of each irrigation region and input values to the calibrated model. Results indicated that if we increase the amount of groundwater development according to the planning, there was a decline trend of spring water (spring water flow varied from 56448×104m~3/a down to 51245×104m~3/a, decreased by 9.2%). However, due to the decrease of groundwater level, phreatic evaporation was controlled effectively, which was reduced from 28924×104m~3/a reduced to 20683×104m~3/a, reduced by 28.5%. In addition, on the one hand, the increase of the amount of groundwater development could enhance the river recharge from surface water to groundwater, with the recharge amount increase from 31450×104m~3/a to 34014×104m~3/a. On the other hand, because the canal system usage efficient of surface water was higher to groundwater, then increase groundwater development amount could replace surface. According to the coupling relationship of surface water and groundwater we could calculate that when the development amount was 7600×104m~3, surface water could be saved by 1.01×108m~3, with the deduction of river recharge amount, 2564×104m~3 and runoff amount in river increased to 7536×104m~3. Those above not only could increase utilization efficiency, but ensure the discharge water amount in Zhengyixia. Along with the defuse of groundwater development risk, we could also obtain environment and society benefits, then we could achieve sustainable developments of water resources, ecological environment and socio-economy.
引文
[1]李如忠,汪家奴,钱家忠.地下水允许开采量的未确知风险分析[J].水利学报,2004,4:54-59
    [2]USNRC. GROUND WATER VULNERABILITY ASSESSMENT [M]. Washington D C: National Academy Press,1993
    [3]张丽君.地下水脆弱性和风险性评价研究进展综述[J].水文地质工程地质.2006,6:113-118
    [4]冶雪雁.黄河下游悬河段地下水开发风险评价与调控研究[D].长春:吉林大学,2006
    [5]Stephen Foster, Ricardo Hirata, Daniel Gome, et al. Groundwater Quality Protection, a guide for water utilities, municipal authorities, and environment agencies[M]. Washington D C:Tne World Bank,2002
    [6]金自学,张芬琴.河西走廊水资源变化对环境生态的影响[J].水土保持学报.2003,17(1):37-40
    [7]王琼.黑河干流中游平原区地下水资源衰减机制及其对策研究[D].西安:西北大学,2007
    [7]刘春玲.吉林西部地下水开发风险评价[D].长春:吉林大学,2007
    [8]刘宗平,王鹏,钱鞠.黑河中游盆地甘州区地下水位上升驱动因素及对策研究[J].水文.2008,28(5):81-85
    [9]李绍飞.海河流域地下水环境风险分析问题的研究[D].天津:天津大学,2003
    [10]颜卫忠.环境预警指标体系研究[J].长沙电力学院学报.2002,17(3):87-90
    [11]李凡修,陈武,梅平.浅层地下水环境质量评价的综合指数模型[J].地下水.2004,26(1):36-37
    [12]丁桑岚.环境评价概论.北京:化学工业出版社,2001(4).17-52
    [13]黄奕龙.突变级数法在水资源持续利用评价中的应用[J].干旱环境监测.2001,15(3):167-170
    [14]周绍江.突变理论在环境影响评价中的应用[J].人民长江,2003,34(2):52-54
    [15]冶雪艳,赵坤,杜新强,等.突变理论在地下水开发风险评价中的应用研究[J].人民黄河.2007,29(10):47-50
    [16]李绍飞,孙书洪,王向余.突变理论在海河流域地下水环境风险评价中的应用[J].水利学报.2007,38(11):1312-1317
    [17]张丽君,刘树臣,贾跃明.国外环境地质研究和工作的主要态势[J].水文地质工程地质.1999,26(6):1-5
    [18]Lobo-Ferreira J.P.. The European Union experience on groundwater vulnerability assessment and mapping [M]. LISBOA:the Groundwater Research Group Laboratories National de Engenharia Civil,2006
    [19]Vrba J, Zaporozec A.. Guidebook on Mapping Groundwater Vulnerability [M]. IAH 16, International Association of Hydrogeologists. Hanover:van Acken GmbH,1994.
    [20]Lobo-Ferreir J.P., Manuel M Oliveira. DRASTIC Groundwater Vulnerability Mapping of Portugal[C] The 27th Congress of the International Association for Hydraulic Research: "Groundwater:An Endangered Resource", Proceedings of Theme C. San Francisco,1997: 132-137.
    [21]Yacov Y Haimes, systems analysis and Covey's seven habits, Risk analysis [J].2001,21(2).
    [22]SDVC. Wyoming Groundwater Vulnerability Assessment Handbook:Volume 1:Background, Model Development, and Aquifer Sensitivity Analysis; Volume 2:Water Vulnerability to Pesticides [M]. Wyoming:Wyoming Geographic Information Science Center,1998
    [23]Aminabha Mukhopadhyay, Spatial estimation of transmissivity using artificial nature net work [J]. Groundwater,1999,37(3)
    [24]Michael R, Burkart, Dana W, et al. Assessing groundwater vulnerability to agrichemical contamination in the midwest U.S [J]. Wat. Sci. Tech.,1999,39(3):103-112
    [25]WEI Fangqiang, HU Kaiheng, J.L. Lopez, CUI Peng. Method and its application of the momentum model for debris flow risk zoning [J]. Chinese Science Bulletin,2003,48(6):594-598
    [26]Navulur K.C.S, Engel B.A, Mamillapalli S. Groundwater vulnerability evaluation to nitrate pollution on a regional scale using GIS [M]. Applications of GIS to the modeling of non-point source pollutants in the vadose zone, ASA-CSSA-SSSA Conference.1995
    [27]Foster S.D, Skinner A.C. Groundwater Protection:The science and practice of land surface zoning in groundwater quality, Proceeding of Remediation Protection [C]. Prague:IAH Publications,1995,225:471-482
    [28]Brian Morris, Stephen Foster. Assessment of Groundwater Pollution risk [M].2006,5(6)
    [29]Sappa G.S, Vitale. Groundwater protection:contribution from Italian experience [R]. Polish: Ministry of the Environment,2001
    [30]Civita M.V, M De Maio. Assessing Groundwater Contamination risk using ArcInfo via GRID function [J].2006,5(2)
    [31]Michael R, Burkart, Dana W, et al. Assessing groundwater vulnerability to agrichemical contamination in the midwest U.S [J]. Wat. Sci. Tech.,1999,39(3):103-112
    [32]郭晓东,齐齐哈尔市地下水污染风险分析[D].长春:吉林大学,2006,6
    [33]亨利.北京市垃圾填埋场污染风险评价[D].长春:吉林大学.2006,6
    [34]王子佳.基于风险评价的北京平谷盆地雨洪水回灌水质标准研究[D].长春:吉林大学.2009.5
    [35]王丽娜.城市污水再生用于地下水回灌及风险评价[D].哈尔滨:哈尔滨工业大学,2006
    [36]付素蓉,王焰新,蔡鹤生,等.城市地下水污染敏感性分析[J].地球科学一中国地质大学学报.2000,25(5):482-486
    [37]雷静,张忠聪.唐山市平原区地下水脆弱性评价研究[J].水利学报,2003,23(1):94-99
    [38]陈守煜,伏广涛,周惠成,等.含水层脆弱性模糊分析评价模型与方法[J].水利学报.2002,7:23-30
    [39]孟究萌,东龙仓,卢耀如.基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用[J].水利学报.2007,38(1):94-99
    [40]梁婕,谢更新,曾光明.基于随机-模糊模型的地下水污染风险评价[J].湖南大学学报(自然科学版).2009,36(6):54-58
    [41]束龙仓,朱元生,孙庆义,等.地下水允许开采量确定的风险分析[J].水利学报.2003,3:77-81
    [42]束龙仓,Basil T. I Ong'or,刘佩贵,等.济宁市漏斗区地下水超采修复的风险评价[J].工程勘察.2007,12:33-38
    [43]黄金林.山间河谷地下储水空间洪水利用风险与效益评估模式研究[D].长春:吉林大学,2008
    [44]刘克岩,王桂玲.以用水为主体的水质水量结合水资源评价方法[J].水文.2003,22(3):32-33
    [45]叶健,叶寿征,董秀颖.关于水资源量与质相结合评价若干问题的探讨[J],水文.2003,23(1):45-49
    [46]李绍飞,冯平,林超.地下水环境风险评价指标体系的探讨与应用[J].干旱区资源与环境.2007,21(1):38-43
    [47]巴赛(Basil Tito Iro Ong'or).济宁市地下水过量开采修复措施及风险评价方法研究[D].南京:河海大学,2007
    [48]马金珠.塔里木盆地南缘地下水脆弱性评价[J].中国沙漠.2001,21(2):170-174.
    [49]马金珠,高前兆.干旱区地下水特征及评价方法探讨[J].干旱区地理.2003,23(1):44-49
    [50]石洪华,李自珍,李维德.区域生态系统风险管理的EVR模型及其应用研究[J].西北植物学报.2004,24(3):542-545
    [51]Alkaly Camara,朱元姓,束龙仓,等.区域地下水持续开发利用的风险分析研究[J].河海大学学报(自然科学版).2003,31(4):389-394
    [52]仵彦卿,墓富强,贺益贤,等.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析[J].冰川冻土,2000,22(1):73-77
    [53]陈仁升,康尔泗,杨建平,张济世,黑河流域山前绿洲水量转化模拟研究[J].冰川冻土,2003,25(5)566-573
    [54]张光辉,刘少玉,张翠云,等.黑河流域地下水循环演化规律研究[J].中国地质,2004,31(3):289-293
    [55]张光辉,刘少玉,谢悦波,等.西北内流盆地水循环规律与地下水形成演化模式[M].北京:地质出版社,2005
    [56]聂振龙,陈宗宇,程旭学,等.黑河干流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报(地球科学版),2005,35(1):48-53
    [57]张应华,应用环境同位素对黑河流域水循环的研究[D],中国科学院研究生院,2005
    [58]张应华,仵彦卿,丁建强,等.运用氧稳定同位素研究黑河中游盆地地下水与河水转化[J],冰川冻土,2005,27(1):106-110
    [59]蓝永超,康尔泗,张济世,等,黑河流域水资源合理开发利川研究[J].兰州大学报(自然科学版),2002,38(5):108-114
    [60]王可丽,程国栋,江灏,等.祁连山-黑河流域水循环中的大气过程fJl.水科学进展.2003,14(1):91-96
    [61]钱云平,王玲.同位素水文技术在黑河流域水循环研究中的应用[M].郑州:黄河水利出版社,2008
    [62]周剑,李新,王根绪.黑河流域中游地下水时空变异性分析及其对十地利用变化的响应[J].自然资源学报.2009,24(3):498-506
    [63]胡晓利,卢玲.黑河中游张掖绿洲地下水时空变异性分析[J].中国沙漠.2009,29(4):777-784
    [64]Y. Wu, X. Wen, Y. Zhang. Analysis of the exchange of groundwater and river water by using Radon-222 in the middle Heihe Basin of northwestern China[J]. Environmental Geology. 2004,45(5):647-653
    [65]张徽,安永会,韩双宝,等.张掖盆地水文地质特征与稳定同位素研究[J].地下水.2009,31(141):123-125
    [66]周兴智,赵剑东,王志广,等.甘肃省黑河干流中游地区地下水资源及其合理开发利用勘察研究[R].张掖:甘肃省地勘局第二水文地质工程地质队,1990:66-95
    [67]胡立堂.地下水三维流多边形有限差分模拟软件开发研究及实例应用[D].中国地质大学,2004
    [68]温小虎.黑河中游张掖盆地地下水盐化特征及盐分运移模拟研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2005
    [69]苏建平.黑河中游张掖盆地地下水模拟及水资源可持续利用[D].兰州:中国科学院寒区旱区环境与工程研究所,2005
    [70]Jian Zhou, Bill X. Hu, Guodong Cheng, etl. Development of a three-dimensional watershed modeling system for water cycle in the middle part of the Heihe rivershed, in the west of China [J]. Hydrological Processes,2010,24:
    [71]王旭升,周剑.黑河流域地下水流数值模拟的研究进展[J]工程勘察.2009,(7):35-38
    [72]Smil V. Land degradation in China:an ancient problem getting worse. In:Blaikie P, Brookfield H (eds) Land degradation and society. Methuen, London.1987
    [73]Feng Q. Sustainable utilization of water resources in Gansu province.[J]Chin J Arid Land Res,1999,11:293-299
    [74]Feng Q, Cheng G, Mikami M. Water resources in China:problems and countermeasures[J]. Ambio,1999,28:202-203
    [75]温小虎,仵彦卿,常娟,苏建平,张应华.黑河流域水化学空间分异特征分析[J].干旱区研究,2004,21(1):1-6
    [76]刘蔚,王涛,高晓青,苏永红,黑河流域水体化学特征及其演变规律[J].中国沙漠,2004,24(6)755-762
    [77]常娟,王根绪,黑河流域不同土地利用类型下水体N,P质量浓度特征与动态变化[J].兰州大学学报(自然科学版),2005,41(1):1-7
    [78]王根绪,程国栋.50a来黑河流域水文与生态环境的演变[J].中国沙漠,1998,18(3):233-238
    [79]王根绪,程国栋.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报,1999,14(2):109-116
    [80]王根绪,王建,仵彦卿,近10年米黑河流域生态环境变化特征分析[J].地理科学,2002,22(5):527-534
    [81]丁宏伟,张举,干旱区内陆平原地下水持续下降及引起的环境问题-以河西走廊黑河流域中游地区为例[J].水文地质工程地质,2002,3:71-75
    [82]丁永建,叶佰生,周文娟.黑河流域过去40a来降水时空分布特征[J].冰川冻土,1999,21(1):42-48
    [83]刘少玉,卢耀如,程旭学,杨振京.黑河中、下游盆地地下水系统与水资源开发的资源环境效应[J].地理学与国土研究,2002,18(4):90-96
    [84]肖生春,肖红浪,宋耀选,等.2000年来黑河中下游水土资源利用与下游环境演变[J].中国沙漠,2004,24(4):405-408
    [85]朱晓霞.黑河水质现状及防治对策[J].甘肃环境监测与研究,2003,16(3):275-276
    [86]杨玲嫒,王根绪.近20a来黑河中游张掖盆地地下水动态变化[J].冰川冻十,2005,27(2):290-296
    [87]朱永华,仵彦卿.黑河流域地下水监控研究[J].干旱区资源与环境,2000,14(3):60-64
    [88]张勃,李吉均.河西地区黑河流域水资源空间组合与优化利用研究[J].盐湖研究,2001,9(1):
    36-41
    [89]张红举,曹建廷,崔广柏,黑河流域地下水利用现状及对策[J].地下水,2002,24(2):80-81
    [90]蓝永超,康尔泗,张济世,胡兴林.黑河流域水资源开发利用现状及存在问题分析[J].干旱区资源与环境,2003,17(6):34-39
    [91]贾归义,章雁.张掖地区地下水资源开发规划[J].农林科技,2005,34(1):60-61
    [92]高前兆,仵彦卿,刘发民,等.黑河流域水资源的统一管理和承载能力的提高[J].中国沙漠,2004,24(2):156-16
    [93]潘启民,田水利.黑河流域水资源[M].郑州:黄河水利出版社,2001
    [94]丁宏伟,高玉卓,何江海,等.黑河过正义峡河川径流量减少的原因及对策分析[J].中国沙漠.2001,21(1):62-66
    [95]H. J. Zimmennano, Fuzzy Set Theory and Its Application, Kluwer-Xijhoff Publishing,1985
    [96]马艳.基于AHP的西安市水资源可持续开发利用模糊综合评价[D].西安:长安大学,2008
    [97]邢永强,窦明,张璋,等.大武水源地地下水动态分析及水质评价[J].河南科学,2008,26
    [98]王磊.西安市平原区地下水开发风险评价[D].西安:长安大学,2009
    [99]中维.耗散结构、自组织、突变理论与地球科学[M].北京:地质出版社,2008
    [100]潘岳,王志强,张勇.突变理论在掩体系统动力失稳中的应用[M].北京科学出版社,2008
    [101]周燕华译,突变理论[M].北京:高等教育出版社,1990,1-26
    [102]施玉群.突变评价法在水利系统经营效益评估中的应用[J].水利经济.1997(2):52-55
    [103]POSTONT, STEWART I. Catastrophe Theory [M], Cambridge:Camb. Univ. Press,1980,
    [104]葛书龙,刘敏昊,水利系统经营效益评估的模糊层次分析法[J],水利经济.1996(2):53-58
    [105]任鲁川,灾害损失等级划分的模糊灾度判别法[J].自然灾害学报,1996
    [106]刘志文,叶进霞,史启朋,等.山东省重点城市供水水源地环境地质问题及开采潜力分析[J].中国农村水利水电.2009,11:100-102,106
    [106]State Supervision of Technology. State Criteria of the People's Republic of China, Groundwater Quality Criteria, Beijing:The State Criteria Press,1994,
    [107]潘华盛,张桂华,董淑华.黑龙江省洪水灾害等级评估模型一模糊综合评价法[J].黑龙江气象.2000(2):1-5
    [108]甘肃省水文地质二队.甘肃省河西走廊地下水勘察报告[R].1999
    [109]沈媛媛.黑河流域地下水数值模拟模型及在水量调度管理中的应用研究[D].长春:吉林大学,2006
    [110]张志忠.黑河流域地表水一地下水耦合模拟及生态环境地质研究[D].北京:中国矿业大学北京,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700