甘肃梨园河流域地下水演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对梨园河流域的水文地质条件及区域地下水演化历史信息资料的整理,综合利用水化学、同位素和反向水文地球化学模拟技术,对研究区内地下水水化学演化和水化学形成机理进行了研究,结合当地大气降水的同位素及水化学特征,基本找出研究区地表水与地下水的补给特征、地下水水流路径特征,示踪地下水运动及水文地质作用过程。首先,水化学研究表明梨园河流域水化学分布具有明显的分带特征,浅层地下水受到了一定程度的硝酸盐污染,识别了沿水流路径演化过程中的一些主要规律:蒸发浓缩作用;石膏、白云石的溶解以及方解石的沉淀;阳离子交换作用以及混合过程。其次,根据张掖站每月雨量同位素加权平均及年平均计算得到当地大气降水线(LWML):δ2H=7.05δ18 O+2.03(‰,R2=0.61)。最后,基于水化学、同位素特征分析,以同位素为重要约束变量利用PHREEQC进行水流路径模拟,研究表明区内地表水、地下水的相互作用非常活跃,且细土平原区域极有可能是深层地下水与浅层地下水相互作用高度活跃的区域,具有极大的环境指示意义,但是这种混合转化又不是单一的;水流方向的总体趋势是明确的,局地水循环可能是研究区地下水演化的又一特征。
     本次研究有效地揭示了地下水的演化特征并进行了水文地球化学模拟,最终获得梨园河流域地下水演化规律,为该地区不论是水文循环机理研究还是水资源的利用与保护都提供了重要的参考。
In this study, we analysed both groundwater evolution and hydrogeochemistry mechanisms after collecting and sorting hydrogeology conditions and history information of local groundwater. We also found out the processes of recharge characters of surface water and groundwater, groundwater flow paths, hydrogeology effects on groundwater and groundwater movement by analysing the characteristics of deuterium and oxygen-18 isotopes and hydrochemistry. There are three main parts of this study. Firstly, the distribution of hydrochemistry is in striation evidently and some shallow groundwaters are contaminated by nitrate. Along the flow path, there are several physical and chemistry processes like strong evaporation, dissolution of dolomite and gypsum, deposition of calcite, cation exchange and mixing process. Secondly, Local Meteoric Water Line (LMWL):δ2H=7.05δ180+2.03(‰, R2=0.61) of Liyuan River Basin was reconstructed by weighted average of water isotopes in monthly rainfall records of Zhangye station. Finally, we ran hydrochemistry model (PHREEQC inverse modelling) for groundwater flow paths analysis by setting water isotopes as important bound variable. Results indicated that there are intense interactions between surface water and groundwater. And fine soil plain is possible the area for those interactions, which may make big sense for environmental indication. However, those interactions are not simple mixing or transformation. We knew the flow direction in total clearly, but local small water circulations could exist in some areas.
     This research effectively showed hydrogeochemistry characteristics of Liyuan River Basin. Groundwater evolution fully reached by PHREEQC inverse modelling at last. This is a very essential supplement for hydrology cycle research of this area. And it is also a good reference for sustainable water use in this place or other arid and semiarid basins.
引文
Allison, G. B., Gee, GW, Tyler, SW. Vadose-Zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions [J]. Soil Science Society of America Journal. 1994,58(1):6-14.
    Al-Qudah, O., Woocay, A. Walton, J. Identification of probable groundwater paths in the Amargosa Deseart vicinity[J]. Applied Geochemistry.2011,26:565-574.
    Barnes, C., Allison G. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen[J]. Journal of Hydrology.1988,100(1-3):143-176.
    Barnes, I. and Clarke, F.E. Chemical properties of groundwater and their corrosion and encrustation effections on wells[J]. U.S. Geo. Surv. Prof. Rap.489-D:58, pp.
    Chen, Y. Water demand management:A case study of the Heihe River Basin in China[J]. Physics and Chemistry of the Earth, Parts A/B/C.2005,30(6-7):408-419.
    Clark, I., Fritz, P.. Environmental Isotopes in Hydrogeology[M]. Lewis Publishers, NY,1997.
    Cook, P.G, Edmunds, W.M, Gaye, C.B. Estimating paleorecharge and paleoclimate from unsaturated zone profiles [J].Water Resources Research.1992,28(10):2721-2731.
    Craig, H.,1961. Isotope variations in meteoric waters[J]. Science,133:1702-1703.
    Dansgaard, W.,1964. Stable isotopes in precipitation[J]. Tellus,16(4):436-468.
    Friedman, I. Deuterim content of natural waters and other substances [J]. Geochim et Cosmochim. Atca.1953,4:89-103.
    Garrels, R., Christ, CL. Solutions, Minerals, and Equilibria[M]. New York, Harper & Row.1965.
    Giauque, W.F. and Johnston, H.L. Anisotope of oxygen, mass[J]. Jour. Am. Chem. Society.1929, 51:1436.
    Ji, X.. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China[J]. Agricultural Sciences in China.2006,5(2):130-140.
    Kendall, C., McDonnell J. J. Isotope tracers in catchement hydrology[M]. Elsevier. UK.2003.
    Kundu M C, Mandal B. Agricultural activities influence nitrate and fluoride contamination in drin king groundwater of an intensively cultivated district in India[J]. Water Air and Soil Pollution.2009,198:243-252.
    Liu, F. H. and Wang, Z. Q. Salt-water dynamics in soil profiles of different texture under groundwater evaporation condition. Acta Pedologica Sinica [J].1993,30(2):173-181.
    Liu, Y. et al. Tree-ring hydrologic reconstructions for the Heihe River watershed, western China since AD 1430[J]. Water Research,2010 44(9):2781-2792.
    Lloyd, J.W., Heathcote, J. A.,1985. Natural Inorganic Hydrochemistry in Relation to Groundwater: An introduction[M]. Clarendon Press, Oxford, UK.:269 pp.
    Love, A. J., Herczeg, A,L, Armstrong, D, Stadter, F. Groundwater-flow regime within the Gambier Gmbayment of the Otway Basin, Australia-Evidence from hydraulics and hydrochemistry [J]. Journal of Hydrology.1993,143(3-4),297-338.
    Ma, J.Z., Wang, X.S., Edmunds, W.M.,2005. The characteristics of groundwater resources and their changes under the impacts of human activity in the arid Northwest China-a case study of the Shiyang River Basin[J]. Journal of Arid Environments 61:277-295.
    Morse, J.W., Arvidson, R. S.,2002. The dissolution kinetics of major sedimentary carbonate minerals[J]. Earth Science Reviews,58:51-84.
    Nolan B T. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States[J]. Ground Water,2001,39:290-299.
    Parkhurst, D. L., Thorstensen, D. C., Plummer, L.N. PHREEQE,1980. Acomputer program for geochemical calculations. U.S. Geo. Surv. Prof. Rap.:80-96..
    Phillips, F. M. Environmental tracers for water movement in desert soils of the American southwest[J]. Soil Science Society of America Journal,1994,58(1),15-24.
    Piper, A. A graphic procedure in the geochemical interpretation of water analyses [J]. Chemical hydrogeology,1983,50.
    Plummer, L. N., Busby, JF, Lee, RW, Hanshaw, BB. Geochemical Modeling of the Madison Aquifer in parts of Montana, Wyoming and South-Dakota[J]. Water Resources. Research, 1990,26(9),1981-2014.
    Plummer, L.N., E.C. Prestemon & D.L. Parkhurst. An interactive code (NETPATH) for modelling net geochemical reactions along a flow path[J]. USGS. Water Res. Invest. Rep.91-4078.
    Ronald J. Gibbs. Mechanisms Controlling World Water Chemistry[J]. Science.1970,170 (3962): 1088-1090.
    Runnells, D. D. and Lindberg, R. D. Hydrogeochemical exploration for uranium ore depoists:use of the computer model WATEQFC[J]. Journal of Chemical Exploration,1981,15:37-50
    Shi, Y., Zhang, X.,,1995. The influence of climate changes on the water resources in arid areas of northwest China[J]. Science in China (Series B) 25:968-977.
    Sanford, W. Recharge and groundwater models:an overview[J]. Hydrogeology Journal.,2002, 10(1),110-120.
    Schoeller, H.1977. Geochemistry of groundwater. In Brown, R. H. et al. (eds.) Groundwater Studies-An International Guide for Research and Practice[M]. UNESCO, Paris, pp.1-18.
    Schramke, J., Murphy, EM, Wood, BD. The use of geochemical mass-balance and mixing models to determine groundwater sources[J]. Applied Geochemistry,1996,11(4), 523-539.
    Sklash, M.G.,1990. Environmental isotope studies of storm and snow melt runoff generation[M]. In:M.G. Anderson and T.P. Burt (Eds), Process Studies in Hillslope Hydrology, John Wiley and Sons, Chichester, U.K.:401-435.
    Strebel O, Duynisveld W H M, Bottcher J. Nitrate pollution of groundwater in western Euro-pe[J ]. Agriculture, Ecosystems & Environment,1989,26:189-214.
    Su, Y., Feng, Q., Zhu, G, Si, J. and Zhang, Y,2007. Identification and Evolution of Groundwater Chemistry in the Ejin Sub-Basin of the Heihe River, Northwest China[J]. Pedosphere, 17(3):331-342.
    Urey, H.C., Brickwedde, F.G. and Murphy, G.M.,1932. Ahydrologen isotope 2[J]. Physics Review, 39:1645.
    Vander, W., Appelo, CAJ, Walraevens, K. Inverse chemical modeling and radiocarbon dating of paleogroundwater:the Tertiary Ledo-Paniselian aquifer in Flanders, Belgium[J]. Water Resource Research.,2000,36(5),1277-1287.
    WHO,1984. Guidelines for drinking water quality[M]. Geneva:WHO.
    Wigley, T., Plummer, L.N, Pearson Jr F.J. Mass transfer and carbon isotope evolution in natural water systems[J]. Geochimica et Cosmochimica Acta,1978,42(8),1117-1139.
    Zhang, J.,2007. Barriers to water markets in the Heihe River basin in northwest China[J]. Agricultural Water Management,87(1):32-40.
    Zhao, C., Nan, Z. and Cheng, G.,2005. Methods for estimating irrigation needs of spring wheat in the middle Heihe basin, China[J]. Agricultural Water Management,75(1):54-70.
    Zhao, W., Liu, B. and Zhang, Z.,2010. Water requirements of maize in the middle Heihe River basin, China[J]. Agricultural Water Management,97(2):215-223.
    曹玉清,胡宽容.岩溶化学环境水文地质[M].长春:吉林大学出版社,1994.
    陈德斌,陈旭光,顾新鲁等.阿瓦提县地下水水化学特征及成因初探[J].干旱区地理.2001,24(4):376-379.
    程汝楠.应用天然同位素示踪水量转换.刘昌明,任鸿遵主编.水量转换——实验与计算分析[M].北京:科学出版社,1988,33-50.
    陈建平,查明,周瑶琪,2000.准噶尔盆地西北缘地层水化学与油气关系研究[J].地质地球化学,28(3):54-58.
    丁宏伟,赫明林,曹炳媛等,2000.黑河中下游水资源开发中出现的环境地质问题[J].干旱区研究,17(4):11-16.
    丁贞玉.石羊河流域及腾格里沙漠地下水补给过程及演化规律.兰州大学博士学位论文,2010.
    俄有浩.临泽地下水运动规律与盐渍化土地形成机理研究.硕士学位论文.2003.
    高志发.环境同位素法在西北地区地下水资源评价中的应用[J].甘肃地质学报.1995,4(1):62-72.
    郭冬梅.尧都区地下水水化学特征成因分析与探讨[J].地下水.2004,26(1):20-22.
    顾慰祖.阿拉善高原地下水的稳定同位素异常[J].水科学进展,1998,9(4):333-337.
    韩天奇.淮河以北部分地区机井地侠水氟的检测与水化学特征[J].安徽化工.2008,34(6):49-51.
    郝爱兵,李文鹏,梁志强.利用TDS和δ180确定溶滤和蒸发作用对内陆干旱区地下水咸化贡献的一种方法[J].中国地质大学学报(地球科学).2000,1:4-6.
    黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境.2008,22(8):76-81.
    林祚顶.2003.同位素技术在水文水资源领域的应用[J].水利水电技术.2003,34(7):6-8.
    李大通,张之淦.核技术在水文地质中的应用指南[M].北京:地质出版社,1990
    李鹏春,刘春晓,张渊.塔中奥陶系地层水化学特征及其成因与演化[J].石油与天然气地质.2007,28(6)802-808.
    李学礼,陈晓秦.水文地球化学[M].北京:原子能出版社,1982.
    刘东生.桂林地区大气降水的氢氧同位素研究[J].中国岩溶,1987,6(3):12-15.
    刘桂凤,王莉,李春涛等,2007.准噶尔盆地腹地地层水化学与油气藏关系[J].新疆石油地质,28(1):54-56.
    刘鸿雁,黄建国,郭艳娜,2006.不同植被及土壤对径流水化学特征的影响[J].环境科学, 27(4):654-660.
    刘少玉,卢耀如,程旭学等,2002.黑河中_下游盆地地下水系统与水资源开发的资源环境效应[J].地理学与国土研究,18(4):90-96.
    刘蔚,王涛,高晓清等,2004.黑河流域水体化学特征及其演变规律[J].中国沙漠,24(6):755-762.
    乔晓英,王文科,孔金玲等,2005.GIS支持下的河西走廊黑河中游盆地地下水资源评价与潜力分析[J].干旱区地理,28(2):219-224.
    申献辰.天然水化学[M].北京:中国环境科学出版社,1994.
    沈治安.四川盆地深层卤水形成的水文地球化学机理[J].水文地质工程地质.1980,1:8.
    王恒纯.同位素水文地质概论[M].北京:地质出版社,1991.
    尹观.同位素水文地球化学[M].成都:成都科技大学出版社,1988.
    于津生,虞福基,刘德平.中国东部大气降水氢氧同位素组成[J].地球化学,1987(1):22-26.
    查明,陈中红,张年富等.准噶尔盆地陆梁地区水化学特征与油气运聚[J].地质科学,38(3):413-424.
    张光辉,刘少玉,张翠云等,2004.黑河流域地下水循环演化规律研究[J].中国地质,31(3):289-293.
    张光辉,聂振龙,刘少玉等,2005.黑河流域走廊平原地下水补给源组成及其变化[J].水科学进展,16(5):673-678.
    张光辉,聂振龙,张翠云等,2005.黑河流域走廊平原地下水补给变异特征与机制[J].水利学报,36(6):715-720.
    张光辉,聂振龙,王金哲等,2005.黑河流域水循环过程中地下水同位素特征及补给效应[J].地球科学进展,20(5):511-519.
    章光新,邓伟,何岩,2006.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,17(1):20-28.
    张美昭,张兆琪,赵文等.氯化物型盐碱地池塘水化学特征研究[J].2000,30(1):68-74.
    张人权.同位素方法在水文地质中的应用[M].北京:地质出版社,1983.
    张应华,仵彦卿,J‘建强等.2005.运用氧稳定同位素研究黑河中游盆地地下水与河水转化[J].冰川冻土,27(1):106-110.
    张应华,仵彦卿,2009a.黑河流域中上游地区降水中氢氧同位素研究[J].冰川冻土,31(1):34-39.
    张应华,仵彦卿,2009b.黑河流域中游盆地地下水补给机理分析[J].中国沙漠,29(2):370-375.
    徐中民,程国栋,2000.运用多目标决策分析技术研究黑河流域中游水资源承载力[J].兰州大学学报(自然科学版,36(2):122-132.
    曹炳媛,赫明林,夏红艳,2007.GIS在地下水资源评价中的应用_以河西走廊黑河中游为例[J].水文地质工程地质(5):85-89.
    曹玲,李岩英,刘明春等,2009.1958_2006年河西走廊极端天气气候事件变化特征[J].干旱区研究,26(5):649-655.
    滕彦国,左锐,王金生,2010.区域地下水演化的地球化学研究进展[J].水科学进展,21(1):127-137.
    甘义群,李小倩,周爱国.黑河流域地下水氘过量参数特征[J].地质科技情报,2008.,27(2): 85-90.
    聂振龙,陈宗宇,程旭学等,2005.黑河干流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报(地球科学版),35(1):48-53.
    贾艳坤,刘福亮,张琳等,2008.利用环境同位素识别酒泉--张掖盆地地下水补给和水流系统[J].地球学报,29(6):740-744.
    陈宗宇,聂振龙,张荷生,2004.从黑河流域地下水年龄论其资源属性[J].地质学报(4):560-567.
    马金珠,高前兆,2003.干旱区地下水脆弱性特征及评价方法探讨.干旱区地理,26(1):44-49.
    马金珠,李相虎,黄天明,W M.Edmunds.石羊河流域水化学演化与地下水补给特征[J].资源科学[J].2005,27(3):117-122.
    沈照理,朱宛华,钟佐檠.水文地球化学基础[M].北京:地质出版社,1986.
    王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.
    王珍岩,孟广兰,王少青.渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟[J].海洋地质与第四纪地质,2003,23(1):49-52.
    魏智,金会军,蓝永超等.黑河实施分水后中游灌区地下水资源量的变化分析[J].冰川冻土,2008,30(2):344-350.
    吴锦奎,丁永建,王根绪等.同位素技术在寒旱区水科学中的应用进展[J].冰川冻土,2004,4(20):509-516.
    杨佳丽.甘肃梨园河流域径流模拟及对气候变化的响应.硕士学位论文,2010.
    赵华.石羊河流域水环境演化研究.博士学位论文,2004.
    周剑.黑河流域水循环过程研究.博士学位论文,2008.
    朱义华,王焰新译.B.J.Merkel B.Planer-FriedrichZ著.地下水地球化学模拟的原理及应用[M],
    北京:中国地质大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700