基于AnnAGNPS模型的三峡库区小江流域农业面源污染负荷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业非点源污染成为水质污染的重要原因之一,这一环境问题受到全球范围的关注。非点源污染监测难、定量分析难,基于数学模型的计算机模拟法在解决这些问题上优于其他非点源污染研究方法。AnnAGNPS等大型连续分布式模型成为估算非点源污染负荷、识别污染关键源区、研究农业管理措施的重要手段。三峡库区农业非点源污染日趋严重,而地形复杂、地块破碎、农业经营分散、耕作措施多样,野外监测和人工降雨等研究方法都很难满足该地区农业面源污染研究的需求,数学模型模拟为定量评价流域非点源污染负荷提供了一种有效手段。
     AnnAGNPS模型在三峡库区的应用较少且多集中在极小流域范围研究,缺乏典型代表性,本文选取距离三峡坝址247km的三峡库区一级支流小江流域作为研究对象,运用AnnAGNPS模型建立数据库:分析流域输入参数的敏感性;模拟小江流域径流量、输沙量、氮、磷污染量;识别面源污染关键源区;模拟三种农业最佳管理措施(BPMs)对流域地表径流量、泥沙量、氮、磷负荷量的影响,为模型在该地区面源污染控制方面的研究提供借鉴意义,主要研究结论如下:
     (1)对三峡库区小江流域AnnAGNPS模型参数进行分析,掌握构建AnAGNPS模型所需气象、地形、土地利用、土壤、作物、非作物、作物管理、施肥、农药、径流曲线等参数的方法。
     (2)通过敏感性分析确定影响流域非点源污染负荷输出的8个主要因子,包括SCS曲线值CN、土壤可蚀性因子K、水土保持因子P、作物管理因子C、坡度S、坡长L、曼宁糙率系数MA和化肥施用量PERT。径流量、输沙量、总氮、总磷污染负荷对8个输入参数变化的响应程度不同。
     (3)运用AnnAGNPS模型对三峡库区小江流域2002-2004年的径流量、输沙量、氮磷负荷量进行模拟估算,并分别采用宝塔窝水文站(控制范围占流域面积的62%)2002-2004年实测数据对径流和泥沙模拟值进行校准和验证,采用小江流域山口2002-2004年实测年均数据对总氮、总磷模拟负荷进行校准和验证。结果表明模型模拟结果相对可靠,适合于三峡库区流域非点源污染负荷评价。
     (4)根据模型预测结果,模型对径流输出的模拟精度高于对泥沙和养分的输出模拟,2002-2008年小江流域径流量年均模拟值为30.63亿m3,输沙量为277.81万t,总氮负荷为7949.38t,总磷负荷为463.74t。泥沙和养分输出具有相似的规律性,均呈现季节性变化,与降雨量呈现显著的正相关,且受到施肥、地表状况及耕作条件等影响。
     (5)从空间上看,非点源污染负荷在空间分布不均匀,不同地类污染负荷差别较大。单位面积负荷大小依次是水域、建设用地、耕地、林地、草地,总量负荷大小均依次是耕地、林地、建设用地、水域、草地。
     (6)从模型模拟的结果可以看出,流域内产生氮磷负荷的主要来源是水土流失和化肥损失等造成的农业非点源污染,其土地利用方式主要是旱坡地,因此,加强旱坡地的农业非点源污染控制对控制流域非点源污染至关重要。通过三种不同农业管理措施模拟研究表明,退耕还林和保护性耕作等措施对流域的污染负荷有明显的削减作用。
The agricultural non-point source pollution as the main cause of water pollution which became the focal point of worldwide attention. It is difficult for monitoring and quantitative analysis. The computer simulation based on mathematic models is a good approach to solve these problem. The distributed-parameter, batch process, continuous simulation model such as AnnAGNPS model became the important method to simulate the pollution load,identify the critical pollution sources, study the agricultural management measures. Because of its serious environmental pollution, complex topography, mini land, scattering management, diversified farming measures, it's better to use mathematic models to simulate pollution loads, not the field monitoring or artificial rainfall in the Three-gorge Reservoir Region.
     Little research has been used in the AnnAGNPS model,the study amost focus on small-scale. Present research mainly study Xiao Jiang watershed in the Three Gorges reservoir region,it has 250m from the Three Gorges dam. It can give us the implication to control the pollution sources when use the AnnAGNPS model to build databases, analyse sensitiveness, simulate the runoff, silt, nutrient output, identify the critical pollution sources, study the three agriculture management how to influence pollution loads,all of these is This rearch provides reference value for the follow study. Presentresearch'conclusion to be as follows:
     (1) Present research introduces methods of constructing data set for AnnAGNPS in the case of Xiaojiang River watershed located in the Three Gorges Region. The data set mainly focuses on climate, topography, landuse, soil, crop, non-crop, crop management, fertilizer, pesticide information and runoff curve number data.
     (2)Main 8 factors determining non-point pollution output were identified through sensitivity analysis, including curve number, K, conservation of water and soil factor, crops management factor, slope, slope length, Manning and the chemical fertilizer. This parameters have different effects to runoff yields, sediment yields, total nitrogen and total phosphorus.
     (3) AnnAGNPS was applied to estimate runoff, sediment yields, N and P loads from Xiaojiang River Watershed in the Three Gorges reservoir region from 2002 to 2004. Time series data of the same time periods on runoff, sediment yields from Baotawo gauge station (which covers an area of 62% of the whole catchment) and nutrient loads from the outlet of Xiao Jiang catchment were used to calibrate and validate simulation datas. It shows that the results are reliable to use.
     (4) It shows that the result of runoff simulation is more precise than sediment and nutrition loads simulation. Annual (2002-2008) output of sediment from watershed outlet is 277.81×104 tons, while annual loads of total nitrogen and total phosphorous are 7949.38 tons and 463.74 tons, respectively. All non-point source pollutants are of similar generation trends, which are varying with season, being positive correlative with precipitation, and determined by fertilization, cultivation as well as land surface condition.
     (5) The results shows that the non-point source pollution loads are different for spatial division and land-use types. The unit area loads in turn are waters, construction land, cultivated land, forest land, grass land, the total quantity loads in turn are farming, forest land, construction land, waters, grass land.
     (6) The results shows that the non-point source pollution loads are mainly from the soil erosion and the chemical fertilizer loss by dry lands on slopes, so it's important to control this areas'pollution.Though the study of three agriculture management practices, it indicates that some methods have obviously function to reduce the pollution loads, such as returning farmland to forest and change the slope.
引文
[1]李俊.石头口门水库汇水流域农业非点源污染的模拟研究[D].吉林大学,2009.
    [2]李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护,1996,(2):14-18.
    [3]Hamlett J M, Miller D A, Day R L, et al.Statewide GIS-based ranking of watersheds for agricultural pollution prevention[J]. Soil Water Conser,1992,47(5):399-404.
    [4]Kronvang B, Graesboll P, Larsen SE, et al. Diffuse nutrient losses in Denmark[J]. Water science and technology,996,33(4-5):81-88.
    [5]Boers PCM. Nutrient emissions from agriculture in the Netherlands, causes and remedies[J]. Water cience and technology,1996,33(4-5):183-189.
    [6]蒋鸿昆,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用[J].农业环境与发展,2006,23(4):64-67.
    [7]余炜敏.三峡库区农业非点源污染及其模型模拟研究[D].西南农业大学,2003.
    [8]重庆市人民政府办公厅.重庆经济年鉴[M].重庆:重庆出版社,2001.
    [9]郑涛,穆环珍,张衍初等.非点源污染控制研究进展[J].环境保护,2005,(2):31-34.
    [10]陈红,王声跃,刘俊.抚仙湖流域农业面源污染控制研究[J].云南环境科学,2002,21(3):27-29.
    [11]吕唤春.千岛湖流域农业非点源污染及其生态效应的研究[D].浙江大学博士学位文,2002.
    [12]Rhea SA, Miller WW, Blank RR, Palmquist DE. Presence and behavior of colloidal nitrogen and phosphorus in a Sierra Nevada watershed soil[J]. Journal of Environmental Quality,1996,25(6):1449-1451.
    [13]赵允格,邵明安.模拟降雨条件下成垄成压对硝态氮迁移的影响[J].植物营养与肥料学报,2003,9(1):45-49.
    [14]傅涛,倪九派,魏朝富,等.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,2003,9(1):71-74.
    [15]单保庆,尹澄清,于静等.环境科学学报[J].2001,21(1):7-12.
    [16]Knisel, WG.CREAM:A Field-Scale Model foe Chemicals Runoff,and Erosion from Agricultural Management System.Proc.13th conf.Modeling and Simulation,1982,4, April.
    [17]陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,1.
    [18]Lane LJ, et al. The Water Erosion Prediction Projec: Model Overview. In Proc. Natl. water Conf.AS CE,1989.
    [19]Flanagan DC, Nea.ring MA.USDA-Whter Eorsion Predieation Projeet HillsloPe Profile and Waltesrshed Model Doucment[M].NSERL RePort,1995.
    [20]Beasley, D.B. Applying Distributed Parameter Modeling Techniques to Watershed Hydrology and Non-point Source Pollution.Proc.13th conf.Modeling and Simulation,1982,4, April.
    [21]Bicknell BR, Imhoff JC, Kittle J L, et al. Hydrological Simulation Program-Fortran user's manual for release[EB/OL].http://www.epa.gov/waterscience/basins/bsnsdocs.html,1996.
    [22]Yong,RA. et al. AgNPS:A Nonpoint-Source Pollution Modeling for Evaluation Agricultural Watersheds[J]. Soil and Water Conservation,1989.
    [23]Kinnell PIA. AGNPS-UM:applying the USLE-M within the agricultural non-point source pollution model[J]. Environmental modeling and software,2000,15:331-341.
    [24]Muttiah RS, Wurbs RA. Scale-dependent soil and climate variability effects on watershed water balance of the SWAT model[J]. Journal of Hydrology,2002,256(3-4):264-285.
    [25]USEPA. BASINS 3.0 User's Manual:System Overview.EPA-823-B-01-001, June 2001.
    [26]Yuan Y, Bingner RL, Rebich RA.Evaluation of AnnAGNPS on Mississippi Delta MSEA Watersheds[J]. Tram of the ASAE,2001,44:1183-1190.
    [27]张剑,紫色丘陵区典型小流域非点源氮磷污染的模型模拟[J].中国科学院成都山地灾害与环境研究所,2009.
    [28]张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51-55.
    [29]郑炳辉,张永泽.滇池生态动力学模型的改进[J].环境科学研究,1994,7(4):1-5.
    [30]杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展,1999,7(5):60-67.
    [31]牛志明,解明曙.非点源污染模型在土壤侵蚀模拟中的应用和发展动态[J].北京林业大学学报,2001,23(2):78-84.
    [32]陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析[[J].农业工程学报,2000,16(5):44-47.
    [33]曹文志,洪华生等AGNPS在我国东南亚热带地区的检验[J].环境科学学报,2002,2(4):537-540.
    [34]董亮.GIS支持下西湖流域水环境非点源污染研究[D].浙江大学博士学位论文,2001.
    [35]吕唤春.千岛湖流域农业非点源污染及其生态效应的研究[D].浙江大学博士学位论文,2002.
    [36]陈国湖.农业非点源污染模型AGNPS及GIS的应用[J].人民长江,1998,29(4):20-22.
    [37]张红举,崔广柏,冯健.农业非点源污染模型研究概况[J].江苏环境科技,2002,15(2):37-39.
    [38]朱萱,鲁纪行,边金钟等.农田径流非点源污染特征及负荷定量化方法探讨[J].环境科学,1985,5:6-11.
    [39]夏青.城市径流污染系统分析[J].环境科学学报,1982,2(4):271-227.
    [40]刘枫,王华东,刘培桐.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J].地理学报,1988,43(4):329-339.
    [41]陈西平,黄时达.涪陵地区农田径流污染输出负荷定量化研究[J].环境科学,1991,12(3):6-11.
    [42]李怀恩,沈晋.非点源污染数学模型[M].西安:西北工业大学出版社,1996.
    [43]李怀恩.透水性流域非点源产污模型的初步研究[J].水利学报,1998,(2):16.
    [44]洪小康,李怀恩.水质水量相关法在非点源污染负荷估算中的应用[J].西安理工大学学报,2000,16(4):384-386.
    [45]李重荣,王祥三,窦明.三峡库区香溪河流域污染负荷研究[J].武汉大学学报(工学版)2003,36(2):29-32.
    [46]梁常德,龙天渝,李继承,等.三峡库区非点源氮磷负荷研究[J].长江流域资源与环境2007,16(1):26-30.
    [47]陈国湖.农业非点源污染模型AGNPS及GIS的应用[J].人民长江[J],1998,29(4):20-22.
    [48]张雪松,郝芳华,杨志峰等.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,10(4):38-42.
    [49]沈涛,刘良云,马金峰,等.基于L-THIA模型的密云水库地区非点源污染空间分布特征[J].农业工程学报,2007,23(5):62-68.
    [50]Novotny V, Olm OH. Water Quality:Prevention, Identification and Management of Diffuse Pollution[M]. New York:Van Nostrand Relnhold,1994.
    [51]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用[J].环境污染与防治,2006,28(40):279-282.
    [52]Jennifer B S, George V, David B, et al. Use of AnnAGNPS model for a watershed in the coastal plain of Georgia [C]. Proceedings of the 9th National Nonpoint Source Monitoring Workshop,2001.
    [53]Yuan Y, Dabney SM, et al.Cost effectiveness of agricultural BMPs for sediment reduction in the Mississippi Delta[J]. Journal of Soil and Water Conservation,2002,57(5):259-267.
    [54]Baginska B, Milne-Home W,Cornish PS.Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST[J]. Environmental Modelling and Software,2003,18(8-9):801-808.
    [55]Yong P.Y., Ronald L.B., Richard A.R. Evaluation of AnnAGNPS nitrogen loadingin an agricultural watershed[J]. Journal of the American Water Resource Association,2003,39(2):457-466.
    [56]S. Shrestha, Mukand S. Babel, A. Das Gupta, et, al. Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal[J]. Environmental Modelling & Software.2006(21):961-975.
    [57]Lyndon M. Pease, P. Oduor, G. Padmanabhan. Estimating sediment, nitrogen, and phosphorous loads from Pipestem creek Watershed, North Dakota, using AnnAGNPS[J]. Computers& Geosciences,2009: 1-33.
    [58]王飞儿,唤春,陈英旭,等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报,2003,19:(6):281-284.
    [59]黄金良,洪华生,杜鹏飞,等AnnAGNPS模型在九龙江典型小流域的适用性检验[J].环境科学学报,2005,25(8):1135-1142.
    [60]洪华生,黄金良,张珞平等AnnAGNPS模型在九龙江流域农业非点源污染模拟应用[J].环境科学,2005,26(4):63-69.
    [61]贾宁凤.基于AnnAGNPS模型的黄土高原小流域土壤侵蚀和养分流失定量评价[D].中国农业大学,2005.
    [62]邹桂红,崔建勇.基于AnnAGNPS模型的农业非点源污染模拟[J].农业工程学报,2007,23(12):11-17.
    [63]程炯,吴志峰,刘平.珠江三角洲典型流域AnnAGNPS模型模拟研究[J].农业环境科学学报26(3):842-84.
    [64]李家科,李怀恩,李亚娇等,基于AnnAGNPS模型的陕西黑河流域非点源污染模拟[J].水土保持学报,2003,22(6):81-88.
    [65]田耀武,黄志霖,曾立雄等.DEM格网尺度对AnnAGNPS预测山地小流域径流和物质输出的影响[J].环境科学学报,2009,29(4):846-853.
    [66]周梦佳.基于AnnAGNPS模型的三峡库区小流域非点源污染研究[D].中国科学院成都山地灾害与环境研究所硕士论文,2010.
    [67]Lin JY, Hsieh CD. A strategy for implementing BMPs for controlling nonpoint source Pollution:The case of the Feitsui Reservior watershed in Taiwan[J]. Journal of the American Water Resources Association,2003,39(2):401-402.
    [68]Young RA, Onstad CA, Bosch DD, et al. AGNPS:A non-point source pollution model for evaluating agricultural watersheds[J]. Journal of Soil and Water Conservation,1989,44(2):168-173.
    [69]Young RA, Onstad CA, Bosch DD, et al. AGNPS:An agricultural non-point source model. In Computer Models of Watershed Hydrology[M]. Water Resources Publications, Highlands Ranch, CO, 1995,1011-1020.
    [70]Yuan Y, Bingner RL, Rebich RA.Evaluation of AnnAGNPS on Mississippi Delta MSEA Watersheds[J]. Tram of the ASAE,2001,44:1183-1190.
    [71]SCS National Engineering Handbook, section 4:Hydrology. [M]. Washington, DC:USDA Soil Conversation Service,1972.
    [72]Polyakov V, Fares A, Kubo D, et al. Evaluation of a nonpoint source pollution model, AnnAGNPS in a tropical watershed [J]. Environmental Modelling and Software,2007,22(11):1617-1627.
    [73]Gordon L M, Bennett S J, Bingner R L, et al. Simulating ephemeral gully erosion in AnnAGNPS Transactions of the ASAE[J]. American Society of Agricultural Engineers,2007,50(3):857-866.
    [74]花利忠,袁建平,韦杰等AnnAGNPS模型动态及其应用前景[J].山地学报,2006,24(增刊):330-338.
    [75]龙天渝,吴磊,刘腊美.基于盲数理论与GIS的小江流域吸附态磷污染负荷模拟研究[J].农业环境科学学报,2009,28(9):1880-1887.
    [76]四川省农牧厅,四川省土壤普查办公室.四川土壤[M].成都:四川科学技术出版社,1995.
    [77]Daniel E Storm, Michael White, Michael D Smolen. Modeling Phosphorous Loading for the Lake Eucha Basin[D]. Biosystems and Agricultural Engineering Department of Oklahoma State University, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700