太湖水华蓝藻上浮特征及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,太湖蓝藻水华暴发受到人们广泛的关注,其暴发机理也成为环境界研究的热点。其中上浮是蓝藻水华暴发的关键阶段,如果将上浮机理研究清楚,则可以有效地控制蓝藻水华的暴发,从而缓解饮水危机。因此,研究蓝藻上浮特别是微囊藻的浮力调控和垂直迁移特征对于揭示蓝藻水华形成机制,了解蓝藻水华的诱发机理具有十分重要的意义。
     本论文在国家重点基础研究发展计划(973计划)“大中型浅水湖泊蓝藻水华暴发机理研究”项目第三课题“水华蓝藻原位生长和输移聚集的全湖过程与驱动机制”(编号:2008CB418003)资助下,通过原位监测和室内实验相结合的方法,研究了温度、pH、特征污染物等因子对表层水华形成的影响,考察了物化因子驱动蓝藻水华在水柱中上浮的综合效应,分析了蓝藻水华上浮规律;探讨了蓝藻水华上浮的主要驱动因子,试图揭示蓝藻水华形成和输移规律。原位监测主要研究了太湖的物理化学因素和太湖水华现状特征和蓝藻上浮特征,室内模拟采用柱状中试反应装置模拟了蓝藻上浮过程,探讨了物理化学因素与水华蓝藻上浮调控的相互作用,以期为揭示大中型浅水湖泊太湖蓝藻水华暴发的生物学和生态学综合机理和为蓝藻水华暴发的预测预警奠定科学基础,以及为建立蓝藻水华综合防治的生态技术原理体系,提出蓝藻水华预防与控制的战略对策,为实现我国水生态安全战略提供坚实的科学依据。
     本论文主要研究结论如下:
     (1)太湖水华优势藻种以蓝藻为主,优势种属为微囊藻(microcystis),水华暴发季节生物量可达到1.35×108个·L-1,此外水体中还存在绿藻、硅藻和隐藻等,蓝藻和绿藻之间存在竞争关系;
     (2)春季太湖水体中硝态氮、氨氮、总氮都达到最大值,而总磷、正磷酸盐和氮磷比的变化趋势不明显,RDA分析发现总氮对蓝藻的生长影响大于总磷的影响,蓝藻生物量与总氮总磷、DIN/SRP和亚硝态氮具有显著的相关性,应该同时控制氮磷,尤其是溶解性无机氮DIN和活性磷SRP,为蓝藻水华的控制提供了一定的科学依据;
     (3)原位蓝藻上浮率与化学因素没有显著相关性,分析原因可能是原位水华蓝藻的生境比较复杂,影响因素比较多,除了受到化学因素的关系外,可能还受到其他水力条件的影响;
     (4)反应器表层蓝藻上浮率明显大于底部,表层以下上浮率随时间没有明显变化规律,在不同时刻上浮率变化特征是r22:00>r10:00>r14:00;
     (5)pH和正磷酸盐变化特征是表层和底层的值大于中间,原位蓝藻对正磷酸盐表现出很强的吸收能力;
     (6)碳水化合物、氨氮、DO是影响反应器内蓝藻上浮的主要物理化学因素,蓝藻可能主要通过改变细胞内镇重物的含量和通过合成伪空泡来调节其上浮。
In recent years, outbreaks of algae-blooms in Taihu Lake cause wide attention, and the outbreak mechanism become focus of environmental study. Floating is the critical stage about algae bloom, if understand the floating mechanism, we can effectively control the outbreak of algae-bloom and ease the water crisis. It has great significance in studying water-blooms formatting mechanism, especially microcystis buoyancy regulation and vertical migration characteristics and mechanism induced algal blooms.
     In order to reveal the integrated biology and ecology mechanism about outbreak of algal blooms in shallow and medium-sized Taihu Lake, and to provide scientific basis in predicting algal bloom; As well as to establish technical principles of ecological system in controlling algal blooms, and to propose strategic prevention about cyanobacteria bloom and to provide a solid scientific basis for the realization of water ecological safety, temperature, pH, characteristics of surface water pollution and other factors about water-blooms formation were studied by in-situ monitoring and laboratory experiments, and combined effect about physical and chemical factors driving algal blooms floating in the water column were clarified, and the laws of floating algal blooms were revealed; the main driving factors of floating algal blooms were analysised, and the formation of algal blooms and transport law were revealed. In situ monitoring key physical and chemical factors in the Taihu Lake and algae blooms floating status characteristics were studied, laboratory simulation by using cylindrical reactor to simulate the process of algae floating, of the physical chemistry and the interaction of floating algae blooms, and interactions between floating algae bloom and the chemical and physical factors were explored, basing on the third topic "The whole lake process and the driving mechanism of algae growth and transport" of the national key basic research and development program "973"(No:2008CB418003).
     The main conclusions are as follows:
     (1) Dominant species was cymobacteria(microcystis) in Taihu Lake, and seasonal water bloom biomass reached 1.35×108 cells-L-1, there were also green algae, diatoms and hidden algae, competition existed between cyanobacteria and green algae;
     (2) In spring nitrate nitrogen, ammonia nitrogen, total nitrogen up to the maximal concentration, however total phosphorus, orthophosphate concentration and N/P varied indistinctively. (Representational difference analysis) RDA analysis expresses that effects of TN is bigger than TP on growth of microcystis; Remarkable correlation exists between TN, TP, DIN/SRP, NO2-N and biomass of microcystis. It should also simultaneously control nitrogen and phosphorus, particularly control DIN and SRP to control the blooms, it provides some scientific evidences in controlling water bloom;
     (3) There is no significant correlation between situ chemical factors and algae floating rate, the reason may be complex situ habitat and more complex factors. In addition to chemical factors, other hydraulic condition maybe affect algae floating rate;
     (4) Floating rate in the surface was significantly higher than it in the bottom, and in the day it is lower than that in the night, r22:00>r10:00>r14:00;
     (5) Changes about pH and phosphate were similar to the law that their values emerged in the surface and bottom was less than that in the middle;
     (6) Correlation analysis showed that carbohydrates, ammonia and dissolved oxygen were the main factors affecting algae floating in reactor, cyanobacteria adjust its float maybe by changing the carbohydrate concentration in cells and controlling synthesis of pseudo-bubble.
引文
[1]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
    [2]OECD.Final Report, OECD Cooperative Program on Monitoring of Inland Waters (Eutrophication Control), Environment Directo rate, OECD[J]. Eutrophication of Waters.Monitoring, Assessment and Control,1982:154.
    [3]齐孟文,刘凤娟.城市水体富营养化的生态危害及其防治措施[J].环境科学动态,2004,1:44-46.
    [4]Oliver R L, Ganf G G The Ecology of Cyanobacteria[M]. The Netherlands:2000.
    [5]周云龙.植物生物学[M].北京:高等教育出版社,1999.
    [6]M Dokulil, W Chen, Q Cai. Anthropogenic impacts to large lakes in China:the Tai Hu example[J]. Aquatic Ecosystem Health and Management,2000,3:81-94.
    [7]虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论[J].植物分类学报,2007,45(5):727-741.
    [8]Codd G A. Cyanobacterial toxins:occurrence, properties and biological significance[J]. Water Science Technology,1995,32(4):149-156.
    [9]Mark Heath. Health risk associated with anthropogenic eutrophication of Lake Rotorua, New Zealand[J]. Evidence Based Environmental Policy and Management,2007, 1:107-121.
    [10]Skulber Mo, Codd Ga. Toxic blue-green algae blooms in Europe:a growing problem[J]. Ambio,1984,13:244-247.
    [11]肖兴富,李文奇,刘娜,等.富营养化水体中蓝藻毒素的危害及其控制[J].中国水利水电科学研究院学报2005,3(2):116-123.
    [12]孔繁翔,马荣华,高俊峰.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328.
    [13]Lawton L A, Codd G A. Cyanobacterial (Blue-Green Algal) Toxins and their Significance in UK and European Waters[J]. Water and Environment Journal,1991,5(4):460-465.
    [14]Barrett PRF, Curnow J C, Littlejohn J W. The control of diatom and cyanobacterial blooms in reservoirs using barley straw[J]. Hydrobiologia 1996,340(l):307-311.
    [15]边归国.去除淡水浮游藻类方法的研究进展[J].四川环境,2004,23(6):66-70.
    [16]张丽彬,王金鑫,王启山.浮游动物在生物操纵法除藻中的作用研究[J].生态环境,2007,16(6):1648-1653.
    [17]Justin D Brookes, George G Ganf. Variations in the buoyancy response of microcystis aeruginosa to nitrogen,phosphorus and light[J]. Journal of plankton research,2001, 23(12):1399-1411.
    [18]Heaney S I, Eppley R W. light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture[J]. Journal of plankton research,1981, 3(2):331-344.
    [19]Jaap Van Rijn, Moshe Shilo. Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fishponds[J]. Limnology and Oceanography, 1985,30(6):1219-1228.
    [20]杨州,孔繁翔,史小丽等.萼花臂尾轮虫培养滤液对铜绿微囊藻、斜生栅藻和小球藻群体形成及生长的影响[J].应用生态学报2005,16(6):1138-1141.
    [21]朱富寿,梁威,吴振斌.蓝藻的生理特性及生态竞争优势[J].生物学教学,2009,34(6).
    [22]Jerry A Topinka, Jon V Robbins. Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus spiralis[J]. Limnology and Oceanogaraphy,1976, 21(5):659-664.
    [23]Ping Zhao, GuChou Sun, ShaoLin Peng. Ecophysiological Research on Nitrogen Nutrition of Plant[J]. Ecologic Science,1998,17:3742.
    [24]Haruo Yamaguchi, Setsuko Sakamoto, Mineo Yamaguchi. Nutrition and growth kinetics in nitrogen and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae)[J]. Harmful Algae,2008,7(1):26-32.
    [25]Boqiang Qin, Pengzhu Xu, Qinglong Wu. Environmental issues of Lake Taihu, China[J]. Hydrobiologia,2007,581:3-14.
    [26]H.Y. Guo, J.G Zhu, X.RWang. Case study on nitrogen and phosphorus emissions from paddy field in Taihu region[J]. Environmental Geochemistry and Health,2004, 26:209-219.
    [27]TAN Xiao, KONG Fanxiang, ZENG Qingfei, et al. Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors[J]. Journal of Environmental Sciences 2009,21:892-899.
    [28]Xiaomin Chen, Fei Wo, Can Chen, et al. Seasonal changes in the concentrations of nitrogen and phosphorus in farmland drainage and groundwater of the Taihu Lake region of China[J]. Environ Monit Assess,2009.
    [29]Val H. Smith. Light and Nutrient Effects on the Relative Biomass of Blue-Green Algae in Lake Phytoplankton[J]. Fish. Aquat. Sci,1986,43:148-153.
    [30]Hong Shen, Lirong Song. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis.Hydrobiologia[J]. Hydrobiologia,2007, 592:475-486.
    [31]C. Nalewajko, T. P. Murphy. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach[J]. Limnology,2001,2:45-48.
    [32]李小龙,耿亚红,李夜光.从光合作用特性看铜绿微囊藻(Microcystis aeruginosa)的竞争优势[J].武汉植物学研究,2006,24(3):225-230.
    [33]Llan Konopka, Thomas D.Brock. Effect of Temperature on Blue-Green Algae(Cyanobacteria) in Lake Mendota[J]. Applied and Environmental Microbiology, 1978,36:572-576.
    [34]宋艳芳.铜绿微囊藻的二氧化碳浓缩机制及UV-B辐射对其影响的研究[J].华中师范大学,2007.
    [35]T Dokulil Martin, Teubner Katrin. Cyanobacterial dominance in lakes[J]. Hydrobiologia, 2000,438(1):1-12.
    [36]Hiroshi Serizawa, Takashi Amemiya, Axel G Rossberg, et al. Computer simulations of seasonal outbreak and diurnal vertical migration of cyanobacteria[J]. Limnology,2008, 9(3):185-194.
    [37]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [38]Oliver R L, Walsby A E. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae[J]. Limnology and Oceanography, 1984,29(4):879-886.
    [39]Roderick Lewis Oliver. Floating and sinking in gas-vacuolate cyanobacteria[J]. Journal of Phycology,1994,30(2):161-173.
    [40]Jones D D, Jost M. Characterization of the Protein of gas-vacuoles membranes of the blue-green algaa microcystis aeruginosa[J].Planta,1971,100:277-287.
    [41]Klebahn H. Gasvacuolen ein bestandteil der Zellen der wasserblutebildenden Phyeoehromaeeen[J]. Flora (jena),1895,80:241.
    [42]Strodtmann S. Die urasche des schwebvermogens bei den cyanophyceen[J]. Biol. Entralbl, 1895,15:113-115.
    [43]Bowen C C, Jensen T E. Blue-green algae:fine strueture of the gasvacuoles[J]. science, 1965,147:1460-1462.
    [44]Walsby A E. Gas vesicles[J]. Microbiol Rev.,1994,58:94-144.
    [45]孙慧群,朱琳,高文宝.淡水湖泊中微囊藻水华的成因分析[J].生物学通报,200540(8):23-24.
    [46]李军,刘丛强,肖化云,等.太湖北部夏季浮游藻类多样性与水质评价[J].生态环境,2006,15(3):453-456.
    [47]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25:589-595.
    [48]Carl F. Zimmermann, John R. Montgomery. Effects of a decomposing drift algal mat on sediment pore water nutrient concentrations in a Florida seagrass bed [J]. Marine Ecology Progress Series,1984,19:299-302.
    [49]Monika Nausch, Gunther Nausch, Norbert Wasmund, et al. Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea:A three-year study[J]. Journal of Marine Systems,2008,71:99-111.
    [50]WANG Yuanyuan, CHEN Feizhou. Decomposition and phosphorus release from four di□erent size fractions of Microcystis spp. taken from Lake Taihu, China[J]. Journal of Environmental Sciences,2008,20:891-896.
    [51]Yang L Y, Wang Q, Shi X L, et al. Phosphorus metabolism of Microcystis aeruginosa during its growth process[J]. Journal of Agro-Environment Science,2005,24:686-689.
    [52]Xie L Q, Xie P, Tang H J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclosure experiment in a hypereutrophic, subtropical Chinese lake[J]. Environmental Pollution,2003,122:391-399.
    [53]Martin T. Dokulil, Katrin Teubner. Cyanobacterial dominance in lakes[J]. Hydrobiologia 2000,438:1-12.
    [54]Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in Lake phytoplankton[J]. Science,1983,221:669-671.
    [55]韩小波,孔繁翔,阎荣.太湖铜绿微囊藻磷摄取动力学若干重要参数与其竞争优势相关研究[J].湖泊科学,2004,16:252-257.
    [56]D. J. McQueen, D. R. S. Lean. Influence of Water Temperature and Nitrogen to Phosphorus Ratios on the Dominance of Blue-Green Algae in Lake St. George, Ontario[J]. Fish. Aquat. Sci,1987,44:598-604.
    [57]Liqiang Xie, Ping Xie, Sixin Li. The low TN:TP ratio, a cause or a result of Microcystis blooms?[J]. Water Research,2003,37:2073-2080.
    [58]C Nalewajko, T. P. Murphy. Effects of temperature,and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach[J]. Limnology,2001,2:45-48.
    [59]S. F. Baldia, A. D. Evangelista, E. V. Aralar. Nitrogen and phosphorus utilization in the cyanobacterium Microcystis aeruginosa isolated from Laguna de Bay, Philippines[J]. J Appl Phycol,2007,19:607-613.
    [60]Liancong Luo, Boqiang Qin, Yuzhi Song. Seasonal and regional variations in precipitation chemistry in the Lake Taihu Basin, China[J]. Atmospheric Environment,2007, 41:2674-2679.
    [61]H W Paerl, R S Fulton. Ecology of Harmful Cyanobacteria[J]. Ecology of Harmful Algae, 2006,189:95-106.
    [62]Pia H Moisander, Mari Ochiai, Andrew Lincoff. Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs[J]. Harmful Algae,2009, 8(6):889-897.
    [63]Xu Hai, Hans W Paerl, Qin Bo Qiang, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China[J]. Limnology Oceanography,2010, 55(1):420-432.
    [64]M.Isabel Muro-Pastor, Francisco J.Florencio. Regulation of ammonium assimilation in cyanobacteria[J]. Plant Physiology and Biochemistry,2003,41:595-603.
    [65]Zhao K, Whiteman M, Spencer JP, et al. DNA damage by nitrite and peroxynitrite: protection by dietary phenols[J]. Methods in Enzymology,2001,335:296-307.
    [66]Erich Kessler, Walter G. Zumft. Effect of Nitrite and Nitrate on Chlorophyll Fluorescence in Green Algae [J]. Planta,1973,111:41-46.
    [67]B.B. Ward. Nitrification and Denitrification:Probing the Nitrogen Cycle in Aquatic Environments [J]. Microb Ecol,1996,32:247-261.
    [68]Orit Dvir, Jaap van Rijn, Amir Neori. Nitrogen transformations and factors leading to nitrite accumulation in a hypertrophic marine fish culture system [J]. Marine Ecology Progress Series,1999,181:97-106.
    [69]Kyong Ha, Eun-Ah Cho, Hyun-Woo Kim. Microcystis bloom formation in the lower Nakdong River, South Korea:importance of hydrodynamics and nutrient loading[J]. Marine and Freshwater Research,1990,50:89-94.
    [70]Shapiro J. Current Beliefs Regarding Dominance by Blue-Greens:The Case for the Importance of CO2 and pH [J]. Internationale Vereinigung fuer Theoretische und Angewandte Limnologie,1990,24:38-54.
    [71]Qiu B S, Gao K S. Effects of CO2 enrichment on the bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae):Physiological responses and relationships with the availability of dissolved inorganic carbon[J]. J. Phycol,2002,38:721-729.
    [72]Joseph Shapiro. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes[J]. Freshwater Biology,1997,37:307-323.
    [73]Shapiro J. Blue-green dominance in lakes:The role and management significance of pH and CO2[J]. International Revue der Gesam ten Hydrobiology,1984,69:765-780.
    [74]Shapiro J. Current beliefs regarding dominance by blue-greens:The case for the importance of CO2 and pH[J]. International Vereinigung fuer Theoretische und Angewandte Limnologie,1990,24:38-54.
    [75]孔倩,杨柳燕,肖琳.黑暗条件下不同氮源对铜绿微囊藻(Microcystis aeruginosa)生长和pH的影响[J].生态学报,2008,28:2060-2064.
    [76]Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of Enrichment [J]. Limnology and Oceanography,1988,33:796-822.
    [77]P. V. McCormick, M. B.O"Dell, R.B. E. Ⅲ Shuford, et al. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland[J]. Aquatic Botany,2001, 71:119-139.
    [78]Giselle V. Trevisan, Bruce R.Forsberg. Relationships among nitrogen and total phosphorus, algal biomass and zooplankton density in the central Amazonia lakes[J]. Hydrobiologia,2007,586:357-365.
    [79]张玉超,钱新,钱瑜,等.太湖水温分层现象的监测与分析[J].环境科学与管理,2008,(6):117-121.
    [80]朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征[J].水科学进展,2004,15(6):775-780.
    [81]张运林,秦伯强,陈伟民,等.太湖水体光学衰减系数的特征及参数化[J].海洋与湖沼,2004,35(3):209-213.
    [82]冯胜,秦伯强,高光.太湖磷转化细菌与水体磷形态关系[J].湖泊科学,2008,20(4):428436.
    [83]钱善勤,孔繁翔,史小丽,等.不同形态磷酸盐对铜绿微囊藻和蛋白核小球藻生长的影响[J].湖泊科学,2008,20(6):796-801.
    [84]Shapiro Joseph. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes[J]. Freshwater Biology,1997,37(2):307-323.
    [85]陈荣三黄孟健,钱可萍.无机与分析化学[M].北京:人民教育出版社,1979.
    [86]李夜光,胡鸿钧,龚小敏.螺旋藻培养液pH值变化的机理和碳源利用率的研究[J].生物工程学报,1996,12:242-248
    [87]孙晓庆,董树刚.藻类的生理生态学研究进展[J].海洋湖沼通报2007,(B12):195-206.
    [88]Brett B Wallace, Mark C Bailey, David P Hamilton. Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake[J]. Aquatic Sciences,2000,62(4):320-333.
    [89]孔倩,杨柳燕,肖琳.黑暗条件下不同氮源对铜绿微囊藻(Microcystis aeruginosa)生长和pH的影响[J].生态学报,2008,28(5):2060-2064.
    [90]张路,范成新,王建军,等.太湖草藻型湖区间隙水理化特性比较[J].中国环境科学,2004,24(5):556-560.
    [91]华锦彪,宗志祥.洋河水库水华发生的实验研究[J].北京大学报(自然科学版), 1994,30(4):476484.
    [92]杨柳燕,王勤,史小丽,等.铜绿微囊藻磷代谢过程研究[J].农业环境科学学报,2005,24(4):686-689.
    [93]金相灿,王圣瑞,庞燕,等.湖泊沉积物对磷酸盐的负吸附研究[J].生态环境,2004,13(4):493496.
    [94]M Isabel Muro-Pastor, Francisco J Florencio. Regulation of ammonium assimilation in cyanobacteria[J]. Plant Physiology and Biochemistry,2003,41(6):595-603.
    [95]Daniel J Conley, Han W Paerl, Robert W Howarth, et al. Controlling Eutrophication: Nitrogen and Phosphorus[J].Science,2009,323:1014-1015.
    [96]陈琼.氮磷对水华发生的影响[J].生物学通报,2006,41(5):12-14.
    [97]Reynolds C S, Jaworski G H M, Cmiech H A. On the annual cycle of the blue-green algae microcystis aeruginosa Kutz.Emend.Elenkin.[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,1981,293(1068):419-477.
    [98]Visser P M, Ibelings B W, Mur L R. Autumnal sedimentation of microcystis spp. as result of an increase in carbohydrate ballast at reduced temperature[J]. Journal of plankton research,1995,17(5):919-933.
    [99]Monika Ehling-Schulz, SiegfriedI Scherer. UV protection in cyanobacteria[J]. European Journal of Phycology,1999,34(4):329-338.
    [100]李朋富,宋立荣.滇池微囊藻水华多糖的提取和化学特征[J].湖泊科学,2007,19(6):637-642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700