山融3号小麦BC_2代群体耐盐主效QTL相关分子标记的筛选定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于自然环境的不断恶化,耕地土壤盐渍化已成为制约世界农业生产的主要的环境因子。小麦是世界上重要的粮食作物之一,对盐渍环境十分敏感,盐胁迫往往造成其产量和品质的大幅下降。如何运用生物技术研究小麦的耐盐机理、定位克隆耐盐基因、培育耐盐新品种、提高小麦产量是育种学家和生物技术工作者共同面临的重大课题。本课题组首创的小麦(Triticum aestivum L.2n=42)不对称体细胞杂交技术,将耐盐禾草(长穗偃麦草Agropyron elongatum 2n=70)的染色体小片段或/和DNA整合入普通小麦济南177(JN177)基因组,选育出耐盐渐渗小麦新品种山融3号(SR3)。前期对该品种的初步研究表明,其耐盐性由5A染色体上的主效基因控制。
     本研究以济南177作为轮回亲本,对山融三号与济南177的回交一代(BC1)进行回交,以所获BC2代作为研究材料。利用5A染色体上存在的新的分子标记,对山融三号小麦的耐盐相关QTL进一步深入分析,初步确定了耐盐主效基因的性质和位置。实验中,利用SSR/EST-SSR等分子标记技术,设计211对标记引物(小麦5A染色体上59对SSR引物、26对EST-SSR引物和65对STS引物;小麦其余染色体上30对标记引物以及31对与小麦5A具有高同源性的水稻第9染色体STS引物)对BC2群体的双亲进行PCR扩增,其中46对引物的PCR扩增呈微卫星DNA多态性,多态性指数为25.4%。用这46对引物继续对以BC2群体构建的耐盐池和盐敏感池进行PCR扩增,筛选出5对位于5A染色体上的微卫星DNA扩增呈多态性的SSR标记引物(Xwmc713-5A, Xgwm304, Xgwm666,(?)Xcfa2141, XBarc144),在BC2群体中个体扩增后显示与耐盐基因连锁。利用MapMaker 3.0及MapDraw V2.1软件推算出耐盐主效基因位于5AL染色体上,与最近的XBarc144标记的相对距离为12.7cM,可利用这5个分子标记在缺失图Chinese_Spring_Deletion_5A以及连锁图Wheat Ta-SSR-2004-5A上的整合信息,将主效QTL(Gene)进一步定位在5A染色体长臂距着丝点5-6cM左右。本工作利用不同的群体,进一步验证了山融三号耐盐主效基因的位置;缩小了分子标记与耐盐主效基因的距离。本文为进一步寻找与耐盐主效基因更紧密连锁的分子标记,克隆耐盐主效基因,研究其耐盐机理奠定了基础。
Current status of agriculture land becomes worse and worse due to man-made and natural changes. Moreover, solid degradation, especially aridity and edaphic salinization, has been a very serious problem in the world for years. Common wheat (Triticum asetivum L.) is one of the most important cereal crops in the world. It is very sensitive to salt-stress which can lead to low productivity of wheat. Therefore, it is very necessary to work on the botanic salt-tolerant mechanisms, to map salt-tolerant genes and to breed new salt-tolerant species by using biotechnology. Years ago, a novel salt-tolerant wheat variety Shanrong No.3 (SR3) generated by using asymmetric somatic hybridization between common wheat Jinan 177 and Agropyron elongatum in our lab, which posses strong tolerance to salt stress. Specifically, one piece of salt-tolerance chromatin from Argopyron elogatum was intrgressed into the Jinan 177 genome, which is salt-tolerent, drought-resistant and high productive. The earlier experiments revealed that the salt-tolerance of SR3 is highly related with the major quantitative trait locus (QTL) located near the centromere of wheat on the long arm of chromosome 5A.
     In this study, an advanced BC2 population consisted of 171 individuals was constructed from the backcross between SR3 and Jinan 177 after large scale screening under salt stress. For salt-tolerance QTL analysis, microsatellite (SSR), expressed sequence tag-simple sequence repeats (EST-SSR) and BSA (bulked segregant analysis) techniques in combination with the SSR map of wheat were used.221 5A polymorphic markers including 59 SSR primers,26 EST-SSR primers,65 STS primers on wheat chromosome 5A and 31 STS primers on rice chromosome No.9, along with 30 non-5A markers were used to construct a linkage map. Among all of the 211 markers,46 show polymorphism in SR3 and Jinan 177, with a polymorphic index 25.4%. Then PCR amplification has been carried out among the salt tolerance pond and sensitive pond with those 46 marker pairs. A novel molecular marker XBarcl44 was identified. Combined with the SSR high density genetic linkage map (Wheat Ta-SSR-2004-5A) and deletion map (Chinese_Spring_Deletion_5A) of wheat, the major gene for salt tolerance has been located on the 5A long arm of wheat chromosome, the distance to the XBarc144 marker is 12.7 cM, and to the centromere is 5-6cM. Our findings not only narrow the further search scope, laying foundation for mapping salt-tolerance QTL, but also shed light on identification of plant mechanisms for salt tolerance and breeding of new cultivars.
引文
1. Austin D F, M Lee. Detection of quantitative trait loci for grain vield and yield components in maize across generations in stress and nonstress environments. Cro(?) Sci,1998,38:1296-1308.
    2. Borner A, Roder M S, Unger. The detection and molecular mapping of a major gene for no-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet,2000,100(7):1095-1099.
    3. Bostein D, R L White, M H Skolnick. Construction of genetic map in man using restriction fragment length polymorphisms. Am. J. Human Genet,1980,32:314-331.
    4. Dubeovsky J, Maria G S, Epstein E, Dvorak J. Mapping of the K+/Na+ discrimination locus Knal in wheat. Theoretical and Applied Genetics,1996,92:448-454.
    5. Dudley J W. Molecular markers in plant improvement:manipulation of genes affecting quantitative traits. Crop Sci,1993,33:660-668.
    6. Feher A, Preiszner J, Litkey Z, Csanadi GyandDudits D. Characterization of Chromosome Instability in Interspecific Somatic Hybrids Obtained by X-Ray Fusion Between Potato (Solanum Tuberosum L.) And S. Brevidens Phil. Theoretical and Applied Genetics,1992, (84):7-8.
    7. Flowers T J, Koyama M L, Flowers S A. QTL:their place in engineering tolerance of rice to salinity. Exp Bot,2000,51:99-106.
    8. FAO.2008. FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush
    9. Foolad M R, Jones R A. Mapping salt tolerance genes in tomato (Lycopersicon esculentum) using trait-based makrer analysis. Theor. Appl. Genetic,1993,87:184-192.
    10. Foolad M R. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome,2001,44(3):444-454.
    11. Frary A, Nesbit T C, Grandillo S, et al. A quantative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    12. Gao L F, Jing R L, Huo N X. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. TAG Theoretical and Applied Genetics,2004, 108(7):1329-1400.
    13. Gioyannoni L, Wing R A. Isolation of molecular markers for specific chromosomal intervals using DNA pools from existing population. Nucleic Acids Res,1991,19: 6553-6558.
    14. Glimelius Kristina, Fahlesson Jan, Landgren Maria. Gene Transfer via Somatic Hybridization in Plants. Trends in Biotechnology,1991,1(9):24-30.
    15. Gorham J, J Bridges, J Dubcovsky, J Dvorak, P A Hollington. Gentic analysis and physiology of a trait for enhanced K+/Na+ discriminarion in wheat. New Phytol., 1997,137,109~116.
    16. Haanatra J P W, Wye C, Verbakel H. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum×L. pennellii F2 populations. Theor Appl Genet,1999,99:254-271.
    17. Hamada H. A novel reptead elemeat with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA,1982, (79): 64652-64691.
    18. Karl Sax. Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments, and genomes in Phaseolus-Vigna spp. Journal of Quantitative Trait Loci,1923.
    19. Kasai K, Fukayama H. Salinity tolerance in Triticum aestivum-Lophopyrum elongatum amphiploid and 5E disomic addition line evaluated by NaCl effects on photosynthesis and respiration. Cereal Res. Comm.,1998,26:281-287.
    20. Keim P, Schupp J M, Travis S E. A high-density soybean genetic map based on AFLP markers. Crop Sci,1997,37:537-543.
    21. Koebner R M D, Martin P K, Orford S M. Responses to salt stress controlled by the homoeologous group 5 chromosomes of hexaploid wheat. Plant Breeding,1996,115: 81-84.
    22. Koebner R M D.六倍体小麦第5部分同源组染色体对盐胁迫的反应(译).麦类作物,1997,17(2):24-26.
    23. Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population:associations among traits and genetic markers. Theor Appl Genet, 2004,109:1237-1246.
    24. Lander E S, Bolsteln S. Mapping mendelian factors underlying quantitative traits using linkage maps. Genetics,1989,121:185-199.
    25. Lee G J, Boerma M R, Villagarcia. A major QTL conditioning salt tolerance S-100 soybean and descent cultivars. Theor. Appl.Genet.,2004,109:1610-1619.
    26. Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y QTLs for Na+ and K+ uptake of the shootsand roots controlling rice salt tolerance. Theor Appl Genet,2004,108:253-260.
    27. Lubberstedt T, D Klein, A E Melchinger. Comparative quantitative trait loci mapping of partial resistance to Puccinia sorghi across four populations of European flint maize. Phytopathplogy,1998a,88:1324-1329.
    28. Marion S R, Victor K, Katja W. A microsatellite map of wheat. Genetics,1998,149: 2007-2023.
    29. Mathilde A C, Theresa M F, Cho Y. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics,1994,138:1251-1274.
    30. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance genes by bu(?)ked segregant analysis:a rapid method to detect markers in specific genomic region by using seg regating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
    31. Morgan, J. B., Savell, J. W., Hale, D. S., Miller, R. K., Grifn, D. B., Cross, H. R. National beef tenderness survey. Journal of Animal Science,1991,69:3274-3283.
    32. Munns R. Comparative physiology of salt and water stress. Plant, Cell & Environment, 2002,25,239-250.
    33. Obrien S J, Menotti Raymond M,Murphy W J. The promise of comparative genomics in mammals. Science,1999,458-463.
    34. Olson M, Hood L, Cantor C. A common language for physical mapping of the human genome. Sci,1989,245:1434-1435.
    35. Paterson A H, Lander E S, Hewitt J D. Resolution of Quantitative Traits Into Mendelian Factors by Using a Complete Linkage Map of Restriction Fragment Length Polymorphisms. Nature,1988,335(6192):721-726.
    36. Peng J, Richards D E, Hartley N M.'Green revolution'genes encode mutant gibberellin response modulators. Nature,1999,400:256-261.
    37. Qi X, Stam P, Lindhout P. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet,1998,96:376-384.
    38. Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T,Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S,Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, RoyoA, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring (?) SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet,2005,110:865-880.
    39. Quesada V S, Garcia-Martinez, P Piqueras. Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiology,2002,130:951-963.
    40. Reddy M P, Sarla N, Siddiq E A. Inter simple sequence repeat(ISSR)polymorphism and its application in plant breeding. Euphytica,2002,128:9-17.
    41. Russel J R, Fuller J D, Macaulay M. Development of genetic variation among barley accessions detected by RFLP, AFLP, SSR and RAPD. Theor. Appl. Genet.,1997,95: 714-722.
    42. Sax K. The Association of Size Differences with Seed-Coat Pattern and Pigmentation in Phaseolus Vulgaris. Genetics,1923,8(6):552-560.
    43. Schachtman D P, Schroeder J I, Lucas W J. Science,1992,258:1654-1658.
    44. Schondelmaier J, Steinrucken G, Jung C. Integration of AFLP markers into a linkage map of sugar beet(Betavulgaris L.). Plant Breed,1996,115:231-237.
    45. Smith J S C, Chin E C L, Sbu H. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.):Comparisons with data from RFLPs and pedigree.Theoretical Applied Genetics,1997,95:163-173.
    46. Somers D J, Lsaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,2004,109: 1105-1114.
    47. Tanksley S D, Ewitt J H. Use of molecular markers in breeding for soluble solids content in tomato-a re-examination. Theor Appl Genet,1988,66:241-247.
    48. Tanksley S D, Ganal M W, Prince J P. High density molecular linkage map of the tomato and potato genomes. Genetics,1993,132:1141-1160.
    49. Taut Z D, Renz M. Simple sequence are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res.1984,12:4127-4137.
    50. Tenaillon M L, Samkins M C, Ling A D. Petern of DNA sequence polymorphism along cllromosome 1 of majze. Porc. Nalt. Acad. Sci.,2001,98:9161-9166.
    51. Thoday J M. Location of Polygenes. Nature,1961,191,368-370.
    52. Thomas C M, Vos P, Zakeau M. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to tomato cf9 gene for resistance to chdosporium fulvum. The Plant Journal,1995,8(5):785-794.
    53. Velappan N,Snodgrass J L, Hakovirta J R. Rapid Identification of Pathogenic Bacteria by Single-Enzyme Amplified Fragment Length Polymorphism Analysis. Diagn Microbiol Infect Dis,2001,39(2):77-83.
    54. Vuylsteke M, Antonise R, Bastiaans E. A high density AFLP linkage map of Zea mays L. Plant and Animal Genome V, poster abstract,1997,206.
    55. Wu G H, Ronald W. Isolation chromosomal localization and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copperozinc superoxide dismutase genes in wheat.Plant Physiology,1999,120:513-520.
    56. Xia G M. Progress of chromosome engineering mediated by asymmetric somatic hybridization. Genetics and Genomics,2009, (39):547-556.
    57. Xia G, Xiang F, Zhou A. Asymmetric Somatic Hybridization Between Wheat (Triticum Aestivum L.) And Agropyron Elongatum (Host) Nevishi. Theor Appl Genet, 2003,107(2):299-305.
    58. Yeo A R, Flowers T J. Mechanisms of salinity resistance in rice and their role as physiological criteria in plant breeding. Salinity Tolerance in Plant Strategies for Crop Improvement,1984:93-123.
    59. Yeo A R, Flowers T J. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Plant Physoil,1986,13:161-173.
    60. Yoshiro M, Kazuyoshi T. Mapping quantitative trait loci for salt tolerance at germination stage and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 1997,49(3):263-272.
    61. Zeng Z B. Precision mapping of quantitative trait loci. Genetics,1994,36:1457-1468.
    62. Zhang G Y, Guo Y, Cheng S L. RFLP tagging of a salt tolerance gene in rice. Plant Science,1995,110:227-334.
    63. Zhong G Y, Dvorak J. Chromosomal control of the tolerance of grandually and suddenly imposed salt stress in the Lophyrum elongatum and wheat (Triticum asetivum L.) genomes. Theoretical and Applied Genetics,1995,90:229-236.
    64. Zhou J P, Gustafson. Genetic variation detected by DNA fingerprinting with a rice minisatellite probe in Oryza sativa L. Theor Appl Genet.,1995,91:714-722.
    65. Zhu J, B.S. Weir. Mixed model approaches for genetic analysis of quantitative traits. World Scientific Publishing Co,1998.
    66. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics,1994,20: 176-183.
    67.卞云龙,邓德祥,王益军,才宏伟.基于AFLP和SSR标记的高粱分子遗传连锁图构建.分子植物育种,2007,5(5),661-666.
    68.陈芳.小麦F2代群体(山融3号×济南177)的盐胁迫相关主效QTL的SSR标记定位.山东大学硕士论文,2007.
    69.陈受宜,朱立煌,洪建.水稻抗盐突变体的分子生物学鉴定.植物学报,1991,3:569-57.
    70.单雷,赵双宜,陈芳,夏光敏.小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位.中国农业科学,2006,39(2):225-230.
    71.单雷.小麦耐盐体细胞杂种盐胁迫应答基因的分离、定位及其耐盐机理研究.山东大学博士论文.2004.
    72.冯龙仁,牛安欧.微卫星简单重复序列锚定PCR扩增技术(SSR-PCR)及其在寄生虫基因研究中的应用.实用寄生虫杂志,2000,8(1):33-34.
    73.龚继明.水稻耐盐性QTL定位.科学通报,1998,43:1847-1850.
    74.高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179.
    75.黄有总.大麦耐盐机理及部分耐盐相关性状的QTL定位.博士毕业论文,2007.
    76.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,15(4):19-22.
    77.李建雄,余四斌.以性状和分子标记为基础的水稻近等基因系的分离.作物学报,2000,26(5):627-630.
    78.李娜,焦浈,秦广雍.DNA分子技术及其在小麦育种及遗传研究中的应用.核农学报,2005,19(4):322-326.
    79.李维明,唐定中,吴为人.用釉/粕交重组自交系群体构建的分子遗传图谱及其与釉粳交群体的分子图谱的比较.中国水稻科学,2000,14(2),71-78.
    80.李雪莉,郑有良,魏育明.小麦抗白粉病优质高产T1BL.1RS易位系的鉴定与分析.四川农业大学学报,1999,17(4):368-373.
    81.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建.科学通报,2003,48(15):1676-1679.
    82.刘春吉,王明理.RFLP分析过程中应注意的几个问题.遗传,1994,16(6):37- 40.
    83.刘树兵.小麦近等基因导入系的建立及高大山羊草与小麦杂交后代的鉴定.中国农业科学院.2005:1-83.
    84.刘旭,史娟,张学勇,马缘生,贾继增.小麦耐盐种质的筛选鉴定和耐盐基因的标记.植物学报,2001,43(9):948-954.
    85.骆蒙,贾继增.国际麦类基因组EST计划研究进展.中国农业科学,2000,33(6):110-112.
    86.马三梅,王永飞,王得元.农作物分子遗传图谱的研究进展.干旱地区农业研究,2004,22(4).
    87.毛丽萍,任君,畅志坚.远缘杂种鉴定方法在小麦育种中的应用.山西农业科学,2006,34(1):81-85.
    88.申建斌,蒋昌顺.作物QTL定位的应用及限制性因素.热带农业科学,2006,26(4):59-63.
    89.孙秀峰,陈振德,李德全.利用大白菜抗感干烧心病F2群体构建AFLP遗传连锁图.分子植物育种,2006,4(1).
    90.唐定中,李维明,吴为人.利用RFLP、AFLP标记构建水稻分子连锁图.高技术通讯,1999(3):48-52.
    91.田燚,孔杰,王伟继.中国对虾遗传连锁图谱的构建.科学通报,2008,53(5):544-555.
    92.王宝山,赵可夫,邹崎.作物耐盐机理研究进展及提高作物耐盐性的对策.作物学报,1997,14(增刊):25-30.
    93.王成,曹后男,宗成文,赵成日,庄得凤,朴日子,赵恺.桃花粉可育基因连锁的RAPD标记与SCAR标记的转化.园艺学报,2007,34(4):865-870.
    94.翁跃进.作物耐盐品种及其栽培技术.农业出版社,2002.
    95.卫宪云,李斯深,蒋方山.小麦早衰及其相关生理性状的QTL分析.西北植物学报,2007,27(3).
    96.吴为人,李维明,卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997,12(5):490-495.
    97.邢永忠,徐才国,华金平.水稻株高和抽穗期基因的定位和分离.植物学报,2001,43(7):721-726.
    98.熊立仲,王石平,刘克德.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布.植物学报,1998,40(7):605-614.
    99.徐吉臣,邹亮星.利用相关性分析鉴定与水稻根部性状表达相关的分子标记.遗传学报,2002,29(3):245-249.
    100.徐云碧,朱立煌.分子数量遗传学.中国农业出版社,1994,110-113.
    101.杨凯,昌小平,胡荣海.干早胁迫下小麦脯氨酸积累相关基因的染色体定位.作物学报,2001,27(3):363-366.
    102.张爱民,张树榛,黄铁城.小麦育种中杂交亲本选配理论与方法的研究.北京农业大学学报,1991,17(1):7-12.
    103.张娟,谢惠民,张正斌.小麦抗旱节水生理遗传育种研究进展闭.干旱地区农业研究,2005,23(3):23 1-236.
    104.张正斌,山仑,徐旗.控制小麦种、属旗叶水分利用效率的染色体背景分析.遗传学报,2000,27(3):240-246.
    105.张正斌.小麦遗传学.北京:中国农业出版社,2001,390-399.
    106.赵雪,谢华,马荣才.植物功能基因组研究中出现的新型分子标记.中国生物工 程杂志,2007,27(8):104-110.
    107.钟明.利用RIL群体比较定位糙米和精米蛋白质含量的QTL.分子植物育种,2007,15(5):631-638.
    108.朱玉贤,李毅.现代分子生物学.第2版.北京:高等教育出版社,2002.
    109.朱振东,贾继增.小麦SSR标记的发展及应用.遗传,2003,25(3):355-360.
    110.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700