受约束的网络控制系统分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络技术的发展同时带动了许多新学科方向的兴起,其中网络控制系统就是兴起不久并受到极大关注的学科方向之一,它是涵盖控制、通信、网络和计算机等多种学科的交叉方向,并且有着广泛的实践应用。随着广大科研人员对网络控制系统不断扩展和深入的研究,在理论和应用上都已经取得了许多满意的成果。但是仍然存在许多开放的问题有待解决。从网络控制系统的稳定性与控制器设计受到各种条件制约或限制的角度出发,本文主要针对通信受限、被控对象信息完备性受限及控制系统组件正常运行受限这三个条件,研究了在相应条件下及各种混合条件下网络控制系统稳定性和控制器设计理论。主要研究成果如下:
     首先,考虑理想情况,即被控对象信息完备,对象模型已知,并且只考虑单通道通信时间受限情况下的网络控制系统稳定性分析与控制器设计。这一部分主要研究了两种情形:一是针对线性对象模型及Markov随机时滞模型,使用Lyapunov-Razumikhin方法对网络控制系统渐近稳定性进行分析,设计了动态输出反馈控制器,保证了系统的镇定。二是考虑复杂非线性对象模型、给定上界的时变时滞模型,使用Lyapunov-Krasovskii方法对网络控制系统渐近稳定性进行了分析,设计模糊控制器,保证了系统的镇定。
     其次,考虑较为实际的情况,即在被控对象信息不完备,具有一个不确定范围且不确定界是已知的情况下,并考虑单通道通信时间受限的网络控制系统稳定性分析与控制器设计。在第一个问题的两种情形基础上,分别加入对象不确定成分,并采用范数有界不确定模型形式刻画对象不确定部分,得出了网络控制系统渐近稳定条件,并设计了相应的控制器。针对线性情形下由不确定性因素诱导的双线性问题,采用了一个经修改后的锥形补偿线性化算法对其进行了线性化求解。针对非线性情形,使用模糊系统的思想并基于平行分布补偿技术对网络时滞进行了建模,这种时滞模型更符合实际应用研究。
     第三,考虑更为实际的情况,即被控对象模型完全未知的情况下,并考虑一类单通道通信时间受限的无线网络控制系统稳定性分析与镇定及跟踪控制器设计。在这种情形下,采用首先进行对象模型的辨识,然后将辨识好的模型用于控制的策略。针对一般的Hammerstein系统,采用一类逆高斯网络时滞统计模型刻画无线网络延时,提出了一个基于模型的网络迭代辨识方法,利用辨识好的模型得到Hammerstein系统非线性部分的逆函数去处理非线性,使用H∞方法抑制由模型误差带来的扰动,并使用基于模型的控制器对延时或丢失的数据包进行重新估计。通过以上一系列方法,可以保证Hammerstein系统在无线网络控制下达到均方渐近稳定。
     第四,考虑通信时间受限的多通道网络控制系统稳定性分析与控制器设计。前面三个问题主要是考虑了被控对象信息完备性受限程度递增,单通道通信时间受限的网络控制系统的稳定性和控制器设计问题。从这个问题开始到下一个问题,本文将转向通信受限程度递增,对象模型假设已知的网络控制系统稳定性分析和控制器设计。本问题假设多个传感器通过多个通道接入令牌环网络,分别使用一个Markov链和多个Markov链刻画其随机时滞特性,建立参数依赖的Lyapunov函数分析系统稳定性,设计状态反馈控制器并结合缓存技术对丢包进行补偿,保证了基于多通信通道时间受限的网络控制系统稳定和镇定。
     第五,考虑通信时间与通道信噪比均受限情况下的网络控制系统稳定性分析与控制器设计。首先同时考虑单通道信噪比与时变时滞,使用Lyapunov稳定理论和线性矩阵不等式方法得到连续时间网络控制系统镇定所需要的最小信噪比。然后同时考虑单通道信噪比与Markov链形式的随机时滞,使用同样的方法得到离散时间网络控制系统镇定所需要的最小信噪比。最后考虑一类异构网络情形,即一侧是受通道噪声影响较大的单通道无线网络,另一侧是受通信时滞影响较大的多通道令牌环网络,仍然使用Lyapunov稳定理论和线性矩阵不等式方法可以得到此类网络镇定所需要的最小信噪比,并且给出信噪比、对象不稳定极点与网络时滞的一个关系式。
     第六,考虑执行器故障的网络控制系统稳定性分析与控制器设计。此问题是从控制系统组件正常运行受限的角度展开研究的,而前面五个问题都是在假设执行器、传感器无故障条件下对网络控制系统稳定性及控制器设计进行的研究。从可靠性设计的实际考虑,控制系统组件出现故障是必须考虑的问题。所以这个问题考虑了执行器有部分出故障,通信时滞时变且有上界的连续时间网络控制系统稳定性,并且设计了自适应故障容错控制器,以保证系统在故障和通信时间受限情形下可以正常运行。
     在上述六个问题的理论分析和设计完成之后,均进行了数值仿真验证,表明了本文方法的正确性和有效性。另外在做无线网络时滞和通信信噪比的数值仿真时,结合了英国女皇大学智能系统与控制课题组通过实验得到的逆高斯分布的时滞统计模型和上海大学电站自动化技术重点实验室的双并联倒立摆装置模型,为所研究问题能进一步应用到实际提供了依据与基础。
The rapid development of network technology has advanced many new research areas, among which the networked control system (NCS) has drawn a lot of attentions in recent years. The NCS which covers multiple disciplines, including control, communication, networks and computer, has been widely applied in many engineering fields and a number of theoretic achievements have also been reported. Yet, some open problems still exist to be solved. Among various issues restricting the application of NCSs, the stability and controller design have been studied in this thesis, considering various communication constraints, completeness of plant information, and operation conditions of control system components. The following technical contributions have been made in this thesis:
     1) First, we assume that the information of plant is complete, i.e. the model of the plant is known, a single communication channel presents in the system and the communication time is limited. Given these assumptions, the stability analysis and controller design are examined under two cases: in the first case, Lyapunov-Razumikhin approach is used to analyse the asymptotic stability of NCSs with a linear plant model and Markov type stochastic delays, and a dynamic output feedback controller is designed to stabilize the system. In the second case, the Lyapunov-Krasovskii method is employed to analyse the asymptotic stability of NCSs with a more complex nonlinear plant model and time-varying delays with an upper bound, and a fuzzy controller is designed to deal with the system stabilization problem.
     2) Then, we consider the problem where the information of the plant is incomplete, and assume that the plant model has an uncertainty with known boundary. Following the two cases studies in 1) we can obtain the stability conditions and the corresponding controller design with norm bounded uncertainties. Further, a modified cone-complementarity linearization (CCL) is used to solve bilinear problems and a parallel distributed compensation (PDC) technique is employed to model the network delays.
     3) Next, we assume that the plant model is unknown a priori, which is more common in many engineering applications. In particular, we investigate the identification and control of Hammerstein systems over wireless networks. Firstly, a new model-based networked identification (MBNI) method is proposed for Hammerstein systems. Then with this identified model, model-based control strategy with inverse transformation is applied to networked control to compensate network induced delays and nonlinearity respectively. In addition, H∞control is used to deal with disturbances induced by the error between the model and the real system. Then a sufficient condition for system mean-square asymptotic stability is obtained in the form of linear matrix inequalities (LMIs) and controller gains can thus be directly solved.
     4) We then consider the NCS with multiple communication channels and stochastic delays. In 1)– 3), we focus on stability analysis and controller design with different degree of completeness of plant information and a single communication channel. In this part, we concentrate on different communication constraints. We assume that multi-sensors are connected in a Token-ring network, and one and multiple Markov chains are used to characterize the stochastic delays. A parameter-dependent Lyapunov function is employed to analyse the system stability, and the state feedback controller and the buffer technique are applied to the system stabilization problem.
     5) We further investigate the stability and stabilization of NCSs subject to both communication time and signal-to-noise ratios (SNRs) constraints. Firstly the minimal signal-to-noise ratios (SNRs) required for stabilisability are obtained in continuous-time networked control system (NCS) with varying delays using the linear matrix inequality (LMI) approach. The results are then extended to discrete-time heterogeneous networked control systems consisting of a wireless network with more channel noise and a Token-ring network with more delays. Finally the above theoretic results are tested on several numerical examples, and relations among unstable poles, delays and SNRs are illustrated explicitly.
     6) Next, we consider the situations where the operation conditions of control system components are subject to constraints. In 1)-5) it is assumed that the actuators and sensors are fault free, but these components sometimes may be subject to faults. To tackle this problem, an adaptive fault-tolerant control approach for networked control systems (NCSs) with actuator faults is developed. Based on a new network-induced delay model proposed recently, we design an adaptive state feedback controller. A sufficient condition for the existence of a controller is given in terms of linear matrix inequality (LMI), which guarantees the stability of NCSs under normal and faulty conditions in the H∞sense.
     7) Finally, the validity and effectiveness of the above techniques are demonstrated in numerical simulations. It should be noted that in the simulations of wireless network delays and SNRs, the inverse Gaussian distribution delays model developed by the Intelligent System and Control group at Queen’s University Belfast, and the two inverted pendulums on carts coupled by a spring used in Shanghai Key Laboratory of Power Station Automation Technology at Shanghai University, have provided a solid foundation for development and application of the proposed techniques.
引文
[1] John Doyle, Bruce Francis and Allen Tannenbaum. Feedback control theory [M]. Macmillan Publishing Co., 1990.
    [2] Thomas M. Cover, Joy A. Thomas. Elements of information theory [M]. A JOHN WILEY & SONS, INC., 2006.
    [3] Anthony Ephremides and Bruce Hajek. Information theory and communication networks: an unconsummated union [J]. IEEE Transactions on Information Theory, 1998, 44 (6): 2416-2435.
    [4] John Baillieul and Panos J. Antsaklis. Control and Communication Challenges in Networked Real-Time Systems [J]. Proceedings of the IEEE, 2007, 95(1): 9–28.
    [5] L. L. Feng, R. James and Moyne. Performance evaluation of control networks: Ethernet, ControlNet, and DeviceNet [J]. IEEE Control Systems Magazine, 2001, 21 (1): 66-83.
    [6] Panos Antsaklis. Guest editorial special issue on networked control systems [J]. IEEE Transactions on Automatic Control, 2004, 49 (9): 1241-1244.
    [7] T. C. Yang, H. Yu and M. R. Fei. Networked control systems: a historical review and current research topics [J]. Measurement and Control, 2005, 38 (1): 12-17.
    [8] T. C. Yang. Networked control system: a brief survey [J]. IEE Proceeding of Control Theory Application, 2006, 153 (4): 403–412.
    [9] J. Baillieul, Antsaklis. Control and communication challenges in networked real-time systems [J]. Proceedings of the IEEE, 2007, 95 (1): 9-27.
    [10] J. Hespanha, P Naghshtabrizi, Y Xu. A survey of recent results in networked control systems [J]. Proceedings of the IEEE, 2007, 95 (1): 138-162.
    [11] R. M. James, M. T. Dawan. The emergence of industrial control networks for manufacturing control diagnostics and safety data [J]. Proceeding of the IEEE, 2007, 95 (1): 29-47.
    [12] Luca Schenato, Bruno Sinopoli. Foundations of control and estimation over lossy networks. Proceeding of the IEEE, 2007, 95 (1): 163-187
    [13] Scott Graham, Girish Baliga, and P. R. Kumar Abstractions, architecture, mechanisms, and middleware for networked control [J]. IEEE Transactions On Automatic Control, 2009, 54 (7): 1490-1503
    [14] G C Walsh, H Ye. Scheduling of networked control systems. IEEE Control System Magazine [J], 2001, 21 (1): 57-65.
    [15] Xiaojun Lin, Shahzada B. Rasool. Constant-time distributed scheduling policies for ad hoc wireless networks [J]. IEEE Transactions on Automatic Control, 2009, 54 (2): 231-243.
    [16] L. L. Xie and P. R. Kumar. A network information theory for wireless communication: scaling laws and optimal operation [J]. IEEE Transactions on Information Theory, 2004, 50 (5): 748-768.
    [17] Ioannis Ch. Paschalidis, Wei Lai and Xiangdong Song. Optimized scheduled multiple access control for wireless sensor networks [J]. IEEE Transactions on Automatic Control, 2009, 54 (11): 2573-2585.
    [18] Peter Corke, Tim Wark, Raja Jurdak, Wen Hu, Philip Valencia and Darren Moore.Environmental wireless sensor networks [J]. Proceedings of the IEEE, 2010, 98 (11): 1903-1917.
    [19] Nikolaos M. Freris, Hemant Kowshik and P. R. Kumar. Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks, and Computation [J]. Proceedings of the IEEE, 2010, 98 (11):1828-1846.
    [20] Srdjan S. Stankovi¢, Milo S. Stankovi¢and Duan M. Stipanovi¢. Consensus based overlapping decentralized estimation with missing observations and communication faults [J]. Automatica, 2009, 45 (6):1397-1406
    [21] Nader Meskin and Khashayar Khorasani. Actuator fault detection and isolation for a network of unmanned vehicles [J]. IEEE Transactions on Automatic Control, 2009, 54 (4): 835-841.
    [22] Minyi Huang, Subhrakanti Deyb, Girish N. Nair and Jonathan H. Manton. Stochastic consensus over noisy networks with Markovian and arbitrary switches [J]. Automatica, 2010, 46 (10): 1571-1583.
    [23] Ya Zhang and Yu-Ping Tian. Consensus of data-sampled multi-agent systems with random communication delay and packet loss J]. IEEE Transactions on Automatic Control, 2010, 55 (4): 939-944.
    [24] Ruggero Carli, Fabio Fagnani and Paolo Frasca. Gossip consensus algorithms via quantized communication [J] Automatica, 2010, 46 (1): 70-80.
    [25] Chung-Yao Kao, Ulf J?nsson and Hisaya Fujioka. Characterization of robust stability of a class of interconnected systems [J]. Automatica, 2009, 45 (1): 217-224.
    [26] Lin Wang, Xiaofan Wang. New conditions for synchronization in dynamical communication networks. Systems & Control Letters, 2011, 60 (4): 219–225.
    [27] Zhisheng Duan, Guanrong Chen and Lin Huang. Disconnected synchronized regions of complex dynamical Networks [J]. IEEE Transactions on Automatic Control, 2009, 54 (4): 845-850.
    [28] Orhan Cagri Imer, Sonia Compans, Tamer Basar. Available bit rate congestion control in ATM networks [J]. IEEE Control System Magazine, 2001, 21 (2): 38-56.
    [29]汤贤铭,俞金寿.基于模型的输出反馈网络控制系统反馈调度研究[J].控制与决策, 2009, 24 (1):141-144.
    [30] Ephremides and S. Verdu. Control and optimization methods in communication network problems [J]. IEEE Transactions on Automatic Control, 1989, 34 (9): 930–942.
    [31] Alexandre Seuret, Fabien Michaut, Jean-Pierre Richard and Thierry Divoux. Networked control using gps synchronization [C]. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, June 14-16, 2006: 4195-4201.
    [32] Xun-Lin Zhu and Guang-Hong Yang. New results on stability analysis of networked control systems [C]. 2008 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 2008: 3792-3798.
    [33] Y. B. Zhao, G. P. Liu and D. Rees. Integrated predictive control and scheduling co-design for networked control systems [J]. IET Control Theory Application, 2008, 2 (1): 7–15.
    [34] Junlin Xiong and James Lam. Stabilization of networked control systems with a logic ZOH [J]. IEEE Transactions on Automatic Control, 2009, 54 (2): 358-364.
    [35] D. Xie X. Chen L. Lv N. Xu. Asymptotical stabilisability of networked control systems:time-delay switched system approach [J]. IET Control Theory Application, 2008, 2 (9): 743–751.
    [36] Y. L. Wang and G. H. Yang. Multiple communication channels-based packet dropout compensation for networked control systems [J]. IET Control Theory Application, 2008, 2 (8): 717–727.
    [37]李海涛,唐功友,马慧,.一类具有数据包丢失的网络控制系统的最优控制[J].控制与决策,2009,24 (5): 776-779
    [38]谢德晓,韩笑冬,黄鹤,王执铨.具有时延和丢包的网络控制系统H∞状态反馈控制[J].控制与决策,2009,24 (4): 592-596
    [39] M. Yu, L. Wang and T. Chu. Sampled-data stabilisation of networked control systems with nonlinearity [J]. IEE Proceeding of Control Theory Application, 2005, 152 (6): 609-615.
    [40] W. A. Zhang, Li Yu. Modelling and control of networked control systems with both network-induced delay and packet-dropout [J]. Automatica, 2008, 44 (12): 3206-3210.
    [41] Wing Shing Wong and Roger W. Brockett. Systems with Finite Communication bandwidth constraints—ii: stabilization with limited information feedback [J]. IEEE Transactions on Automatic Control, 1999, 44 (5): 1049-1054.
    [42] Antonio Sala. Computer control under time-varying sampling period An LMI gridding approach [J]. Automatica, 2005, 41 (12): 2077– 2082.
    [43] Y. B. Zhao, G.P. Liu, D. Rees. Improved predictive control approach to networked control systems [J]. IET Control Theory Application, 2008, 2 (8): 675–681.
    [44] M. Yu, L. Wang, T. Chu and G. Xie. Modelling and control of networked systems via jump system approach [J]. IET Control Theory Application, 2008, 2 (6): 535–541.
    [45] X. Fang J. Wang. Stochastic observer-based guaranteed cost control for networked control systems with packet dropouts [J]. IET Control Theory Application, 2008, 2 (11): 980–989.
    [46] Zhang L, Shi Y. A new method for stabilization of networked control systems with random delays [J]. IEEE Transactions on automatic control, 2005, 50 (8): 1177-1181.
    [47] Lei Zhanga, Dimitrios Hristu-Varsakelis. Communication and control co-design for networked control systems [J]. Automatica, 2006, 42 (6): 953– 958.
    [48] Huijun Gao, Tongwen Chen, Stabilization of networked control systems with a new delay characterization [J]. IEEE Transactions on Automatic Control, 2008, 53 (9): 2142-2148.
    [49]肖小庆,周磊,陆国平.带有随机时延的非线性网络控制系统的输出反馈镇定[J].控制理论与应用,2009, 26(9):1023-1025
    [50] Mohammad Tabbara, Dragan Nesic and Andrew R. Teel. Stability of wireless and wireline networked control systems [J]. IEEE Transactions on Automatic Control, 2007, 52 (9): 1615-1631.
    [51]张勇,唐功友,赵友刚.一类大时滞非线性网络控制系统的H_∞保成本控制[J].控制理论与应用, 2009, 26 (7): 800-804
    [52] H. C. Cho and K. S. Lee. Nonlinear Networked control systems with random nature using neural approach and dynamic bayesian networks [J]. International Journal of Control, automation, and Systems, 2008, 6 (3): 444-452.
    [53] Mohammad Tabbara and Dragan Nesic. Input–output stability of networked control systems with stochastic protocols and channels [J]. IEEE Transactions on AutomaticControl, 2008, 53 (5): 1160-1176.
    [54] Ilia G. Polushin, Peter X. Liu, Chung-Horng Lung. On the model-based approach to nonlinear networked control systems [J]. Automatica, 2008, 44 (9): 2409-2414.
    [55] Johan Nilsson, Bo Bernhardssont and Bjorn Wittenmark. Stochastic analysis and control of real-time systems with random time delays [J]. Automatica, 1998, 34 (1): 57-64.
    [56] H. J. Gao, T. W. Chen. Network-based H∞output tracking control [J]. IEEE Transactions on automatic control, 2008, 53 (3): 655-667.
    [57] Gao H J, Chen T W. A new delay system approach to network-based control [J]. Automatica, 2008, 44 (3): 39-52.
    [58] Chong Lin, ZidongWang, Fuwen Yang. Observer-based networked control for continuous-time systems with random sensor delays [J]. Automatica, 2009, 45 (2): 578-584.
    [59] D. Hristu-Varsakelis. Short-Period Communication and the Role of Zero-Order Holding in Networked Control Systems [J]. IEEE Transactions on Automatic Control, 2008, 53 (5): 1285-1291.
    [60] Daniel Georgiev, Dawn M. Tilbury. Packet-based control: The H2-optimal solution [J]. Automatica, 2006, 42 (1): 137– 144.
    [61] Orhan C. Imer, SerdarYüksel, Tamer Basar. Optimal control of LTI systems over unreliable communication links [J]. Automatica, 2006, 42 (9): 1429– 1439.
    [62] Babak Azimi-Sadjadi. Stability of networked control systems in the presence of packet losses [C]. Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii USA, December 2003: 676-682.
    [63] Stefano Battilotti. Control over a communication channel with random noise and delays [J]. Automatica, 2008, 44 (5): 348– 360.
    [64] David Mu?oz de la Pe?a and Panagiotis D. Christofides. Lyapunov-based model predictive control of nonlinear systems subject to data losses [J]. IEEE Transactions on Automatic Control, 2008, 53 (9): 2076-2090.
    [65]康军,戴冠中.基于网络QoS的网络化控制系统保性能控制[J].控制与决策,2009, 24 (7): 978-983.
    [66]谢晋松,范柄全.带有状态时滞的网络控制系统的保性能控制器设计[J].自动化学报, 2007, 3 (2): 170-174.
    [67]王武,詹耀清,杨富文.一类网络控制系统的H2方法[J].自动化学报,2008, 34 (2): 219-224
    [68]郭亚锋,李少远.网络控制系统的H∞状态反馈控制器设计[J].控制理论与应用,2008, 25 (3): 414-420.
    [69] D. Huang S. K. Nguang. Robust disturbance attenuation for uncertain networked control systems with random time delays [J]. IET Control Theory Application, 2008, 2 (11): 1008–1023.
    [70] Huang Dan, Nguang Sing Kiong, State feedback control of uncertain networked control systems with random time-delays. IEEE Transactions on automatic control, 2008, 53 (3): 829-834.
    [71] X. F. Jiang, Q. L. Han, S. R. Liu and A. K. Xue. A new H∞stabilization criterion for networked control systems [J]. IEEE Transactions on Automatic Control, 2008, 53 (4): 1025-1033.
    [72] Dongxiao Wu, Jun Wu, Sheng Chen and Jian Chu. Stability of networked control systems with polytopic uncertainty and buffer constraint [J]. IEEE Transactions on Automatic Control, 2010, 55 (5): 1202-1209.
    [73] F. W. Yang, Z. D. Wang and W. C. Daniel. Robust Hinfinity control with missing measurements and time delays [J]. IEEE Transactions on Automatic Control, 2007, 52 (9): 1666–1673.
    [74] M. R. Fei, Jun Y, Hu H S. Robust Stability analysis of an uncertain nonlinear networked control system category [J]. International Journal of Control, Automation,and Systems. 2006, 4 (2): 172-177.
    [75] Shun-ichi Azuma and Toshiharu Sugie. Synthesis of optimal dynamic quantizers for discrete-valued input control [J]. IEEE Transactions on Automatic Control, 2008, 53 (9): 2064-2076.
    [76] Koji Tsumura, Hideaki Ishii and Hiroto Hoshina. Tradeoffs between quantization and packet loss in networked control of linear systems [J]. Automatica, 2009, 45 (12): 2963-2970.
    [77] Daniel F. Coutinho, Minyue Fu, and Carlos E. de Souza. Input and output quantized feedback linear systems [J]. IEEE Transactions on Automatic Control, 2010, 55 (3): 761-767.
    [78] Emilia Fridman, Michel Dambrine. Control under quantization, saturation and delay: An LMI approach [J]. Automatica, 2009, 45 (10): 2258-2264.
    [79] Qiang Ling and Michael D. Lemmon. A necessary and sufficient feedback dropout condition to stabilize quantized linear control systems with bounded noise [J]. IEEE Transactions on Automatic Control, 2010, 55 (11): 2590-2596.
    [80] SungWook Yun, Yun Jong Choi, PooGyeon Park. H2 control of continuous-time uncertain linear systems with input quantization and matched disturbances [J]. Automatica, 2009, 45 (10): 2435-2439.
    [81] Fredrik Gustafssona, Rickard Karlsson. Statistical results for system identification based on quantized observations [J]. Automatica, 2009, 45 (12): 2794-2801.
    [82] Tomohisa Hayakawa, Hideaki Ishii, Koji Tsumura. Adaptive quantized control for nonlinear uncertain systems [J]. Systems & Control Letters, 2009, 58 (9): 625-632.
    [83] Dragan Nesic and Daniel Liberzon. A unified framework for design and analysis of networked and quantized control systems [J]. IEEE Transactions on Automatic Control, 2009, 54 (4): 732-748.
    [84] Chen Peng, Yu-Chu Tian. Networked Hinfinity control of linear systems with state quantization. Information Sciences, 2007, 177 (5): 5763–5774.
    [85] Minyue Fu and Lihua Xie. Finite-level quantized feedback control for linear systems [J]. IEEE Transactions on Automatic Control, 2009, 54 (5): 1165-1171.
    [86] Tomohisa Hayakawa, Hideaki Ishii and Koji Tsumura. Adaptive quantized control for linear uncertain discrete-time systems [J]. Automatica, 2009, 45 (3): 692-700.
    [87] Tatiana Kameneva, Dragan Nesi¢. Robustness of quantized control systems with mismatch between coder/decoder initializations [J]. Automatica, 2009, 45 (3): 817-822.
    [88] M L. Corradini, G Orlando. Robust quantized feedback stabilization of linear systems [J]. Automatica, 2008, 44 (9): 2458-2462.
    [89] Roger W. Brockett and Daniel Liberzon. Quantized Feedback Stabilization of LinearSystems [J]. IEEE Transactions on Automatic Control, 2000, 45 (7): 1279-1290.
    [90] E. Tian, D. Yue and X. Zhao. Quantised control design for networked control systems [J]. IET Control Theory Application, 2007, 1 (6): 1693–1699.
    [91] Robert M. Gray and David L. Neuhoff. Quantization [J]. IEEE Transactions on Information Theory, 1998, 44 (6): 2325-2384.
    [92] Mohamed El Mongi Ben Gaid, Arben ?ela.Trading quantization precision for update rates for systems with limited communication in the uplink channel [J]. Automatica, 2010, 46 (7): 1210-1214.
    [93] Hideaki Ishii and Tamer Basar. Quantization in H-infinity parameter identification [J]. IEEE Transactions on Automatic Control, 2008, 53 (9): 2186-2193.
    [94] Charalambos D. Charalambous, Alireza Farhadi. LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels [J]. Automatica, 2008, 44 (12): 3181-3188.
    [95] Dimitris Hristu, Kristi Morgansen. Limited communication control [J]. Systems & Control Letters, 1999, 37 (3): 193-205.
    [96] Sekhar Tatikonda and Sanjoy Mitter. The capacity of channels with feedback [J]. IEEE Transactions on Information Theory, 2009, 55 (1): 323-350.
    [97] Mohammad Tabbara and Anders Rantzer. Optimal controller & capacity allocation co-design for networked control systems [C]. Proceedings of the 46th IEEE Conference on Decision and Control New Orleans, LA, USA, Dec. 12-14, 2007: 3090-3095.
    [98] Girish N. Nair and Robin J. Evans. Stabilizability of stochastic linear systems with finite feedback data rates [J]. SIAM J. CONTROL OPTIM, 2004, 43 (2): 413–436.
    [99] G. N. Nair, Fabio Fagnani, Sandro Zampieri and Robin J. Evans. Feedback control under data rate constraints: an overview [J]. Proceedings of the IEEE, 2007, 95 (1):108-137.
    [100] Paolo Minero, Massimo Franceschetti and G. N. Nair. Data rate theorem for stabilization over time-varying feedback channels [J]. IEEE Transactions on Automatic Control, 2009, 54 (2): 243-255.
    [101] Keyou You and Lihua Xie. Minimum data rate for mean square stabilization of discrete lti systems over lossy channels [J]. IEEE Transactions on Automatic Control, 2010, 55 (10): 2373-2379.
    [102] Keyou You and Lihua Xie. Minimum Data Rate for mean square stabilizability of linear systems with markovian packet losses. IEEE Transactions on Automatic Control, 2011, 56 (4): 772-786.
    [103] Keyou You, Weizhou Su, Minyue Fu, Lihua Xie. Attainability of the minimum data rate for stabilization of linear systems via logarithmic quantization [J]. Automatica, 2011, 47 (1): 170-176.
    [104] Alexandre Rodrigues Mesquita, Joao Pedro Hespanha and Girish Nair. Redundant data transmission in control/estimation over wireless networks [C]. American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, June 10-12, 2009, 3378-3384.
    [105] Tao Li, Minyue Fu, Lihua Xie, and Ji-Feng Zhang. Distributed consensus with limited communication data rate [J]. IEEE Transactions on Automatic Control, 2011, 56 (2): 279-293
    [106] Braslavsky, Middleton, Freudenberg, Feedback stabilization over signal-to-noise ratio constrained channels. Technical Report. 2003.
    [107] Braslavsky, Middleton, Freudenberg. Feedback stabilization over signal-to-noise ratio constrained channels [C]. Proceeding of the 2004 American Control Conference: 4903-4908.
    [108] Middleton, Braslavsky, Freudenberg. Stabilization of non-minimum phase plants over signal-to-noise ratio constrained channels [C]. Proceeding of the 5th Asian Control Conference, 2004.
    [109] Braslavsky, Middleton, Freudenberg. Effects of time delay on feedback stabilization over signal-to-noise ratio constrained channels [C]. IFAC, 2005.
    [110] Rojas, Braslavsky, Middleton. Control over a Bandwidth Limited Signal to Noise Ratio constrained Communication Channel [C]. 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005: 197-202.
    [111] Freudenberg, Julio Braslavsky, and Rick Middleton. Control over signal-to-noise ratio constrained channels: stabilization and performance [C]. The 44th IEEE Conference on Decision and Control, and the European Control Conference. 2005: 191-196.
    [112] Rojas, J. S, Freudenberg, J. H, Braslavsky and R. H. Middleton. Optimal signal to noise ratio in feedback over communication channels with memory [C]. The 45th IEEE Conference on Decision and Control, and the European Control Conference. 2006.
    [113] Rojas, Julio H. Braslavsky and Richard H. Middleton. Output feedback stabilisation over bandwidth limited, signal to noise ratio constrained communication channels [C]. Proceedings of the 2006 American Control Conference, 2789-2794.
    [114] Braslavsky, Middleton, Freudenberg. Feedback stabilization over signal-to-noise ratio constrained channels [J]. IEEE Transactions on Automatic control. 2007, 52 (8): 1391-1403
    [115] Rojas, Braslavsky, Middleton. Fundamental limitations in control over a communication channel [J]. Automatica. 2008, 44 (12): 3147-3151.
    [116] Rojas. Signal-to-noise ratio performance limitations for input disturbance rejection in output feedback control [J]. Systems & Control Letters, 2009 58 (5): 353-358.
    [117] Rojas, R. H. Middleton, J. S. Freudenberg and J. H. Braslavsky. Input disturbance rejection in channel signal-to-noise ratio constrained feedback control [C]. 2008 American Control Conference, 3100-3105.
    [118] Freudenberg, R. H. Middleton, and J. H. Braslavsky. Minimum variance control over a gaussian communication channel [C]. 2008 American Control Conference, 2625-2630.
    [119] Middleton, Rojas, Freudenberg, Braslavsky. Feedback stabilization over a first order moving average gaussian noise channel [J]. IEEE Transactions on Automatic Control. 2009, 54 (1): 163-167.
    [120] Alejandro J. Rojas. Signal-to-noise ratio fundamental limitations in continuous-time linear output feedback control [J]. IEEE Transactions on Automatic Control, 2009, 54 (8): 1902-1907.
    [121] James S. Freudenberg, Richard H. Middleton, and Victor Solo. Stabilization and disturbance attenuation over a gaussian communication channel [J]. IEEE Transactions on Automatic Control, 2010, 55 (3): 795-800.
    [122] Eduardo I. Silva, Graham C. Goodwin and Daniel E. Quevedo. Control system design subject to SNR constraints [J]. Automatica, 2010, 46 (2): 428-436.
    [123] L. Ding, H.-N. Wang, Z.-H. Guan and J. Chen. Tracking under additive white Gaussian noise effect [J]. IET Control Theory Appl., 2010, 4 (11): 2471–2478.
    [124] Alejandro J. Rojas. Signal-to-noise ratio fundamental constraints in discrete-time linear output feedback control [J]. Automatica, 2011, 47 (2): 376–380
    [125] Lei Bao, Mikael Skoglund, and Karl Henrik Johansson. Iterative encoder-controller design for feedback control over noisy channels [J]. IEEE Transactions on Automatic Control, 2011, 56 (2): 265-279
    [126] Claudio De Persisa, Dragan Nesic. Practical encoders for controlling nonlinear systems under communication constraints [J]. Systems & Control Letters, 2008, 57 (8): 654–662.
    [127] Alireza Farhadi, Charalambos D. Charalambous. Robust coding for a class of sources: Applications in control and reliable communication over limited capacity channels [J]. Systems & Control Letters, 2008, 57 (12): 1005-1012.
    [128] G. C. Goodwin and D. E. Quevedo, Architectures and coder design for networked control systems, Automatica, 2008, 44: 248– 257.
    [129] Michael Gastpar, Bixio Rimoldi and Martin Vetterli. To code, or not to code: lossy source–channel communication revisited [J]. IEEE Transactions on Information Theory, 2003, 49 (5): 1147-1159.
    [130] A. S. Matveeva and A. V. Savkin. Shannon zero error capacity in the problems of state estimation and stabilization via noisy communication channels [J]. International Journal of Control, 2007, 80 (2): 241- 255.
    [131] Alexey S. Matveev and Andrey V. Savkin. An analogue of Shannon information theory for networked control systems: Stabilization via a noisy discrete channel [C]. 43rd IEEE Conference on Decision and Control December 14-17, 2004 Atlantis, Paradise Island, Bahamas, 4485-4491.
    [132] Alireza Farhadi and Charalambos D. Charalambous. Stability and reliable data reconstruction of uncertain dynamic systems over finite capacity channels [J]. Automatica, 2010, 46 (5): 889-896.
    [133] Junqing Sun and Seddik M. Djouadi. Robust stabilization over communication channels in the presence of unstructured uncertainty [J]. IEEE Transactions on Automatic Control, 2009, 54 (4): 830-835.
    [134] Alireza Farhadi, N.U. Ahmed. Suboptimal decentralized control over noisy communication channels [J]. Systems & Control Letters, 2011, 60 (4): 285–293.
    [135] V. Gupta and N. C. Martins. On stability in the presence of analog erasure channels [C]. Proceedings of the 46th IEEE Conference on Decision and Control New Orleans, LA, USA, Dec. 12-14, 2007: 429-435.
    [136] Vijay Gupta, Nuno C. Martins,and John S. Baras. Optimal output feedback control using two remote sensors over erasure channels [J]. IEEE Transactions on Automatic Control, 2009, 54 (7): 1463-1476.
    [137] Vijay Gupta, Amir F. Dana, Joao P. Hespanha, Richard M. Murray and Babak Hassibi. Data transmission over networks for estimation and control [J]. IEEE Transactions on Automatic Control, 2009, 54 (8): 1807-1820.
    [138] Vijay Gupta and Nuno C. Martins. On stability in the presence of analog erasure channel between the controller and the actuator [J]. IEEE Transactions on Automatic Control, 2010, 55 (1): 175-180.
    [139] Vijay Gupta. On estimation across analog erasure links with and without acknowledgements [J]. IEEE Transactions on Automatic Control, 2010, 55 (12):2896-2902.
    [140] Ruggero Carli, Giacomo Como, Paolo Frasca, Federica Garin. Distributed averaging on digital erasure networks [J]. Automatica, 2011, 47 (1): 115–121.
    [141] Nicola Elia. Remote stabilization over fading channels [J]. Systems & Control Letters, 2005, 54 (3): 237– 249.
    [142] Michael Epstein, Ling Shi and Richard M. Murray. Estimation schemes for networked control systems using udp-like communication [C]. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, Dec. 12-14, 2007: 3945-3951.
    [143] Yurong Liu, Zidong Wang. Synchronization and state estimation for discrete-time complex networks with distributed delays [J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2008, 38 (5): 1314-1326.
    [144] Luca Schenato. Optimal estimation in networked control systems subject to random delay and packet drop [J]. IEEE Transactions on Automatic Control, 2008, 53 (5): 1311-1318.
    [145] Wing Shing Wong and Roger W. Brockett. Systems with finite communication bandwidth constraints—part i: state estimation problems [J]. IEEE Transactions on Automatic Control, 1997, 42 (9): 1294-1300.
    [146] H. J. Gao and T. W. Chen. Hinfinity estimation for uncertain systems with limited communication capacity [J]. IEEE Transactions on Automatic Control, 2007, 52(11): 2070-2085.
    [147] Jasmine Sandhu, Mehran Mesbahi and Takashi Tsukamaki. On the control and estimation over relative sensing networks [J]. IEEE Transactions on Automatic Control, 2009, 54 (12): 2859-2864.
    [148] Maben Rabi, Luca Stabellini and Alexandre Proutiere. Networked estimation under contention-based medium access [J]. International Journal of Robust and Nonlinear Control, 2010, 20 (2): 140-155.
    [149] Yan Liang, Tongwen Chen. Optimal linear state estimator with multiple packet dropouts [J]. IEEE Transactions on Automatic Control, 2010, 55 (6): 1428-1434.
    [150] Dragan B. Dacic, Dragan Nesic. Observer Design for linear networked control systems using matrix inequalities [C]. Proceedings of the 46th IEEE Conference on Decision and Control New Orleans, LA, USA, Dec. 12-14, 2007: 3315-3321.
    [151]赵翔辉,郝飞.一类基于观测器的非线性网络化控制系统的绝对稳定性[J].自动化学报,2009, 35 (7): 933-944.
    [152] Ling Shi, Lihua Xie and Richard M. Murray. Kalman filtering over a packet-delaying network: A probabilistic approach [J]. Automatica, 2009, 45 (9): 2134-2140.
    [153] Yasamin Mostofi, Richard M. Murray. To drop or not to drop: design principles for kalman filtering over wireless fading channels [J]. IEEE Transactions on Automatic Control, 2009, 54 (2): 376-382.
    [154] Subhrakanti Dey, Alex S. Leong and Jamie S. Evans. Kalman filtering with faded measurement [J]. Automatica, 2009, 45 (10): 2223-2233.
    [155] Shaosheng Zhou, Gang Feng. H∞filtering for discrete-time systems with randomly varying sensor delays [J]. Automatica, 2008, 44 (7): 1918–1922.
    [156] Bo Shen, ZidongWang, Huisheng Shua. H∞filtering for nonlinear discrete-time stochastic systems with randomly varying sensor delays [J]. Automatica, 2009, 45 (4): 1032-1037.
    [157] Mehrdad Sahebsaraa, Tongwen Chen, Sirish L. Shah. Optimal H∞filtering in networked control systems with multiple packet dropouts [J]. Systems & Control Letters, 2008, 57 (9): 696–702.
    [158] Bo Shen, Z. D. Wang, H. S. Shu and G. L. Wei. On nonlinear filtering for discrete-time stochastic systems with missing measurements [J]. IEEE Transactions on automatic control, 2008, 53 (9): 2170-2181.
    [159] Guoliang Wei, Zidong Wang, and Bo Shen. Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises [J]. IEEE Transactions on Automatic Control, 2010, 55 (12): 2876-2883.
    [160] Ying Zheng, Huajing Fang, and Hua O. Wang. Takagi–sugeno fuzzy-model-based fault detection for networked control systems with markov delay [J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2006, 36 (4): 924-930.
    [161]王永强,叶昊,王桂增.一种基于最优鲁棒故障检测滤波器的网络化控制系统故障检测方法[J].自动化学报,2008, 34 (12): 1534-1539.
    [162] Xiao He, ZidongWang and D.H. Zhou. Robust fault detection for networked systems with communication delay and data missing [J]. Automatica, 2009, 45 (10): 2634-2639.
    [163]王永强,叶昊,王桂增.带有传输受限和随机丢包的网络化控制系统的故障检测方法研究[J].自动化学报, 2009, 35 (9): 1230-1234.
    [164] Ping Zhang and Steven X. Ding. In?uence of sampling period on a class of optimal fault-detection Performance [J]. IEEE Transactions on Automatic Control, 2009, 54 (6): 1396-1403
    [165]王永强,叶昊,王桂增.网络化控制系统故障检测技术的最新进展[J].控制理论与应用, 2009, 26 (4): 400-409.
    [166] Chunxi Yang, Zhi-Hong Guan, Jian Huang, Hua O. Wang and Kazuo Tanaka. Stochastic controlling tolerable fault of network control systems [C]. 2008 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 2008: 1979-1985.
    [167]黄鹤,韩笑冬,谢德晓,王执铨.具有数据包丢失的网络控制系统主动容错控制[J].控制与决策, 2009, 24 (8): 1131-1335.
    [168] G.W. Irwin, J. Chen and A. McKernan W.G. Scanlon. Co-design of predictive controllers for wireless network control [J]. IET Control Theory Appl., 2010, 4 (2): 186–196
    [169] Li Xie and Lihua Xie. Stability analysis of networked sampled-data linear systems with Markovian packet losses [J]. IEEE Transactions on Automatic Control, 2009, 54 (6): 1-7.
    [170] Sekhar Tatikonda and Sanjoy Mitter. Control under communication constraints [J]. IEEE Transactions on Automatic Control, 2004, 49 (7): 1056-1068.
    [171]刘磊明,童朝南,武延坤.一种带有动态输出反馈控制器的网络控制系统的Markov跳变模型[J].自动化学报, 2009, 35 (5): 627-631
    [172] Yang Shi, Bo Yu. Robust mixed H2/H∞control of networked control systems with random time delays in both forward and backward communication links [J]. Automatica, 2011, 47 (4): 754-760.
    [173] Ming Liua, Daniel W.C. Hoa, Yugang Niu. Stabilization of Markovian jump linear system over networks with random communication delay [J]. Automatica, 2009, 45 (2): 416-421.
    [174] L. Hetel, J. Daafouz, J.P. Richarda and M. Jungers. Delay-dependent sampled-data control based on delay estimates [J]. Systems & Control Letters, 2011, 58 (2): 146-150.
    [175] W. A. Zhang and Li Yu. Stabilization of sampled-data control systems with control inputsmissing [J]. IEEE Transactions on Automatic Control, 2010, 55 (2): 447-453.
    [176] Wu-Hua Chen and Wei Xing Zheng Input-to-state stability for networked control systems via an improved impulsive system approach [J]. Automatica, 2011, 47 (4): 789–796.
    [177] Rafal Goebel, Ricardo G. Sanfelice and Andrew R. Teel. Hybrid dynamical system [J]. IEEE Control Systems Magazine, 2009, (2): 28-94.
    [178] Zhang W, M. S. Branicky, S. M. Phillips. Stability of networked control systems [J]. IEEE Control System Magazine, 2001, 21(2): 84-99.
    [179] David Munoz de la Pena, Panagiotis D. Christofides. Stability of nonlinear asynchronous systems [J]. Systems & Control Letters, 2008, 57 (6): 465-473.
    [180] Sandra Hirche, Tilemachos Matiakis and Martin Buss. A distributed controller approach for delay-independent stability of networked control systems [J]. Automatica, 2009, 45 (8): 1828-1836.
    [181] Tilemachos Matiakis, Sandra Hirche, and Martin Buss. Control of networked systems using the scattering transformation [J]. IEEE Transactions on Control Systems Technology, 2009, 17 (1): 60-67.
    [182]聂雪媛,王恒.网络控制系统补偿器设计及稳定性分析[J].控制理论与应用, 2008, 25 (2): 217-222
    [183]王志文,潘纬,郭戈.一类网络控制系统的稳定性分析[J].控制与决策, 2008, 23 (11): 2131-4131
    [184] Yun-Bo Zhao, Guo-Ping Liu and David Rees. Packet-based deadband control for internet-based networked control systems [J]. IEEE Transactions on Control Systems Technology, 2010, 18 (5): 1057-1068.
    [185] Hongbo Li, Mo-Yuen Chow and Zengqi Sun. Optimal stabilizing gain selection for networked control systems with time delays and packet losses [J]. IEEE Transactions on Control Systems Technology, 2009, 17 (5): 1154-1163.
    [186] Marieke B. G. Cloosterman, Nathan van de Wouw. Stability of networked control systems with uncertain time-varying delays [J]. IEEE Transactions on Automatic Control, 2009, 54 (7): 1575-1580.
    [187] Sung Hyun Kim, PooGyeon Park. Networked-based robust Hinfinity control design using multiple levels of network traffic [J]. Automatica, 2009, 45 (3): 764-770.
    [188]严怀成,黄心汉,王敏.不确定多时变时滞网络控制系统的时滞相关稳定性[J].控制理论与应用,2008, 25 (2): 303-306.
    [189] M.B.G. Cloostermand, L. Hetel, N. van de Wouwa, W.P.M.H. Heemels, J. Daafouz, H. Nijmeijer. Controller synthesis for networked control systems [J]. Automatica, 2010, 46 (10): 1584-1594.
    [190] Vikas Yadav, Murti V. Salapaka, and Petros G. Voulgaris. Architectures for distributed controller with sub-controller communication uncertainty [J]. IEEE Transactions on Automatic Control, 2010, 55 (8): 1765-1781.
    [191] H. Li, M.-Y. Chow and Z. Sun. State feedback stabilisation of networked control systems [J]. IET Control Theory Appl., 2009, 3 (7): 929–940.
    [192] Yang Shi and Bo Yu. Output feedback stabilization of networked control systems with random delays modeled by markov chains [J]. IEEE Transactions on Automatic Control, 2009, 54 (7): 1668-1675.
    [193] Yang Shi, and Bo Yu. Output feedback stabilization of networked control systems withrandom delays modeled by markov chains [J]. IEEE Transactions on Automatic Control, 2009, 54 (7): 1668-1674.
    [194] Xiong J Lin, Lam James. Stabilization of linear systems over networks with bounded packet loss. Automatica, 2007, 43(6): 80-87.
    [195] Graham Alldredge, Michael S. Branicky, and Vincenzo Liberatore. Play-back buffers in networked control systems: evaluation and design [C]. 2008 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 2008: 3106-3112.
    [196] Yun-Bo Zhao, Guo-Ping Liu, and David Rees. Design of a packet-based control framework for networked control systems [J]. IEEE Transactions on Control Systems Technology, 2009, 17 (4): 859-866.
    [197] Rui Wang, Guo-Ping Liu, Wei Wang, David Rees. Guaranteed cost control for networked control systems based on an improved predictive control method [J]. IEEE Transactions on Control Systems Technology, 2010, 18 (5): 1226-1233.
    [198] Daniel E. Quevedo, and Dragan Nesic. Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts [J]. IEEE Transactions on Automatic Control, 2011, 56 (2): 370-375.
    [199] Gilberto Pin and Thomas Parisini. Networked predictive control of uncertain constrained nonlinear systems: recursive feasibility and input-to-state stability analysis [J]. IEEE Transactions on Automatic Control, 2011, 56 (1): 72-88.
    [200] Luca Schenato. To zero or to hold control inputs with lossy links [J]. IEEE Transactions on Automatic Control, 2009, 54 (5): 1093-1100.
    [201] Luis A. Montestruque, Panos J. Antsaklis. On the model-based control of networked systems [J]. Automatica, 2003, 39 (5), 1837-1843.
    [202] Ilia G. Polushin, Peter X. Liu and Chung-Horng Lung. On the model-based approach to nonlinear networked control systems [J]. Automatica, 2008, 44 (9): 2409-2414.
    [203] Xiaofeng Wang and Michael D. Lemmon. Event-triggering in distributed networked control systems [J]. IEEE Transactions on Automatic Control, 2011, 56 (3): 586-602.
    [204] Jan Lunze, Daniel Lehmann. A state-feedback approach to event-based control [J] Automatica, 2010, 46 (1): 211-215.
    [205] Yodyium Tipsuwan, Mo-Yuen Chow. Control methodologies in networked control systems [J]. Control Engineering Practice, 2003, 11 (10): 1099–1111.
    [206] G. C. Walsh, Ye H, Bushnell L. Stability analysis of networked systems [J]. IEEE Transactions on Control Systems Technology, 2002, 10(5): 438-446.
    [207]王国敬,穆志纯.基于网络控制系统平均时延的模糊控制器设计[J].控制与决策,2009, 24 (8): 1217-1221
    [208] Martin Andersson, Dan Henriksson and Anton Cervin. Simulation of wireless networked control systems [C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December 12-15, 2005: 476-482.
    [209] T. C. Yang. NCS_simu, http://www.sussex.ac.uk/Users/taiyang/.
    [210]李洪波,吴凤鸽,孙增圻,孙富春.网络控制系统仿真平台的设计与实现[J].系统仿真学报, 2006, 18 (6): 1700-1704.
    [211] K. T and H. O. Wang. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞control theory and linear matrix inequalities [J].IEEE transactions on fuzzy systems, 1996, 4 (1): 1-13.
    [212] C. H. Fang and Y. S. Liu. A new lmi-based approach to relaxed quadratic stabilization of T-S fuzzy control systems [J]. IEEE transactions on fuzzy systems, 2006, 14 (3): 386- 397
    [213] C. T. Pang, Y. Y. Lur. On the stability of Takagi-Sugeno fuzzy systems with time-varying uncertainties [J]. IEEE transactions on fuzzy systems, 2008, 16(1): 162-170.
    [214] M. Boutayeb, H. Rafaralahy and M. Darouach. A robust and recursive identification method for Hammerstein model [C]. IFAC world congress, San Francisco, 1996, 447-452.
    [215] Er-Wei Bai and Kang Li. Convergence of the iterative algorithm for a general Hammerstein system identification [J]. Automatica, 2010, 46 (11): 1891-1896.
    [216] Wassim M. Haddad and VijaySekhar Chellaboina. Nonlinear control of Hammerstein systems with passive nonlinear dynamics [J]. IEEE Transactions on Automatic Control, 2001, 46 (10): 1630-1634.
    [217] Feng Lilian, James Moyne. Analysis and modeling of networked control systems: mimo case with multiple time delays [C]. Proceedings of the American Control Conference Arlington, Virginia, 2001: 25-27.
    [218] Minrui Fei, Zhao WQ, Taicheng Yang and Yang S. An new experimental setup for control study [J]. Transactions of the Institute of Measurement and Control, 2010, 32 (3): 319-330.
    [219] Yu LongWang and GuangHong Yang. Output tracking control for discrete-time networked control systems [C]. American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, June 10-12, 2009, 5109-5115.
    [220] D. Ye and G. H. Yang. Adaptive reliable H∞control for linear time-delay systems via memory state feedback [J]. IET Control Theory Appl, 2007, 1 (3): 713–721.
    [221] G. H. Yang, D. Ye. Adaptive fault-tolerant H∞control against sensor failures [J]. IET Control Theory Appl, 2008, 2 (2): 95–107.
    [222] Q. Zhang, J. Jiang. Reliable state feedback control system design against actuator failures [J]. Automatica, 1998, 34 (10): 1267–1272.
    [223] G. Pascal, A. Pierre, M. Chilali. Affine parameter-dependent Lyapunov functions and real parametric uncertainty [J]. IEEE Transactions on Automatic control, 1996, 41 (3): 436-442.
    [224] Eduardo I. Silva. A unified framework for the analysis and design of networked control systems [D]. The University of Newcastle Callaghan, Australia, February, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700