网络环境下反馈控制系统的分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络控制系统具有成本低、可实现资源共享、远程操作与控制,具有较高的诊断能力、安装与维护简便、能有效减少系统的重量和体积、增加了系统的灵活性和可靠性等优点,因此被广泛应用于设备制造、工业自动化、航空航天和医疗保健等领域。然而网络的引入又带来了很多新的不确定性,如丢包、延迟等,这些都对经典控制问题提出了新的挑战。本文主要考虑网络的引入所带来的数据包丢失和网络带宽有限等问题,结合经典控制理论、矩阵分析中的相关知识和现有文献关于网络建模等,研究了网络控制系统的均方可检测性、间歇量化卡尔曼滤波、线性二次高斯控制、信息滤波以及贝叶斯Fisher信息等问题。通过仿真实验对所得结论的可行性进行了验证。
     本文主要做了以下四个方面的研究:
     一是研究了随机乘性信道多输出系统的均方可检测–离散情形问题。基于单包传输及多包传输的多输出网络化系统,以及乘性信道由白噪声过程描述,讨论了此种情况下的网络化系统的可检测问题。对于单个数据包传输情形,采用二分法,给出网络化系统均方可检测时用系统信道容量表示的临界值;对于多个平行数据包传输情形,在网络资源可以在所有输出通道中任意分配的假设下,给出了用系统米勒测度表示的网络化系统均方可检测的充分必要条件,同时将所得结论应用到擦除信道和有界扇形不确定信道,其结论与现有的文献一致,进而展示结论的可行性。
     二是将基于乘性信道多输出系统的均方可检测问题的离散情形扩展到连续时间系统,其中输出通道的不可靠性由白噪声过程描述。出于有限的通信容量和多个信道通信系统中的网络资源分配的考虑,我们假设所定义的总体服务质量固定的,且可以在各个输出通道中任意分配。指出为确保网络连续系统均方可检测,存在一个对整个服务质量的最小要求,该最小要求用系统的不稳定度来表示。最后用擦除信道和有界扇形随机不确定信道中给出应用。
     三是基于最优Lloyd-Max量化器及具有固定比特率的有损网络,讨论了间歇量化卡尔曼滤波,间歇量化信息滤波以及此种网络下线性二次高斯控制问题,并且给出了间歇量化卡尔曼滤波,间歇量化信息滤波稳定性条件,该条件可用给定的比特率和收包率来表示;同时也用信息论的角度给出稳定性条件。通过假设观测值为高斯,我们推导出此种网络下最优线性二次高斯控制及相应的最小能量函数,该控制可用两个黎卡提方程来表示,一是线性二次高斯控制,一是间歇量化卡尔曼滤波误差方差阵方程。仿真例子验证方案的有效性。
     四是讨论了混合模型的卡尔曼滤波和信息滤波,以及从各种模型的接收值中获得状态的贝叶斯Fisher信息。信息滤波和卡尔曼滤波的各种优缺点都有讨论。对于高斯情形,由于协方差矩阵的逆称为贝叶斯Fisher信息,描述了观测值中所含状态信息量的多少,这种特征启发我们进一步讨论贝叶斯Fisher信息并与信息滤波作以比较。贝叶斯Fisher信息本身逆的倒数就是所有均方误差估计的下界,为我们设计估计器的时候提供一个理论下界。
Since networked control systems (NCS) ofer many advantages such as low cost,sharing of resource, remote operation and control, a high diagnostic capability, simpleinstallation and maintenance, efectively reduced the weight and volume of the system,increased system fexibility and reliability, etc., recently, they have found widely used inequipment manufacturing, industrial automation, aerospace and medical care and otherfelds. However, the introduction of the network brings a lot of new uncertainties, suchas packet loss, delay, etc., which raise new challenges to the classical control problem.In this dissertation, we focus on the problems of data packet dropout and limited net-work bandwidth which are induced by the introduction of network. Integrating classicalcontrol theory, relevant knowledge of matrix analysis and network modeling in existingliterature, we investigate the detectability, intermittent quantized Kalman fltering, linearquadratic Gaussian control and Information fltering of the NCS, etc.. The efectivenessand applicability of the theoretical results proposed are demonstrated by the simulationexamples.
     This dissertation mainly includes the following four contents:
     Firstly, we investigate the mean square detectability problem for multi-output net-worked discrete time systems via single packet or multiple packets transmission, wherea multiplicative white noise models the unreliability of output channels. For the singlepacket case, by adopting the bisection technique, we give the critical value (lower bound)of mean square capacity for ensuring mean square detectability. For the multi-parallelmultiple packets transmission strategy, a necessary and sufcient condition on overallmean square capacity for mean square detectability in terms of the Mahler measure ortopological entropy of the plant is presented, under the assumption that the given networkresource can be allocated among all the output channels. Applications in erasure-typechannel and channel with stochastic sector-bounded uncertainty are provided to demon-strate the results.
     Secondly, we extend the mean square detectability problem to multi-output net-worked continuous time systems, where multiplicative white noise models the unreliabil-ity of output channels. Motivated by the limited communication capacity and networkresource allocation in multiple channel communication systems, we assume that the over- all quality of service defned in this paper is fxed and can be assigned among the outputchannels. We show that there exists a minimal requirement on the overall quality ofservice in terms of the instability degree of the plant for achieving the mean square de-tectability of the networked system. Applications in erasure-type channel and channelwith stochastic sector-bounded uncertainty are provided to demonstrate the results.
     Thirdly, we discuss the batch intermittent quantized Kalman flter (BIQKF), Infor-mation flter (BIQIF), and LQG control over lossy digital links using dynamic Lloyd-Max quantizer. A necessary and sufcient condition is presented for the Stability of theBIQKF and the BIQIF, The condition, which is expressed in terms of the bit rate andthe arrival probability initially. Meanwhile, we further explain the stability conditionfrom the perspective of information theory. Under the assumption that the observationis approximately Gaussian, it is shown that the separation principle remains valid underthe quantized output signal which is used to be transmitted over lossy networks. Theoptimal LQG controller is then given in terms of two Riccati diference equations associ-ated respectively with the Kalman flter with intermittent quantized observations and thestandard LQR control. The corresponding minimum cost is also derived. An illustrativeexample is provided.
     Fourthly, we discuss Kalman flter and information flter for mixed models, and thenderive Bayesian Fisher information of the state from the receiving value of the mixedmodels. Advantages of information flter over Kalman flter are also discussed. For aGaussian case, since inverse of the covariance matrix (also called Bayesian Fisher infor-mation) provides the measure of information about the state present in the observations,so we also study the Bayesian Fisher information which is defned as the expectation withrespect to all the random variables, namely the measurements and the systems state, andcompare them with information flter. The reciprocal of the inverse of the Bayesian Fisherinformation itself is the lower bound of the mean square error estimation, which providesa theoretical lower bound for us to design the estimator.
引文
[1] Walsh G. C., Beldiman O., and Bushnell L., Asymptotic behavior of networkedcontrol systems [C]. Proeeedings of the1999IEEE Intemational Conference on Con-trol Applications, Hawaii, USA,1999:1448–1453.
    [2] Zhang W., Branicky M. S., and Phillips S. M., Stability of networked controlsystems[J]. IEEE Control Systems Magazine,2001,21(1):84–99.
    [3] Walsh G. C., Ye H., and Bushnell L., Stability analysis of networked controlsystems[J]. IEEE Transaction on Control Systems Technology,2002,10(3):438–446.
    [4] Casanova V. and Salt J., Multi rate control implementation for an integrated com-munication and control system[J]. Control Engineering Practice,2003,11(11):1335–1348.
    [5] Halevi Y. and Ray A., Integrated communication and control systems: Part11–Design consideration[J]. ASME Joumal of Dynamic Systems, Measurement and Con-trol,1988,110(4):374–381.
    [6] Halevi Y. and Ray A., Integrated communication and control systems: Part1–Designconsideration[J]. ASME Joumal of Dynamic Systems,Measurement and Control,1988,110(4):367–373.
    [7] Liou L. W. and Ray A., On modeling of integrated communication and controlsystems[J]. IEEE transactions of the ASME,1990,112(6):790–794.
    [8] Liou L. W. and Ray A., An integrated communication and control systems: Part111–nonidentical sensor and controller sampling[J]. Joumal of Dynamic Systetns, Mea-surement and Control,1990,112(4):357–364.
    [9] Kim Y. H., Kwon W. H., and Park H. S., Stability and a scheduling methodfor network–based control systems[C]. Proeeeding of the IEEE22nd IntemationalConference on Industrial Electronics, Control, and Instrumentation,1996:934–939.
    [10] Park H. S., Kim Y. H., Kim D. S., et al., A scheduling method for network–basedcontrol systems[J]. IEEE Transaction on Control Systems Technology,2002,10(3):318–330.
    [11] Lian F. L., Moyne J. R., and Tilbury D. M., Performance evaluation of controlnetworks: Ethernet, Controlnet, and Devicenet[J]. IEEE Control Systems Magazine,2001,21(1):66–83.
    [12] Walsh G. C., Ye H., Scheduling of networked control systems[J]. IEEE ControlSystems Magazine,2001,21(1):57–65.
    [13] Torngren M. and Wikander J., Decentralization methodology for real-time controlapplications[J]. Control Engineering Practice,1996,4(2):219–228.
    [14] Yue D., Han Q. L., and Peng C., State feedback controller design of networkedcontrol systems[J]. IEEE International Conference on Control Applications,2004,1795–1805.
    [15] Nilsson J., Real–time control systems with delays[M]. Sweden: Lund Institute ofTechnology,1998.
    [16] Meng C., Wang T., et al., Remote surgery ease: robot–assisted teleneurosurgery[J].IEEE Intemational Conference on Robotics and Automation,2004,819–823.
    [17] Ogren P., Fiorelli E., and Leonard N. E., Cooperative control of mobile sensornetworks: Adaptive gradient climbing in a distributed environment[J]. IEEE Trans-actions on Automatic Control,2004,8:1292–1302.
    [18] Antsaklis P. and Baillieul J., Guest editorial special issue on networked controlsystems[J]. IEEE Transactions on Automatic Control,2004,9:1421–1423.
    [19] Zhang W. A. and Yu L., Modelling and control of networked control systems withboth network–induced delay and packet–dropout[J]. Automatica,2008,12:3206–3210.
    [20] Evans R., Krishnamurthy V., Nair G., et al, Networked sensor management anddata rate control for tracking maneuvering targets [J]. IEEE Transactions on SignalProcessing,2005,53(6):1979-1991.
    [21] Vercauteren T. and Wang X. D., Decentralized sigma-point information flters fortarget tracking in collaborative sensor networks [J]. IEEE Transactions on SignalProcessing,2005,53(8):2997-3009.
    [22] Niu R. X. and Varshney P. K., Target location estimation in sensor networks withquantized data [J]. IEEE Transactions on Signal Processing,2006,54(12):4519-4528.
    [23] Chamberland J. F. and Veeravalli V. V., How dense should a sensor network befor detection with correlated observations [J]. IEEE Transactions on InformationTheory,2006,52(11):5099-5106.
    [24] Williams J. L., Fisher J. W., and Willsky A. S., Approximate dynamic pro-gramming for communication–constrained sensor network management [J]. IEEETransactions on Signal Processing,2007,55(8):4300-4311.
    [25] Marano S., Matta V., and Willett P., Distributed estimation in large wirelesssensor networks via a locally optimum approach [J]. IEEE Transactions on SignalProcessing,2008,56(2):748-756.
    [26] Li J. L. and Airegib G., Distributed estimation in energy–constrained wireless sensornetworks [J]. IEEE Transactions on Signal Processing,2009,57(10):3746-3758.
    [27] Schenato L., Sinopoli B., et al, Foundations of control and estimation over lossynetworks[J]. Proceedings of the IEEE,2007,95(1):163–187.
    [28] Elia N., Remote stabilization over fading channels[J]. Systems and Control Letters,2005,54(3):237–249.
    [29] Zhang W. A. and Yu L., Output feedback stabilization of networked control systemswith packet dropouts[J]. IEEE Transactions on Automatic Control,2007,52(9):1705–1710.
    [30] Xiong J. and Lam J., Stabilization of linear systems over networks with boundedpacket loss[J]. Automatica,2007,43(1):80–87.
    [31] Wu J. and Chen T., Design of networked control systems with packet dropouts[J].IEEE Transactions on Automatic Control,2007,52(7):1314–1319.
    [32] Seiler P. and Sengupta R., Analysis of communication losses in vehicle controlproblems[C]. In Proceedings of the American Control Conference,2001:1491–1496.
    [33] Seiler P. and Sengupta R., An H∞approach to networked control[J]. IEEE Trans-actions on Automatic Control,2005,50(3):356–364.
    [34] Wang Z. D., Ho D. W., and Liu X. H., Variance-constrained fltering for uncertainstochastic systems with missing measurements[J]. IEEE Transactions on AutomaticControl,2003,48(7):1254–1258.
    [35]王武,詹耀清,杨富文.一类网络控制的H2方法[J].自动化学报,2008,34(2):219–224.
    [36] Yue D., Han Q. L., and Peng C., State feedback controller design of networkedcontrol systems[J]. IEEE Transactions on Circuits and Systems II,2004,51(11):640–644.
    [37] Hu S. and Yan W. Y., Stability of networked control systems under a multiple-packettransmission policy[J]. IEEE Transactions on Automatic Control,2008,53(7):1706–1711.
    [38] Polushin L., Marquez H. J., Tayebi A., et al, A multichannel ios small gain theoremfor systems with multiple time-varying communication delays[J]. IEEE Transactionson Automatic Control,2009,54(2):404–409.
    [39] Zhang W., Branicky M. S., and Phillips S. M., Stability of networked controlsystems[J]. IEEE Control Systems Magazine,2001,21:84–99.
    [40] Luck R. and Ray A., An observer-based compensator for distributed delays[J].Automatica,1990,26(5):903–908.
    [41] Gao H. J. and Chen T. W., New results on stability of discrete-time systems withtime-varying state delay[J]. IEEE Transactions on Automatic Control,2007,52(2):328–334.
    [42] Gao H. J. and Chen T. W., Network-based H∞output tracking control[J]. IEEETransactions on Automatic Control,2008,53(3):655–667.
    [43] Gao H. J., Meng X. Y., and Chen T. W., Stabilization of networked control systemswith a new delay characterization[J]. IEEE Transactions on Automatic Control,2008,53(9):2142–2148.
    [44] Tsai N. and Ray A., Stochastic optimal control under randomly varying distributeddelays[J]. International Journal of Control,1997,68(5):1179–1202.
    [45] Wang Z., Ho D. W. C., and Liu X., Robust fltering under randomly varying sensordelay with variance constraints[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2004,51(6):320–326.
    [46] Yang F., Wang Z., Hung Y. S., et al, H∞control for networked systems withrandom communication delays[J]. IEEE Transactions on Automatic Control,2006,51(3):511–518.
    [47] Zhang L., Shi Y., Chen T., et al, A new method for stabilization of networkedcontrol systems with random delays[J]. IEEE Transactions on Automatic Control,2005,50(8):1177–1181.
    [48] Xiao L., Hassibi A., and How J. P., Control with random communication delays viaa discrete-time jump system approach[C]. In Proceedings of the American ControlConference.2000:2199–2204.
    [49] Shi Y. and Yu B., Output feedback stabilization of networked control systems withrandom delays modeled by Markov chains[J]. IEEE Transactions on Automatic Con-trol,2009,54(7):1668–1674.
    [50] He X., Wang Z., and Zhou D. H., Robust fault detection for networked systems withcommunication delay and data missing[J]. Automatica,2009,45(11):2634–2639.
    [51] Tindell K. and Bums A., Analysis of hard real-time communication[J]. Real-TimeSystem,1995,9(2):147–173.
    [52] Lehoczky J.,Sha L., and Ding Y., The rate monotonic scheduling algorithm exactcharacterization and average case behavior[C]. In Proceedings of IEEE Real–timeSystems Symposium,1989:166–171.
    [53] Gregory C., Walsh G. C., and Ye H., Stability analysis of networked controlSystems[C]. proeeeding of the Ameriean Control Conferenee. San Diego, California,June,1999:2876–2880.
    [54] Gregory C., Walsh G. C., and Ye H., Error encoding algorithms for networkedcontrol systems[C]. Proeeedings of the38th Conference on Control Desicision andControl. Phoenix, Arizona USA December,1999:4933–4938.
    [55] Tabuada P., Event–triggered real–time scheduling of stabilizing control tasks[J].IEEE Transactions on Automatic Control,2007,9(52):1680–1685.
    [56] Walsh G. C., Ye H., and Bushnell L.G., Stability analysis of networked controlsystems[C]. In Proceedings of the American Control Conference,1999:2876–2880.
    [57] Walsh G. C., Beldiman O., and Bushnell L.G., Asymptotic behavior of nonlinearnetworked control systems[J]. IEEE Transactions on Automatic Control,2001,46(7):1093–1097.
    [58] Neic D. and Teel A. R., Input–to–state stability of networked control systems[J].Automatica,2004,40(12):2121–2128.
    [59] Tabbara M., Neic D., and Teel A. R., Stability of wireless and wireline networkedcontrol systems[J]. IEEE Transactions on Automatic Control,2007,52(9):1615–1630.
    [60] Kim D. S., A scheduling method for networked control systems in feldbus environ-ments[D]:[PhD Dissertation]. Seul National University,2003.
    [61] Kim D. S., Lee Y. S., Kwon W. H., et al, Maximum allowable delay boundsof networked control systems[J]. Control Engineering Practice,2003,11(11):1301–1313.
    [62] Goktas F., Distributed control of systems over communication networks[D][PhDDissertation]. USA: University of Pennsylvavia,2000.
    [63] Yue D., Han Q. L., and Peng C., State feedback controller design of networkedcontrol systems[J]. IEEE Transactions on Circuits and Systems II,2004,51(11):640–644.
    [64] Nair G. N. and Evans R. J., Exponential stabilisability of fnite-dimensional linearsystems with limited data rates[J]. Automatica,2003,39:585-593.
    [65] Tatikonda S. and Mitter S. K., Control under communication constraints[J]. IEEETrans. Autom. Control,2004,49(7):1056–1068.
    [66] Elia K. and Mitter S. K., Stabilization of linear systems with limited information[J].IEEE Transactions on Automatic Control,2001,46(9):1384–1400.
    [67] Fu M. Y. and Xie L. H., The sector bound approach to quantized feedback control[J].IEEE Transactions on Automatic Control,2005,50(11):1698–1711.
    [68] Braslavsky J., Middleton R., and Freudenberg J., Feedback stabilisation oversignal-to-noise ratio constrained channels[J]. IEEE Transactions on Automatic Con-trol,2007,52(8):1391–1403.
    [69] Middleton R., Rojas A., Freudenberg J., and Braslavsky J., Feedback stabilizationover a frst order moving average Gaussian noise channel[J]. IEEE Transactions onAutomatic Control,2009,54(1):163–167.
    [70] Alejandro J. and Rojas, Signal-to-noise ratio fundamental limitations in continuous–time linear output feedback control[J]. IEEE Transactions on Automatic Control,2009,54(8):1902–1907.
    [71] Cover T. and Thomas J., Elements of information theory[M]. New York, Wiley,1991.
    [72] Martins N. C., Dahleh M. A., and Elia N., Feedback stabilization of uncertainsystems in the presence of a direct link[J]. IEEE Transactions on Automatic Control,2006,51(3):438–447.
    [73] Martins N. C. and Dahleh M. A., Fundamental limitations of disturbance attenua-tion in the presence of side information[J]. IEEE Transactions on Automatic Control,2007,52(1):56–66.
    [74] Martins N. C. and Dahleh M. A., Fundamental limitations of performance in thepresence of fnite capacity feedback[J]. In Proceedings of American Control Confer-ence,2005,1:79–86.
    [75] Elia N., When Bode meets Shannon: control-oriented feedback communicationschemes[J]. IEEE Transactions on Automatic Control,2004,49(9):1477–1488.
    [76] Schenato et al, Foundations of control and estimation over lossy networks[J]. Pro-ceeding of the IEEE,2007,95(1):163–187.
    [77] Hespanha et al, A Survey of recent results in networked control systems[J]. Proceed-ing of the IEEE,2007,95(1):138–162.
    [78] Gu G. and Qiu L., Networked stabilization of multi-input systems with channelresource allocation[J]. In Proceedings of the17th IFAC World Congress,2008:625–630.
    [79] Elia N., Remote stabilization over fading channels[J]. Systems&Control Letters,2005,54(3):237–249.
    [80] Xiao N., Xie L. H. and Qiu L., Mean Square Stabilization of Multi-Input Systemsover Stochastic Multiplicative Channels[C]. Joint48th IEEE Conference on Decisionand ontrol and28th Chinese Control Conference Shanghai, P.R. China,2009:16–18.
    [81] Nahi N. E., Optimal recursive estimation with uncertain observation[J]. IEEE Trans-actions on Information Theory,1969,15(4):457–462.
    [82] Wang Y., Ho D., and Liu X., Variance-constrained fltering for uncertain stochasticsystems with missing measurements [J]. IEEE Transactions Automatic Control,2003,48(7):1254–1258.
    [83] Fortmann T., Bar-Shalom Y., Schefe M., and Gelfand S., Detection thresholdsfor tracking in clutter―a connection between estimation and signal processing [J].IEEE Transactions on Automatic Control,1985,30(3):221–229.
    [84] Sinopoli B., Schenato L., Franceschetti M., et al., Kalman fltering with in-termittent observations [J]. IEEE Transactions on Automatic Control,2004,49(9):1453–1464.
    [85] Epstein M., Shi L., Tiwari A., and Murray R. M., Probabilistic performance ofstate estimation across a lossy network [J]. Automatica,2008,44(12):3046–3053.
    [86] Plarre K. and Bullo F., On Kalman fltering for detectable systems with intermittentobservations [J]. IEEE Transactions on Automatic Control,2009,54(2):386–390.
    [87] Sun S., Xie L., Xiao W., and Soh Y. C., Optimal linear estimation for systemswith multiple packet dropouts [J]. Automatica,2008,44(5):1333–1342.
    [88] Mostof Y. and Murray R. M., To drop or not to drop: design principles for Kalmanfltering over wireless fading channels [J]. IEEE Transactions on Automatic Control,2009,54(2):376–381.
    [89] Chen J. Y., Wu Y. L., and Qi T., Distributed quantized Kalman fltering for wirelesssensor networks[J]. Control Theory and Applications,2011,28(12):1729–1739.
    [90] Azimi S. B., Stability of networked control systems in the presence of packet losses
    [C]. Proceedings of the42nd IEEE Conference on Decision and Control, Maui, HawaiiUSA,2003:676–681.
    [91] Imer O. C., Yuksel S. and Basar T., Optimal control of LTI systems over unreliablecommunication links [J]. Automatica,2006,42(9):1429–1439.
    [92] Gupta V., Hassibi B., and Murray M. R., Optimal LQG control across packet-dropping links [J]. Systems&Control Letters,2007,56(6):439–446.
    [93] Seiler P. and Sengupta R., An H∞approach to networked control [J]. IEEE Trans-actions on Automatic Control,2005,50(3):356–364.
    [94] Gray R. M. and Neuhof D. L., Quantization [J]. IEEE Transacions on InformationTheory,1998,44(6):2325–2383.
    [95] Gersho A. and Gray R., Vector quantization and signal compression [M]. KluwerAcademic Publishers Norwell, MA, USA,1991.
    [96] Lloyd S. P., Least square quantization in PCM, Bell Telephone Lab. Memo., MurrayHill, N. J.(unpublished).
    [97] Max J., Quantizing for minimum distortion[J], IEEE Transactions on InformationTheory,1960, IT-6:7-12.
    [98] Huang J. Y. and Schultheiss P. M., Block quantization of correlated gaussian randomvariables [J]. IEEE Transactions on Communications Systems,1963:289–296.
    [99] Ramstad T. A., Sub-band coder with a simple adaptive bit-allocation algorithm: apossible candidate for digital mobile telephony [C]. IEEE International Conferenceon Acoustics, Speech and Signal Processing, Paris,1982,7:203–207.
    [100] Segall A., Bit allocation and encoding for vector sources [J]. IEEE Transactionson Information Theory,1976, IT-22(2):162–169.
    [101] Ramstad T. A., Considerations on quantization and dynamic bit-allocation insubband coders [C]. ICASSP86, Tokyo, Japan,1986:841–844.
    [102] Mcaulay R. J. and Hofstetter E. M., Barankin bounds on parameter estimation[J]. IEEE Transactions on Information Theory,1971,17:669–676.
    [103] Kendall S. M. and Stuart A., The advanced theory of statistics [M]. Macmillan,New York,1979.
    [104] Seidman L. P., Performance limitations and error calculations for parameter esti-mation [C]. Proceedings of the IEEE,1970,58(5):644–652.
    [105] Ziv J. and Zakai M., Some lower bounds on signal parameter estimation [J]. IEEETransactions on Information Theory,1969,15:386–391.
    [106] Kay S. M., Fundamentals of statistical signal processing: estimation theory [M].Englewood Clifs, NJ: Prentice-Hall,1993.
    [107] Van Trees H. L., Detection, estimation and modulation theory [M]. New York:Wiley, part I,2001.
    [108] Kalman R. E., A new approach to linear fltering and prediction problems [J].Transaction of the ASME Journal of Basic Engineering,1960:35–45.
    [109] Gelb A., Applied optimal estimation [M]. Cambridge, Massachusetts: M. I. T.Press,1974.
    [110] Anderson B. D. O. and Moore J. B., Optimal fltering [M]. Englewood Clifs, NJ:Prentice-Hall,1979.
    [111] Mendel J. M., Lessons in digital estimation theorey [M]. Englewood Clifs, NJ:Prentice-Hall,1987.
    [112] Kailath T., Sayed A. H., and Hassibi B., Linear estimation [M]. Englewood Clifs,NJ: Prentice-Hall,2000.
    [113] Shannon C. E., A mathematical theory of communication [J]. The Bell SystemTechnical Journal,1948,27:379-423,623-656.
    [114] Cover T. M. and Thomas J. A., Elements of information theory [M]. The2ndEdition. Hoboken: John Wiley,2006.
    [115] Zhang, W., Branicky, M., and Phillips, S., Stability of networked control system-s[J]. IEEE Control Systems Magazine,2001,21(1):84–99.
    [116] Hespanha J. P., Naghshtabrizi P., and Xu, Y., A survey of recent results innetworked control systems[J]. Proceedings of the IEEE,2007,95(1):138–162.
    [117] Hu S., and Yan W., Stability robustness of networked control systems with respectto packet loss[J]. Automatica,2007,43(7):1243–1248.
    [118] Xiao N., Xie L. H., and Fu M. Y., Kalman fltering over unreliable communica-tion networks with bounded Markovian packet dropouts[OL]. In Press, InternationalJournal of Robust and Nonlinear Control, DOI:10.1002/rnc.2008,1389.
    [119] Qi T., and Su W., Optimal tracking design for a linear system with a quantizedcontrol input[C]. In Proceedings of the27th Chinese Control Conference, Kunming,china,2008:437–441.
    [120] Nilsson J., Real-time control systems with delays[D]. In Automatic Control, Ph.D. Thesis, Lund Institute of Technology, Lund, Sweden,1998.
    [121] Sahai A., and Mitter S., The necessity and sufciency of anytime capacity for sta-bilization of a linear system over a noisy communication link-part I: scalar systems[J].IEEE Transactions on Information Theory,2006,52(8):3369–3395.
    [122] Hoshina H., Tsumura K., and Ishii H., The coarsest logarithmic quantizers forstabilization of linear systems with packet losses[C]. In Proceedings of the46th IEEEConference on Decision and Control, New Orleans, USA,2007:2235–2240.
    [123] Gao H., and Chen T., H1estimation for uncertain systems with limited commu-nication capacity[J]. IEEE Transactions on Automatic Control,2007,52(11):2070–2084.
    [124] Zheng D. Z., Linear system theory[M]. Springer, N. J.,2002.
    [125] Eduardo F., Costa and Joa o B.R., On the detectability and observability ofdiscrete-time Markov jump linear systems[J], Systems&Control Letters,2001,44(2):135–145.
    [126] Horn R., and Johnson C., Matrix analysis[M], Cambridge University Press, Cam-bridge,1985.
    [127] Dey S., Leong A., and Evans J., Kalman fltering with faded measurements[J].Automatica,2009,45(10):2223–2233.
    [128] Nair G. and Evans R., Stabilizability of stochastic linear systems with fnite feed-back data rates[J]. SIAM Journal on Control and Optimization,2004,43(2):413–436.
    [129] Elia N., When Bode meets Shannon: control-oriented feedback communicationschemes[J]. IEEE Transactions on Automatic Control,2004,49(9):1477–1488.
    [130] You K. and Xie L., Minimum data rate for mean square stabilization of single inputdiscrete systems over lossy channels[C]. In Proceedings of the7th IEEE InternationalConference on Control and Automation, Christchurch, New Zealand,2009:1–6.
    [131] Xiao N., Xie L., and Qiu L., Mean square stabilization of multi-input systems overstochastic multiplicative channels[C]. In Proceedings of the48th IEEE Conferenceon Decision and Control, Shanghai, China,2009:6893–6898.
    [132] Damm T., On detectability of stochastic systems[J]. Automatica,2007,43:928–933.
    [133] Tse D. and Viswanath P., Fundamentals of wireless communication[M]. CambridgeUniversity Press,2005.
    [134] Deng F., Feng Z., and Liu Y., Necessary and sufcient condition for mean-squarestability of time-invariant linear Ito stochastic systems[J]. Acta Automatica Sinica,1996,22(4):510–512.
    [135] Costa O., Fragoso M., and Marques R., Discrete–time markov jump LinearSystems[M]. Springer,2005.
    [136] Akyildiz I., Su W., Sankarasubramaniam Y., and Cayirci E., Wireless sensornetworks: a survey[J]. Computer Networks,2002,38(4):393–422.
    [137] Brqckett R. and Liberzon D., Quantized feedback stabilization of linear systems[J].IEEE Transactions on Automatic Control,2000,45(7):1279–1289.
    [138] Huang M. and Dey S., Dynamic quantization for multisensor estimation over ban-dlimited fading channels[J]. IEEE Transactions on Signal Processing,2007,55(9):4696–4702.
    [139] Luo Z. and Xiao J., Universal decentralized estimation in inhomogeneous environ-ment[J]. IEEE Transactions on Information Theory,2005,51(10):3564–575.
    [140] Wang L. and Yin G., Asymptotically efcient parameter estimation using quantizedoutput observation [J]. Automatica,2007,43(7):1178–1191.
    [141] Xiao J. and Luo Z., Universal decentralized detection in a bandwidth constrainedsensor network[J]. IEEE Transactions on Signal Processiong,2005,53(8):2617–2624.
    [142] Xiao J., Ribeiro A., Luo Z., and Giannakis G., Distributed compression-estimation using wireless sensor networks[J]. IEEE Sgnal processing magazine,2006,23(4):27–41.
    [143] Ribeiro A., Giannakis G., and Roumeliotis S., SOI-KF: distributed Kalman flter-ing with low-cost communications using the sign of innovations[J]. IEEE Transactionson Signal Processing,2006,54(12):4782–4795.
    [144] Msechu E. J., Roumeliotis S. I., Ribeiro A., et al, Decentralized quantized Kalmanfltering with scalable communication cost[J]. IEEE Transactions on Signal Process-ing,2008,56(8):3727–3741.
    [145] Sun S. L., Lin J. Y., et al, Quantized Kalman Filtering[C].22nd IEEE InternationalSymposium on Intelligent Control Part of IEEE Multi-conference on Systems andControl Singapore,2007:1–3.
    [146] Ito K. and Xiong K., Gaussian Filters for Nonlinear Filtering Problems [J]. IEEETransactions on Automatic Control,2000,45(5):910-927.
    [147] Mutambara G. O., Decentralized estimation and control for multisensor systems[C].1st ed.. CRC press LLC.2000Corporate Blvd., N.W., Boca Raton, Florida1998:31–33.
    [148] Bertsekas D. and Tsitsiklis J., Neuro-dynamic programming[M]. Nashua, NH: A-thena Scientifc,1996.
    [149] Van Trees H. L., Detection, estimation and modulation theory[M]. New York:Wiley,1968.
    [150] Shen Z. P. and Chen J. Y., Intermittent quantized Kalman fltering and LQGcontrol based on Lloyd-Max quantizer[C]. CCC,2012:5698–5703.
    [151] Anderson, Brian D. O., and John B. M., Optimal fltering[M].1st ed.. EnglewoodClifs, NJ: Prentice-Hall,1979.
    [152] Tichavsky P., Muravchik C. H., and Nehorai A., Posterior Cramér–Rao boundsfor discrete-time nonlinear fltering[J]. IEEE Transactions on Signal Processing,1998,46(5):1386–1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700