高速电路电源分配网络设计与电源完整性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子系统向高速度、高密度、高功耗、低电压和大电流的趋势发展,高速数字系统设计与分析的重点已经从信号完整性转移到电源完整性。电源完整性及其引起的噪声耦合问题已经成为当代高速数字设计最主要的瓶颈,这正是本论文的研究主题。
     电源分配网络构成了高速数字系统最庞大最复杂的互连,约占全部互连空间的30%~40%。系统中所有的器件都直接或间接地连接到电源分配网络上,器件数目成千上万。因此电源分配网络设计与电源完整性分析是数字系统中技术最复杂、最不成熟、意见最不统一的地方。尤其是关于去耦网络的设计与分析,一直以来都是争论不休的焦点。电源分配网络是高速数字设计的核心,它直接影响着电源完整性、信号完整性和电磁完整性等系统的性能。本论文重点研究高速数字系统的电源分配网络设计与电源完整性分析这一主题;并探讨了与之紧密联系的电源噪声抑制和非理想互连的建模与分析。研究的主要内容归纳如下:
     1)在消化前人研究成果的基础上,讨论了电源分配网络设计的各个重点环节。剖析了电源完整性、信号完整性和电磁完整性之间的内在联系,提出了电源完整性、信号完整性和电磁完整性协同设计的思想。
     2)提出多输入阻抗的概念,并在此基础上分析了去耦平面电源分配网络的电气特性,找出了利用输入阻抗设计电源分配网络在高频时难以获得精确结果的根源。建立了一套基于多输入阻抗的电源分配网络设计与性能分析方法,该方法克服了传统目标阻抗法无法准确表征电源地平面高频特性的缺点。
     3)在论证电源分配网络中各元件之间动态电荷交换和传输的基础上,提出了能够在时域准确表征电容和电感在功率及时传输过程中的作用的新方法。建立了一套新的基于功率传输的电源分配网络的设计与性能分析方法,该方法方便、直接、可靠,并为高速电源完整性的分析提供了一个新视点。
     4)探讨了电磁带隙结构在电源噪声抑制中的应用。研究了电磁带隙结构噪声抑制的原理以及应用缺陷,在此基础上提出了电磁带隙噪声隔离墙的概念,应用于数字系统的噪声抑制。在获得超宽带电源噪声抑制的同时,很好地控制了附加的额外成本以及由于电磁带隙结构引起的不利影响。此外,还研究了电磁带隙结构中信号走线的传输特性,为电磁带隙结构的实际应用做好铺垫。
     5)研究了非理想高速互连的建模与分析技术。非理想互连是严重影响电源完整性、信号完整性和电磁完整性的关键网络。从互连的特性区域出发,阐明了建模的基础与要点;着重探讨了高速连接器和过孔两类典型高速互连的宽带建模技术。建模方法深刻地反映了互连的物理信息和电路结构的紧密关联性,能够很容易地被理解、分析、掌握和应用。
     本文系统性地研究了电源分配网络设计与性能分析的各个相关领域,研究结果均通过严格的仿真与实验验证,可以直接应用于实际高速数字系统电源的设计与分析。
With the trend of the electronic systems toward higher edge rates, higher density, higher power, lower supply voltages, larger transient currents, the focus of the analysis and design of high-speed digital systems have shifted to the power integrity from signal integrity. Supplying a clear power to the IC and managing the coupling of power noise have become the bottleneck of high-speed digital circuit designs, which is the subject of the dissertation.
     The power delivery networks constitute the largest and most complicated interconnects of the modern digital systems, they account for about 30 % to 40% of the overall interconnect space and area. Thousands of components on the PCB or package, both active and passive, are all connected into the power delivery network directly or indirectly. Therefore, compared with the signal integrity, the performance analysis and the architecture design of the power delivery networks are immature and controversial, especially for the decoupling networks, which is the source of debate by academia for decades. However, the design of the power delivery network is the most important part of the high-speed digital system design. It closely relates to power integrity, signal integrity and electromagnetic integrity of the whole electronic system. This dissertation emphasizes on the design and analysis of the power delivery networks for high-speed digital systems. Another two important related topics investigated here are the suppression of power noise and the modeling and analysis of non-ideal high-speed interconnects. The contents of dissertation are mainly listed as follows:
     1) The research results available in this field are summarized and abstracted, many key points of the power delivery network design are discussed. The intrinsic relationships between the power integrity, signal integrity and electromagnetic integrity are demonstrated. Based on this, the concept of power integrity, signal integrity and electromagnetic integrity co-design is proposed.
     2) A new concept called multi-input impedance is proposed. Then the global and local characteristics of the power delivery networks are analyzed and demonstrated. The reason why is difficult to design a reliable power delivery network using the self impedance is uncovered. A power-delivery-network design and analysis method is developed based on the multi-input impedance concept. This method overcomes the shortcoming of the target impedance design method which can not characterize the power delivery network in high frequencies.
     3) The dynamic charge exchange and transmission among all components in the power delivery network are demonstrated. Based on this, a new method for the characterization of the capacitors and inductors in the view of power delivery is proposed, which can accurately characterizes the time-limited behavior of the capacitors and inductors responding to the surge currents. A new power-delivery-based design method for the power delivery networks is developed. This method is convenient, intuitive, and reliable. It provides a new version for the power-delivery-network design and analysis.
     4) The application of electromagnetic bandgap structures in the power noise suppression is also investigated. The noise suppression mechanism of the electromagnetic bandgap structure is analyzed and its limitations on practical applications are discussed. A new power noise suppression concept of electromagnetic-bandgap-structure isolation wall is introduced. This idea could be used to not only extremely extend the noise suppression bandwidth, but also greatly reduce the additional cost and the negative effects by the introduction of an electromagnetic bandgap surface into a power/ground pair. In addition, the signal integrity of the signal traces between a power/ground plane pair with electromagnetic bandgap structure is also investigated, which pave a straight way for the real applications of the electromagnetic bandgap structure in the power noise suppression.
     5) The modeling and analysis of high-speed non-ideal interconnects are investigated. The non-ideal interconnects are the key networks in the high-speed digital systems, which greatly affect the power integrity, signal integrity and electromagnetic integrity of the entire system. The fundamental of the modeling is demonstrated using the performance regions of the transmission line. Two typical non-ideal high-speed interconnects, high-speed and high-density connectors and via transitions, are investigated. The highlight of the modeling methods is the essential embodiment of the relationship between the electrical behavior and the physical structures of the modeled interconnects. It can be easily understood, analyzed and designed.
     All relative facets of the power delivery network’s analysis and design are studied systematically in this dissertation, and all results are validated by strict simulations and experiments. Hence, the results here can be used in practical designs directly.
引文
[1] M. Swaminathan, K. Joungho, I. Novak, and J. P. Libous,“Power distribution networks for system-on-package: status and challenges,”IEEE Trans. Adv., Packag., Vol.27, no.2, pp. 286-300. May 2004.
    [2] M. Swaminathan, A. E. Engin, Power integrity modeling and design for semiconductors and systems, Prentice Hall, 2007.
    [3] Eric Bogatin. Signal integrity: simplified. NJ, Prentice Hall PTR. 2004.
    [4] H. Johnson, M. Graham, High-Speed Signal Propagation: Advanced Black Magic, Prentice Hall, NJ, 2003.
    [5] Y. Brian, Digital signal integrity: modeling and simulation with interconnects and packages, Prentice Hall, NJ, 2001.
    [6] S. H. Hall, G. W. Hall, J. A. McCall, High-speed digital system design: a handbook of interconnect theory and design practices, John Wiley & Sons, Inc.
    [7] A. E. Ruehli,“Equivalent circuit models for three dimensional multiconductor systems,”IEEE Trans. Microwave Theory Tech., vol. MTT-22, pp. 216–221, Mar. 1974.
    [8] G. A. Katopis,“Delta-I noise specification for a high-performance computingmachine,”Proc. IEEE, vol. 73, pp. 1405–1415, Sept. 1985.
    [9] R. Senthinathan and J. L. Prince,“Simultaneous switching ground noise calculation for packaged CMOS devices,”IEEE J. Solid-State Circuits, vol. 26, pp. 1724–1728, Nov. 1991.
    [10] W. Becker, B. McCredie, G. Wilkins, and A. Iqbal,“Power distribution modeling of high performance first level computer packages,”in IEEE Proc. 2nd Topical Meeting on Electrical Performance of Electronic Packaging, Oct. 1993, pp. 202–205.
    [11] M. Kamon, M. J. Tsuk, and J. White,“FASTHENRY: A multipole-accelerated3-D inductance extraction program,”IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1750–1758, Sept. 1994.
    [12] J. Fang and J. Ren,“Locally conformed finite-difference time-domain algorithm of modeling arbitrary shape planar metal strips,”IEEE Trans. Microwave Theory Tech., vol. 41, pp. 830–838, May 1993.
    [13] Speed2000 Handout (2000, Mar.). [Online]. Available: http://www. sigrity.com/infos/handout/ handout5forweb. htm.
    [14] J. Mao,W. Kim, S. Choi, M. Swaminathan, J. Libous, and D. O’Connor,“Electromagnetic modeling of switching noise in on-chip power distribution networks,”in Proc. Int. Conf. Electromagnetic Interference and Compatibility (INCEMIC), Chennai, India, Dec. 2003, pp. 47–52.
    [15] S. Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W. Temmerman,“Study of the ground bounce caused by power plane resonances,”IEEE Trans. Electromagn. Compat., vol. 40, pp. 111–119, May 1998.
    [16] HFSS. [Online]. Available: http://www. ansoft.com.
    [17] Y. Ji and T. H. Hubing,“On the modeling of a gapped power-bus structure using a hybrid FEM/MOM approach,”IEEE Trans. Electromagn. Compat., vol. 44, no. 4, pp. 566–569, Nov. 2002.
    [18] T. K. Sarkar,“Accurate modeling of frequency responses of multiple planes in gigahertz packages and board,”in Proc.9th Topical Meeting Elect. Perform. Electron. Packag., Oct. 2000, pp. 59–62.
    [19] C.-T. Lei, R. W. Techentin, P. R. Hayees, D. J. Schwab, and B. K. Gilbert,“Wave model solution to ground/power plane noise problem,”IEEE Trans. Instrum. Meas., vol. 44, no. 2, pp. 300–303, Apr. 1995.
    [20] C.-T. Lei, R. W. Techentin, and B. K. Gilbert,“High-frequency characterization of power/ground-plane structures,”IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp. 562–569, May 1999.
    [21] Z. L. Wang, O. Wada, Y. Toyota, and R. Koga,“An improved closed-form expression for accurate and rapid calculation of power/ground plane impedance of multilayer PCBs,”in Proc. Symp. Electromagnetic Theory, Toyama, Japan, Oct. 2000. Paper EMT-00-68.
    [22] J. Trinkle, A. Cantoni, and K. Fynn,“Efficient impedance calculation of loaded power ground planes,”in Proc. 15th Zurich Symp. Electromagnetic Compatibility, Zurich, Switzerland, Feb. 18–20, 2003, pp. 285–290. I8.
    [23] Z. L. Wang, O. Wada, Y. Toyota, and R. Koga,“Convergence acceleration and accuracy improvement in power bus impedance calculation with a fast algorithm using cavity modes,”IEEE Trans. Electromagn. Compat., vol. 47, no. 1, pp. 2–9, Feb. 2005.
    [24] T. Okoshi, Y. Uehara, and T. Takeuchi,“The segmentation method—An approach to the analysis of microwave planar circuits,”IEEE Trans. Microwave Theory Tech., vol. EMC–24, no. 10, pp. 662–668, Oct. 1976.
    [25] R. Chadha and K. C. Gupta,“Segmentation method using impedance matrices for analysis of planar microwave circuits,”IEEE Trans. Microwave Theory Tech., vol. EMC–29, no. 1, pp. 71–74, Jan. 1981.
    [26] R. Sorrentino,“Planar circuits, waveguide models, and segmentation method,”IEEE Trans. Microw. Theory Tech., vol. EMC–33, no. 10, pp. 1057–1066, Oct. 1985.
    [27] W. Cui, J. Fan, Y. Ren, H. Shi, J. L. Drewniak, and R. E. DuBroff,“DC power-bus noise isolation with power-plane segmentation,”IEEE Trans. Electromagn. Compat., vol. 45, no. 2, pp. 436–443, May 2003.
    [28] K. Lee and A. Barber,“Modeling and analysis of multichip module power supply planes,”IEEE Trans. Comp., Packag., Manufact. Technol., pt. B, vol. 18, pp. 628–639, Nov. 1995.
    [29] J. H. Kim and M. Swaminathan,“Modeling of irregular shaped power distribution planes using the transmission matrix method,”IEEE Trans. Comp., Packag., Manufact. Technol., vol. 24, pp. 334–346, Aug. 2001.
    [30] J. Choi, S. Min, J. Kim, M. Swaminathan, and W. Beyene,“Modeling and analysis of power distribution networks for gigabit applications,”IEEE Trans. Mobile Comput., vol. 2, pp. 1–14, July-Sept. 2003.
    [31] M. Choi and A. C. Cangellaris,“A quasi three-dimensional distributed electromagnetic mode for complex power distribution networks,”in Proc. 51th Electron. Comp. Technol. Conf., May 2001, pp. 83–86.
    [32] A. C. Cangellaris and A. E. Ruehli,“Model order reduction techniques applied to electromagnetic problems,”in Proc. IEEE 9th Topical Meeting on Electrical Performance of Electronic Packaging, Oct. 2000, pp. 239–242.
    [33] B. Gustavsen and A. Semlyen,“Enforcing passivity for admittance matrices approximated by rational functions,”IEEE Trans. Power Syst., vol. 16, pp. 97–104, Feb. 2001.
    [34] I. S. Stievano, I. A. Maio, and F. G. Canavero,“Parametric models of digital I/O ports,”IEEE Trans. Adv. Packag., vol. 25, May 2002.
    [35] S. H. Min and M. Swaminathan,“Construction of broadband passive macromodels from frequency data for simulation of distributed interconnect networks,”in Proc. Int. Symp. Electromagnetic Compatibility, Zurich, Switzerland, Feb. 2003.
    [36] B. Mutnury, M. Swaminathan, and J. Libous,“Macro-modeling of nonlinear I/O drivers using spline functions and finite time difference approximation,”in Proc. 12th Topical Meeting on Electrical Performance of Electronic Packaging, Princeton, NJ, Oct. 2003.
    [37] C. Wang, et al.,“An efficient approach for power delivery network design with closed-from expressions for parasitic interconnect inductances,”IEEE Trans. Adv., Packag., vol. 29, no. 2, pp. 320-334. May 2006.
    [38] T. Hubing, J. Drewniak, T. Van Doren, and D. Hockanson,“Power Bus Decoupling on Multilayer Printed Circuit Boards,”IEEE Trans. Electromagn. Compat., Vol. 37, No. 2, pp. 155-166, May 1995.
    [39] J. L. Drewniak, B. Archambeault, J. Knighten, et al.,“Comparing time-domain and frequency domain techniques for investigation on charge delivery and power-bus noise for high-speed printed circuit boards,”DesignCon 2007.
    [40] B. Archambeault, P. Wetmore, X. Yuan, and R. Mathews,“Modeling the effectiveness of decoupling capacitors for multilayer PCBs,”in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Denver, CO, Aug. 1998, pp. 522–526.
    [41] J. Fan W. Cui, et al.,“Estimating the noise mitigation effect of local decoupling in printed circuit boards,”IEEE Trans. Adv. Packag., vol. 25, no. 2, pp. 154-165. May 2002.
    [42] L. Smith,“Decoupling Capacitor Calculations for CMOS circuits,”Electrical Performance of Electronic Packages (EPEP), Monterey, CA, November 1994.
    [43] L. Smith and J. Lee,“Power Distribution System for JEDEC DDR2 Memory DIMM,”Electrical Performance of Electronic Packages (EPEP), Princeton N.J., October 2003, pp. 121-124.
    [44] L. Smith, R.E. Anderson, D.W. Forehand, T.J. Pelc, and T. Roy,“Power distribution system design methodology and capacitor selection for modern CMOS technology”IEEE Trans. Adv., Packag., Vol. 22, no. 3, pp. 284-291. August 1999.
    [45] B. Archambeault, S. Connor,“The Effect of Decoupling Capacitor Distance on Printed Circuit Boards Using Both Frequency and Time Domain Analysis,”IEEE International Symposium on Electromagnetic Compatibility, August 2005, pp. 650-654.
    [46] Knighten, James L., B. Archambeault, J. Fan, Giuseppe Selli, Liang Xue, Samuel Connor, and James L. Drewniak,“PDN Design Strategies: II. Ceramic SMT Decoupling Capacitors– Does Location Matter?,”IEEE EMC Society Newsletter, Issue No. 208, Winter 2006, pp. 56-67.
    [47] J. L. Drewniak, B. Archambeault, J. Knighten, et al.,“Comparing time-domain and frequency domain techniques for investigation on charge delivery and power-bus noise for high-speed printed circuit boards,”DesignCon 2007.
    [48] J. P. Libous and D. P. O’Connor,“Measurement, modeling, and simulation of flip-chip CMOS ASIC simultaneous switching noise on a multilayer ceramic BGA,”IEEE Trans. Comp., Packag., Manufact. Technol. B, vol. 20, pp. 266–271, Aug. 1997.
    [49] W. D. Becker, J. Eckhardt, R. W. Frech, G. A. Katopis, E. Klink, M. F. McAllister, T. G. MacNamara, P. Muench, S. R. Richter, and H. H. Smith,“Modeling, simulation, and measurement of mid-frequency simultaneous switching noise in computer systems,”IEEE Trans. Comp., Packag., Manufact. Technol. B, vol. 21, pp. 157–163, May 1998.
    [50] N. Na, J. Choi, S. Chun, M. Swaminathan, and J. Srinivasan,“Modeling and transient simulation of planes in electronic packages,”IEEE Trans. Adv. Packag., vol. 23, pp. 340–352, Aug. 2000.
    [51] S. Chun, M. Swaminathan, L. Smith, J. Srinivasan, Z. Jin, and M. K.Iyer,“Modeling of simultaneous switching noise in high speed systems,”IEEE Trans. Adv. Packag., vol. 24, pp. 132–142, May 2001.
    [52] J. Lee, M. D. Rotaru, M. K. Iyer, H. Kim, and J. Kim,“Analysis and suppression of SSN noise coupling between power/ground plane cavities through cutouts in multilayer packages and PCBs,”IEEE Trans. Adv. Packag., vol. 28, no. 2, pp. 298–309, May 2005.
    [53] Y. Jeong, A. C.W. Lu, L. L.Wai,W. Fan, and J. Kim,“Analysis of noise suppression techniques using embedded capacitor on split power bus in multi-layer package,”in IEEE Int. Symp. Electromagn. Compat., Aug. 2004, pp. 215–220.
    [54] Y. Chen, Z. Wu, Y. Liu, and J. Fang,“Equivalent circuit models of via interactions in electronics packaging,”in IEEE Int. Symp. Electromagn. Compat., Aug. 1994, pp. 377–380.
    [55] J. Fang, Y. Chen, Z. Wu, and D. Xue,“Model of interaction between signal vias and metal planes in electronics packaging,”Elec. Performance Electron. Packag., pp. 211–214, Nov. 1994.
    [56] Y. Chen, Z. Chen, Z. Wu, D. Xue, and J. Fang,“A new approach to signal integrity analysis of high-speed packaging,”Elec. Performance Electron. Packag., pp. 235–238, Oct. 1995.
    [57] J. Kim, M. D. Rotaru, J. Lee, J. Park, P. Alexander, M. K. Iyer, and J. Kim,“Analytical coupling model of SSN on power/ground planes to signal traces in high-speed multi-layer packages or boards,”in Proc. IEEE 5th Electron. Packag. Technol. Conf., Singapore, Dec. 2003, pp. 45–50.
    [58] C.Wei,Y. Xiaoning, B. Archambeault, D. White, L. Min, and J. L. Drewniak,“EMI resulting from signal via transitions through the DC power bus,”in Proc. IEEE Int. Symp. Electromagn. Compat., Aug. 2000, pp. 821–826.
    [59] J.-N. Hwang and T.-L. Wu,“Coupling of the ground bounce noise to the signal trace with via transition in partitioned power bus of PCB,”in Proc. IEEE Int. Symp. Electromagn. Compat., Aug. 2002, pp. 733–736.
    [60] Z. Pantic-Tanner, E. Salgado, and F. Gisin,“Cross coupling between power and signal traces on printed circuit boards,”in Proc. IEEE Int. Symp. Electromagn. Compat., Aug. 1998, pp. 624–628.
    [61] S. Chun, J. Choi, S. Dalmia, W. Kim, and M. Swaminathan, "Capturing via effects in simultaneous switching noise simulation," in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp. 1,221–1,226, August 2001.
    [62] J. Zhao and Q. lun Chen, "A new methodology for simultaneous switching noise simulation," in Proceedings of the Electrical Performance of Electronic Packaging, 2000, pp. 155–158.
    [63] A. E. Engin, W. John, G. Sommer, W. Mathis, and H. Reichl, "Modeling of striplines between a power and a ground plane," IEEE Transactions on Advanced Packaging, vol. 29, no. 3, pp. 415–426, Aug. 2006.
    [64] B.Archambeault and A. Ruehli,“Analysis of power/ground-plane EMI decoupling performance using the partial-element equivalent circuit technique,”IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 437-445, Nov 2001.
    [65] B. Beker and D. Wallac,“A methodology for optimal value selection of decoupling components for power delivery systems of high-performance ASICs,”in IEEE 11th Topical Meeting Electr. Perform. Electron. Packag., 2002, pp. 195-198.
    [66] X. Yang, Q. L. Chen, and C. T. Chen,“The optimal value selection of decoupling capacitors based on FDTD combined with optimation,”in IEEE 11th Topical Meeting Electr. Perform. Electron. Packag., 2002, pp. 191-194.
    [67] J. M. Hobbs, H. Windlass, V. Sundaram, S. Chun, G. E. White, M. Swaminathan, and R. R. Tummala,“Simultaneous switching noise suppression for high speed systems using embedded decoupling,”in Proc. 2001 Electron. Comon. Technol. Conf., pp. 339-343.
    [68] Y. Kosaka, N. Takahashi, and S. Suminaga,“Controlling simultaneous switching noise with built-in decoupling capacitors,”in proc 2004 Electri. Packag., Tech., Conf., ,pp. 652-656.
    [69] H. Kim, Y. Jeong, J. Park, S. LeeJ. Hong, and Y. Hong,“Significant reduction of power/ground inductive impedance and simultaneous switching noise by using embedded film capacitor,”2003, Electr. Perform. Electron. Packag., pp. 129-132.
    [70] G.-T. Lei, R. W. Techentin, and B. K. Gilbert,“High-frequency characterization of power/ground-plane structures,”IEEE Trans. Microwave Theory Tech., vol. 47, pp. 562-569, May 1999.
    [71] T. .L. Wu, S. T. Chen, J. N. Huang, and Y. H. Lin,“Numerical and experimental investigation of radiation caused by the switching noise on the partitioned dc power/ground-planes of high-speed digital PCB,”IEEE Trans. Electromagn. Compat., vol. 46, no. 1, pp. 33-45, Feb 2004.
    [72] T. Hubing, J. Chen, J. Drewnik, T. V. Doren, Y. Ren, J. Fan, and R. E. DuBroff,“power bus noise reduction using power island in printed circuit board designs,”in Proc. Int. Symp. Electromagn. Compat., Aug. 1999, pp. 1-4.
    [73] I. Novak,“Reducing simultaneous switching noise and EMI on power/ground planes by dissipative edge termination,”IEEE Trans. Adv. Packag., vol. 22, pp. 274-283, Aug 1999.
    [74] T. M. Zeeff, and T. H. Hubing,“Reducing power bus impedance at resonance with lossy components,”IEEE Trans. Adv. Packag., vol. 25, pp. 307-310, May 2002.
    [75] X. Ye, D. M. Hockanson, M. Li, Y. Ren, W. Cui, J. L. Drewniak, and R. E. DuBroff,“EMI mitigation with multilayer power bus stacks and via stitching of reference planes,”IEEE Trans. Electromagn. Compat., vol. 43, pp. 538-548, Nov. 2001.
    [76] X. Wu, M. H. Kermani, and O. M. Ramahi,“Mitigating multi-layer PCB power bus radiation through novel mesh fencing techniques,”in Proc. Topical Meeting Electri. Perform. Electro. Packag., Oct,2003, pp. 207-210.
    [77] R. Abhari, G. V. Elefttheriades, and T. E. van Deventer-Perkins,“analysis of differential vias in multilayer parallel plate environment using a physics-based CAD model,”in IEEE MTT-S Int. Microw. Symp. Dig., 2001, pp. 2031-2034.
    [78] R. Abhari and G. V. Eleftheriades,“Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuit,”IEEE Trans. Microw. Theory Tech. Vol.51,no.6, pp.1629-1639, Jun. 2003.
    [79] S.Shahparnia and O.M.Ramahi,“Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using Electromagnetic bandgap structures,”IEEE trans. Electrom,. Compat,. Vol.46, no.4, pp.580-586. Nov, 2006.
    [80] T .Kamgaing and O. M. Ramahi,“Design and modeling of high-impedance electromagnetic surface for switching noise suppression in power planes,”IEEE Trans. Electrom., compat, .vol.47 no.3, pp.479-489. Aug, 2005.
    [81] J. Lee, H. Kim, J. Kim.“Broadband suppression of Simultaneous switching noise and radiated emissions using high-DK thin film electromagnetic bandgap power distribution network for high-speed digital PCB applications,”Proc 2005 IEEE Int. Symp Electromagnetic Compat, vol.3, pp.967-970. Aug.2005.
    [82] T. L. Wu, Y. Y. Lin, C. C. Wang and S. T. Chen,“Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,”IEEE trans. Microw,. Theory,. Tech. Vol.53, no.9, pp.2935-2942, Sep, 2005.
    [83] T. L. Wu, C. C. Wang, Y. H. Lin, T. K. Wang and G. Chang,“A novel power plane with super-widerband elimination of ground bounce noise on high speed circuits,”IEEE microw,. Wireless compon,.letters. vol.15, no. 3, pp.174-176. Mar 2005.
    [84] J. Choi, V. Govind, R. Mandrekar, S. Janagama, and M. Swaminathan,“Noise reduction and design methodology in mixed-signal systems with alternating impedance electromagnetic bandgap (AI-EBG) structure,”in Proc. IEEE MTT-S Int. Microwave Symp Dig., Long Beach, CA, Jun. 2005, pp. 849–852.
    [85] J. Qin and O. M. Ramahi,“Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 487–489, Sep. 2006.
    [86] S.-H.Joo and D-Y. Kim, and H. -Y. Lee,“S-bridged inductive electromagnetic bandgap power plane for suppression of ground bounce noise,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 487–489, Sep. 2007.
    [87] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. A. Alexopolous, and E. Yablonovitch,“High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans. Microw. Theory Technol., vol. 47, no. 11, pp. 2059-2073, Nov. 1999.
    [88] J. Park, A. C. W. Lu, K. M. Chua, L. L. Wai, J. Lee, and J. Kim,“Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP application,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 481-483, Sep, 2006.
    [89] M.-S. Zhang, Y.-S. Li, C. Jia, and L.-P, Li,“A power plane with wideband SSN suppression using a multi-via electromagnetic bandgap structure,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 307–309, Apr. 2007.
    [90] M.-S. Zhang, Y.-S. Li, C. Jia, and L.-P, Li,“Signal integrity analysis of the traces in electromagnetic-bandgap structure in high-speed printed circuit boards and packages,”IEEE Trans. Microw. Theory Tech., Vol.55, no.5, pp.1054-1062, May. 2007.
    [91] M.-S. Zhang, Y.-S. Li, C. Jia, L.-P, Li, and J. Pan,“A double-surface electromagnetic bandgap structure with one surface embedded in power planes for ultra-wideband SSN suppression,”IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 706–708, Oct. 2007.
    [92] M.-S. Zhang, Y.-S. Li, C. Jia, and L.-P, Li,“Simultaneous switching noise suppression in printed circuit boards using a compact 3-D cascaded electromagnetic bandgap structure,”IEEE Trans. Microw. Theory Tech., Vol.55, no.10, pp.2200-2207, Oct. 2007.
    [93] K. Armstrong.“Advanced PCB design and layout for EMC part 1 to 8: online available : http://www.compliance- cliub.com/keith_arstrong.asp.
    [94] K. Armstrong.“Design techniques for EMC”online available: http://www.compliance-cliub.com/ keith_arstrong.asp.
    [95] B Archambeault, Pcb Design for Real-World Emi Control, Kluwer Academic Publishers, 2002.
    [96] X. P. Yang, Z. F. Li, and J. F. Mao,“Analysis of the bounces on the power/ground plane structures by planar circuit model and APA-E algorithm,”IEEE Trans. Adv. Packag., vol. 24, no. 2, pp. 184–190, May 2001.
    [97] P. Liu, Z.–F. Li, G.–B, Han,“Application of asysptotic waveform evaluation to eigenmode expansion method for analysis of simultaneous swithing noise in printed circuit boards(PCBs),”IEEE Trans. Electrom. Compat., vol. 48, no. 3, Aug 2006.
    [98] I. Novak, L. M. Noujeim, V. St. Cyr, N. Biunno, A. Patel, G. Korony, and A. Ritter,“Distributed matched bypassing for board-level power distribution networks,”IEEE Trans. Adv. Packag., vol. 25, pp. 230–243, May 2002.
    [99] Sanyo 4TPL220M Data Sheet., 2003. Sanyo.
    [100] Application Note 1007—X2Z Solution for Decoupling Printed Circuit Boards, Dec. 2003. X2Y.
    [101] Q. Prymak. Advanced decoupling using ceramic MLC capacitors. [Online]. Available: http://www.avxcorp.com.
    [102] J. S. Pak, J. Lee, H. Kim, and J. Kim,“Prediction and verification of power/ground plane edge radiation excited by through-hole signal via based on balanced TLM and via coupling model,”in 2003 IEEE Proc. Topical Meeting on Electrical Performance of Electronic Packaging, pp. 181–184. Serial 12.
    [103] S. Pannala, J. Bandyopadhyay, and M. Swaminathan,“Contribution of resonance to ground bounce in lossy thin film planes,”IEEE Trans. Adv. Packag., vol. 22, pp. 249–258, Aug. 1999.
    [104] I. Novak, L. Smith, R. Anderson, and T. Roy,“Lossy power distribution networks with thin dielectric layers and/or thin conductive layers,”IEEE Trans. Comp. Pakag. Manufact. Technol., vol. 23, Aug. 2000.
    [105] R. R. Tummala, Fundamentals of Microsystems Packaging. NewYork: McGraw-Hill, 2001, ch. 4, pp. 120–183.
    [106] H. Chen and J. Neely,“Interconnect and circuit modeling techniques for full-chip power supply noise analysis,”IEEE Trans. Comp., Packag., Manufact. Technol., pt. B, vol. 21, pp. 209–215, Aug. 1998.
    [107] J. P. Libous,“High performance ASIC chip power distribution design and analysis, short course,”in IEEE Proc. 11th Topical Meeting on Electrical Performance of Electronic Packaging, Oct. 20, 2002.
    [108] B. Garben, R. Frech, J. Supper, and M. McAllister,“Frequency dependencies of power noise,”IEEE Trans. Adv. Packag., vol. 25, pp. 166–173, May 2002.
    [109] E. J. Nowak,“Maintaining the benefits of CMOS scaling when scaling bogs down,”in IBM J. Res. Develop., vol. 46, Mar./May 2000, pp. 169–180.
    [110] D. J. Frank,“Power-constrained CMOS scaling limits,”in IBM J. Res. Develop., vol. 46, Mar./May 2000, pp. 235–244.
    [111] Y. Taur,“CMOS design near the limit of scaling,”in IBM J. Res. Develop., vol. 46, Mar./May 2000, pp. 213–222.
    [112] T. Correale,“Watts the matter; Power reduction issues,”in IEEE Proc. 10th Topical Meeting on Electrical Performance of Electronic Packaging, Oct. 2001.
    [113] Knighten, J., B. Archambeault, J. Fan, G. Selli, S. Connor, J. Drewniak,“PDN Design Strategies: I. Ceramic SMT Decoupling Capacitors– What Values Should I Choose?,”IEEE EMC Society Newsletter, Issue No. 207, Fall 2005, pp. 46-53.
    [114] J. Fan, James L. Drewniak, James. L. Knighten, Norman W. Smith, Antonio Orlandi, Thomas P. Van Doren, Todd H. Hubing, and Richard E. DuBroff“Quantifying SMT Decoupling Capacitor Placement in DC Power-Bus Design for Multi-Layer PCBs,”IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, November 2001, pp. 588-599.
    [115] B. Archambeault, Juan Wang, and Samuel Conner,“Power and Ground-Reference Plane Impedance Determination As Decoupling Capacitor Distance Increases,”IEEE International Symposium on Electromagnetic Compatibility, August 2003, pp. 875-880.
    [116] T. Hubing, , T. Van Doren, F. Sha, J. Drewniak and M. Wilhelm,“An Experimental Investigation of 4-Layer Printed Circuit Board Decoupling,”IEEE International Symposium on Electromagnetic Compatibility, August 1995, pp. 308-312.
    [117] Knighten, J., B. Archambeault, J. Fan, G. Selli, L. Xue, S. Connor, J. Drewniak,“PDN Design Strategies: III. Planes and Materials– Are They Important Factors in Power Bus Design?,”IEEE EMC Society Newsletter, Issue No. 210, Fall 2006, pp. 58-69.
    [118] W.-D. Guo, G.–H. Shiue, C.–M. Lin, R.–B. Wu,“An integrated signal and power integrity analysis for signal traces through the parallel plane using hybrid finite-element and finite-difference time-domain techniques,”IEEE Trans. Adv. Packag., vol. 30, no. 3, pp.558-565. Aug. 2007.
    [119] J. Park, H. Kim, Y. Jeong, J. Kim, J. S. Pak, D. G. Kam and J. Kim“Modeling and measurement of the simultaneous switching noise coupling through signal via transition,”IEEE Trans. Adv. Packag., vol. 29, no. 3, pp.548-559. Aug. 2006.
    [120] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak,“Eletromagnetic interference(EMI) of Syatem-on Package(SOP),”IEEE Trans. Adv., Packag., Vol.27, no.2, pp. 304-314. May 2004.
    [121] D. Brooks, Signal integrity issue and printed circuit board design, Prentice Hall, 2003.
    [122] J. S. Pak, H. Him, J. Lee, J. Kim,“Modeling and measurement of radiated field emission from a power/ground plane cavity edge excited by a through-hole signal via based on a balanced TLM and via coupling model,”IEEE Trans. Adv. Packag., vol. 30, no. 1, pp.73-85. Feb 2007.
    [123] B. Garben, R. Frech, J. Supper, and M. F. McAllister,“Frequency dependencies of power noise,”IEEE Trans. Adv., Packag., Vol. 25, no. 2, pp. 166-173. May 2002.
    [124] TMS320C6713B user book, Texas Instruments, 2005.
    [125] R. R. Tummala,“SOP: what is it and why? A new microsystem- integration technology paradigm-moor’slaw for system integration of miniaturized convergent systems of the next decade,”IEEE trans. Adv., Packag., vol.27, no. 2, pp.241-249. May. 2004.
    [126] S. V. Berghe, F. Olyslager, D. D. Zutter, J. D. Moerloose, and W. Temmerman,“study of the ground bounce caused by power plane resonances,”IEEE Trans. Electronm., Compat., vol. 40, no. 2, pp. 111-119. May 1998.
    [127] B. Anderson, J. E. Bracken, J. B. Manges, G. Peng, and Z. Cendes,“Full-wave analysis in SPICE via model-order reduction,”IEEE Trans. Microw. Theory Tech., Vol.52, no.9, pp.2314-2320, Sep, 2004.
    [128] K. Narita and T. Kushta,“An accurate experimental method for characterizing transmission lines embedded in multilayer printed circuit boards,”IEEE Trans Adv,. Packag., vol. 29, no. 1, pp. 114-121, Feb. 2006.
    [129] E. McGibney and J. Barrett.“An overview of Electrical characterization techniques and theory for IC packages and interconnects,”IEEE Trans. Adv. Packag., vol. 19, no. 1, pp. 131-139, Feb, 2006.
    [130] J. Dambach, M. Rost, P. Cashier, K. Regnier,“Design and development of a high speed/low cost serial I/O Connector,”DesignCon, 2005.
    [131] M. Resso, R. M?dinger, J. Roe, T. Gneiting,“Investigating Microvia Technology for 10Gbps and Higher Telecommunication System,”DesignCon, 2005.
    [132] H. Katzier and R. Reischl,“SPICE models for high pincount board connectors,”IEEE Trans. Compon., Packag., Manuf., Technol. vol.19, no.1, pp.3-6, Feb, 1996.
    [133] J. M. Jong and V. K. Tripathi,“Time domain characterization of interconnect discontinuities in high speed circuits,”IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 14, no. 4, pp. 497–504, Aug. 1992.
    [134] PCB Interconnect Characterization from TDR Measurements, TDA System Corp. Application Note 0699–4, 1999.
    [135] A. Deutsch, C. W. Surovic, J. C. Campbell, P. W. Coteus, A. P. Lanzetta, J. T. Holton, and A. D. Knight,“Electrical characteristics of high-performance pin-in-socket and pad-on-pad connectors,”IEEE Trans. Compon., Packag., Manulf,. Technol. B Adv. Packag., vol. 20, pp. 64-77, Feb, 1997.
    [136] C. H. Kao, C. C. Tseng, F. Ming, and M. F. lai.“A Better Technique using multisegment modeling and analysis of high-density and high-speed connector,”IEEE Trans. Adv. Packag., vol. 29, no. 1, pp. 140-148, Feb. 2006.
    [137] A. Tripathi, and V.K Tripathi ,“A configuration-oriented SPICE model for multiconductor transmission lines in an inhomogeneous medium,”IEEE Trans. Microw., Theory , Tech., vol .46, no. 12, pp. 1997-2005, Dec, 1998.
    [138] A. Djordjevic and T. K. Sarkar,“Computation of inductance of simple vias between two striplines above a ground plane,”IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 268–269, Mar. 1985.
    [139] J. P. Quine, H. F. Webster, H. H. Glascock, and R. O. Carlson,“Characterization of via connections in silicon circuit boards,”IEEE Trans. Microwave Theory Tech., vol. 36, pp. 21–27, Jan. 1988.
    [140] T. Wang, R. F. Harrington, and J. R. Mautz,“Quasistatic analysis of a microstrip via through a hole in a ground plane,”IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1008–1013, June 1988.
    [141] P. Kok and D. D. Zutter,“Capacitance of a circular symmetric model of a via hole including finite ground plane thickness,”IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1229–1234, July 1991.
    [142] P. A. Kok and D. D. Zutter,“Scalar magnetostatic potential approach to the prediction of the excess inductance of grounded via’s and via’sthrough a hole in a ground plane,”IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1229–1237, July 1994.
    [143] A.W. Mathis, A. F. Peterson, and C. M. Butler,“Rigorous and simplified models for the capacitance of a circularly symmetric via,”IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1875–1878, Oct. 1997.
    [144] E. Laermans, J. De Geest, D. De Zutter, F. Olyslager, S. Sercu, D. Morlion,“Modeling Complex Via Hole Structures”, IEEE Trans on Adv., Packag., vol. 25, no. 2, pp. 206- 214, May 2002.
    [145] S. G. Hsu and R. B. Wu,“Full wave characterization of a through hole via using the matrix-penciled moment method,”IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1540–1547, Aug. 1994.
    [146]—,“Full-wave characterization of a through hole via in multi-layered packaging,”IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1073–1081, May 1995.
    [147] J. Yook, N. I. Dibb, L. P. B. Katehi,“Characterization of high frequency Interconnects using the Finite Difference Time Domain and Finite Element Methods”, IEEE Trans. Microwave Theory Tech., vol. 42, no. 9, pp. 1727-1735, September 1994.
    [148] S. Maeda, T. Kashiwa, and I. Fukai,“Full wave analysis of propagation characteristics of a through hole using the finite-difference time-domain method,”IEEE Trans. Microwave Theory Tech., vol. 39, pp. 2154–2159, Dec. 1991.
    [149] W. D. Becker, P. H. Harms, and R. Mittra,“Time-domain electromagnetic analysis of interconnects in a computer chip package,”IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2155–2163, Dec. 1992.
    [150] P. C. Cherry and M. F. Iskander,“FDTD analysis of high frequency electronic interconnection effects,”IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2445–2451, Oct. 1995.
    [151] E. Pillai and W. Wiesbeck,“Derivation of equivalent circuits for multilayer printed circuit board discontinuities using full wave models,”IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1774–1783, Sept. 1994.
    [152] P. M. Watson and K. C. Gupta,“EM-ANN models for microstrip vias and interconnects in dataset circuits,”IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2495–2503, Dec. 1996.
    [153] H. Chen, Q. Li, L. Tsang, C. C. Huang and V. Jandhyala,“Analysis of a large number of vias and differential signaling in multilayered structures,”IEEE Trans. Microwave Theory Tech., vol. 51, no. 3,pp. 818-829. Mar. 2003.
    [154] R. Abhari, G. V. Eleftheriades, E. van Deventer-Perkins,“Physics-based CAD models for the analysis of vias in parallel-plate environments”, IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1697-1707, October 2001.
    [155] J. Park, H. Kim, Y. Jeong, et al. ,“Modeling and measurement of the simultaneous switching noise coupling through signal vias,”IEEE trans. Adv. Packag., vol. 29, no. 3, pp. 548-559, Aug. 2006.
    [156] J. S. Park, H. Kim, J. Lee, J. kim,“modeling and measurement of radiated field emission from a power/ground plane cavity edge excited by a through-hole signal via based on a balanced TLM and via coupling model,”IEEE trans. Adv. Packag., vol. 30, no. 1, pp. 73-85, Feb. 2007.
    [157] S. G.-Talocia, and A. Ubolli,“on the generation of large passive macromodels for complex interconnect structure,”IEEE trans. Adv. Packag., vol. 29, no. 1, pp. 39-54, Feb. 2006.
    [158] B. Gustavsen and A. Semlyen,“Rational approximation of frequency responses by vector fitting,”IEEE Trans. Power Del., vol. 14, no. 3, pp. 1052–1061, Jul. 1999.
    [159] C. L. Holloway, and E. F. Kuester,“Closed-form expressions for the current densities on the ground planes of asymmetric stripline structure,”IEEE Trans. Electromagn. Compat., vol. 49, no. 1 pp. 49-57, Feb 2007.
    [160] T. Granberg, Handbook of digital techniques for high-speed design. Prentice Hall PTR, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700