聚合物驱提高原油采收率的最优控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱是一种提高采收率技术,已经在我国东部油田得到了广泛应用。聚合物是一种昂贵的化学产品,并且其注入是一个漫长而复杂的过程。为了科学地制定开发方案,获得更好的经济效益,本文基于最优控制方法研究了聚合物驱的注入策略。
     最优控制问题的性能指标为一定时间内原油开采获得的净现值,支配方程为描述聚合物驱替过程的渗流流体力学方程,并且考虑了聚合物最大用量和控制变量受限的不等式约束。建立了一个带有不等式约束的聚合物驱分布参数系统最优控制模型。
     对于无约束、控制约束和状态约束的最优控制问题,详细给出了基于控制向量参数化的求解方法。为了优化聚合物注入的切换时间,提出了一种时间节点参数化方法。通过带有时间参数的S形函数来近似分段常数参数化中的阶跃函数,从而能够根据微分的链式法则计算性能指标对时间参数的导数,进而可以采用基于梯度的方法求解参数化后的非线性规划问题。提出了一种改进的子空间截断牛顿法,用于求解惩罚函数法迭代过程中的仅带有决策变量边界约束的子优化问题。计算实例表明了时间节点参数化方法和子空间截断牛顿法在最优控制问题求解中的有效性。
     利用变分法推导了连续与离散情形聚合物驱最优控制问题的必要条件。对于二维连续模型,获得了连续形式的伴随方程及其边界条件。对于三维情形,获得了离散的伴随方程和边界条件。
     分别使用分段常数参数化方法和所提出的时间节点参数化方法求解聚合物驱最优控制问题。对于支配方程,提出了聚合物驱模型的全隐式有限差分方法。基于离散最优控制的必要条件求解伴随问题,通过在求解前向模型过程中计算和保存的数据,构造了离散的伴随方程的系数矩阵。建立了一个数值计算平台,实现了聚合物驱的三维数值模拟、最优控制问题求解以及一些通用的数值算法包。
     为了验证所提出的最优控制方法,针对两个油藏模型的聚合物驱问题进行了实例研究。其中一个是4注1采油藏模型。将水驱与聚合物驱仿真获得的含水率曲线与油藏数值模拟软件的结果相比较,表明了全隐式差分方法的准确性。在求解该实例的最优控制问题时考虑了三种情况:不同油价时无用量约束的净现值最大化、用量约束下的净现值最大化以及用量约束下的利润最大化问题。另一个实例来自胜利油田某实际区块,研究了其中7注5采一个井组的聚合物注入问题,获得了用量约束下的注入方案。针对上述两个实例中获得的每个方案,分别计算了净现值、采收率和原油产量。并将其与胜利油田所提供开发方案获得的数据相比较。结果表明,最优控制方法获得的开发方案能够显著地提高净现值和增加原油产量。
Polymer flooding is a kind of technique in enhanced oil recovery, which has been widely applied in the eastern oilfields of China. Polymer is a very expensive material and the injection process is a long complex process. For making the injection schemes scientifically and economically, an optimal control based approach was investigated in this dissertation.
     The performance index of the optimal control problem (OCP) is chosen as the net present value (NPV) gained from oil recovery over a given time. The governed equations are fluid flow equations through porous medium which describe the dynamic procedure of polymer flooding. The maximum usage of polymer and bound constraints of control variables are considered as inequality constraints in the OCP. An optimal control model of a distributed parameter system with inequality constraints is established for polymer flooding.
     The control vector parameterization (CVP) method is illustrated in detail to deal with the unconstrained, control constrained and state constrained OCP. A time node parameterization (TNP) method is proposed to optimize injection switch time of polymer injection, which use a sigmoid function with time node parameter to approximate the step function in piecewise constant parameterization method. The derivatives of the performance to time grid-nodes can be obtained by differential chain rule and then the gradient based optimization methods can be used to deal with the nonlinear programming problem (NLP) transformed from the OCP. An improved subspace truncated-Newton algorithm is given for the bound constrained optimization problem during the iterations of penalty function method. Several numerical examples show the effectiveness of TNP and subspace truncated-Newton algorithm for solving the OCP.
     The necessary conditions of the OCP for polymer flooding were deduced by using calculus of variations. Both continuous and discrete cases are studied. For continuous case, the continuous adjoint equations and boundary conditions are derived for a 2-D model. For discrete case, the discrete adjoint equations and boundary conditions are obtained for a 3-D model.
     The OCP of polymer flooding is numerically solved based on piecewise constant parameterization method and the proposed TNP method. A full implicit finite difference method is presented for the polymer flooding model. The adjoint problem is solved based on discrete optimality conditions and the discrete adjoint equations are constructed by the coefficient matrixes calculated and stored during the solution of the forward model. A computation platform is built up for the OCP, which includes a 3-D numerical simulator, an optimal control solver and a few general algorithm packages.
     Two cases are studied to verify the proposed optimal control approach for polymer flooding. One is a reservoir consisting of a production well and 4 injection wells. To show the accuracy of the full implicit finite difference method, the water cut curves from simulation of water flooding and polymer flooding are compared with those by using commercial reservoir simulation software. The OCP is established for this case and solved under three conditions which are NPV without polymer usage constraints and different oil price, NPV under usage constraints and profit performance under usage constraints. The other case is a reservoir coming from a part of reality region of the Shengli oilfield, which consists of 5 production wells and 7 injection wells. The injection strategies are obtained based on OCP under usage constraints. The NPV, recovery efficiency and oil production are calculated respectively for each solution of the OCP in the two cases. Compared these results with those from the given injection strategies of the Shengli oilfield, it is illustrated that the injection schemes obtained by the proposed approach can obviously increase the NPV and oil production.
引文
[1] Lee A. S., and J. S. Aronofsky. A Linear Programming Model for Scheduling Crude Oil Production [J]. Journal of Petroleum Technology. 1958, 10(7):51-54.
    [2] Leon Lasdon. Optimal Hydrocarbon Reservoir Production Policies. Operations Research, 1986, 34 (1): 40-54.
    [3]葛家理,赵立彦.成组气田开发最优规划及决策[M].油气田开发系统工程方法专辑(二).北京:石油工业出版社, 1991.
    [4] James W Mcfarland, Leon Lasdon et al. Development Planning and Management of Petroleum Reservoirs Using Tank Model and Nonlinear Programming. Operations Research [J], 1984, 32: 270-289.
    [5] Wackowski R K et al. Applying Rigorous Decision Analysis Methodology to Optimization of a Tertiary Recovery Project: Rangely Weber Sand Unit [J], Colorado. SPE24234, 1992.
    [6]李泽农,陈德泉等.油田开发规划优选模型研究[M].油气田开发系统工程方法专辑(二).北京:石油工业出版社, 1991.
    [7]齐与峰,朱国金.注水开发油田稳产规划自适应模型[M].油气田开发系统工程方法专辑(二).北京:石油工业出版社, 1991.
    [8]盖英杰,李树荣.油田开发规划优化理论与实践[M].东营:石油大学出版社, 2002.
    [9] Raphael Amit. Petroleum Reservoir Exploitation: Switching from Primary to Secondary Recovery. Operations Research [J], 1986, 34 (4): 534-549.
    [10]齐与峰,李力.油田开发总体设计最优控制模型[M].油气田开发工程方法专辑(二).北京:石油工业出版社, 1991.
    [11]戴家权,王勇,冯恩民.油气资源勘探与开发的不确定性分析及最优控制策略[J].系统工程理论与实践, 2004,24 (1): 35-40.
    [12] Chavent, C., Dupuy, M., and Lemonnier, P. History Matching by Use of Optimal Control Theory [C], paper SPE 4627, presented at the SPE-AIME 48th Annual Fall Meeting, Las Vegas, Nevada, 30 September -3 October, 1973.
    [13] Fasanino, G., Molinard, J.E, de Marsily G. et al. Inverse Modeling in GasReservoirs [C], paper SPE15592, presented at the 61st SPE Annual Technical Conference and Exhibition, New Orleans, Texas, 5-8 October, 1986.
    [14] [美] W.F.拉米雷.三次采用最优控制理论的应用[M].周显民,田保成译.黑龙江科学技术出版社. 1990.
    [15] W.FRED RAMIREZ. Application of optimal control to enhanced oil recovery [M]. Elsevier - Amsterdam– Oxford–New York–Tokyo, 1987.
    [16] W. Fred Ramirez, Zohreh Fathi, Jean Luc Cagnol. Optimal Injection Policies for Enhanced Oil Recovery: Part l - Theory and Computational Strategies [J]. Society of Petroleum Engineers Journal. June: 328-332, 1984 SPE (11285).
    [17] Zohreh Fathi, W. Fred Ramirez. Optimal Injection Policies for Enhanced Oil Recovery: Part 2–Surfactant Flooding [J]. Society of Petroleum Engineers Journal, June: 333-341, 1984, SPE (12814).
    [18] Fathi, Z., and Ramirez, W.F. Uses of Optimal Control Theory for Computing Optimal Injection Policies for Enhanced Oil Recovery [J], Automatic, 1985, 22(1): 33-42.
    [19] Jeffrey H. Harwell, Robert Schechter, William H. Wade. Optimal Injection Strategies for the Propagation of Surfactant Mixtures through Porous Media [J]. Society of Petroleum Engineers Journal, Oct, 1984:545-554.
    [20] W. Fred Ramirez, Patrick J. Shuler, Francois Friedman. Convection, Dispersion, and Adsorption of Surfactants in Porous Media [J]. Society of Petroleum Engineers Journal, Dec, 1980: 430-438.
    [21]齐与峰.蒸汽注入过程的最优控制[M].油气田开发工程方法专辑(二).北京:石油工业出版社, 1991.
    [22]叶继根,齐与峰,方义生.应用最优控制理论研究凝析气田循环注气开发决策[J].计算物理, 1998, 15(1):71-76.
    [23]叶继根,吴向红.油气藏三维三相组分模型软件研制与应用[J].计算物理. 2000, 17(5): 548-552.
    [24]刘昌贵.注气提高石油采收率最优控制的理论、方法和实现[D],西南石油学院, 2002.
    [25] Brouwer D.R. and Jansen J.D. Dynamic optimization of water flooding with smart wells using optimal control theory [C]. paper SPE 78278 presented at the SPE13th European Petroleum Conference, Aberdeen, Scotland, U.K., 29–31 October 2002.
    [26] Brouwer D.R.,Dynamic Water Flood Optimization with Smart Wells using Optimal Control Theory [J]. Delft: Technische Universiteit Delft, 2004.
    [27] Sarma P., Aziz K. and Durlofsky L.J. Implementation of adjoint solution for optimal control of smart wells [C]. paper SPE 92864 presented at the 2005 SPE Resevoir Simulaiton Symposium, Houston, Texas, U.S.A., 31 January 2005-2 February 2005.
    [28] Sarma P., Chen W.H., Durlofsky L.J. and Aziz K. Production optimization with adjoint models under nonlinear control-state path inequality constraints[C]. paper SPE 99959 presented at the 2006 SPE Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands, 11-13 April 2006.
    [29] M.J. Zandvliet, O.H. Bosgra, J.D. Jansen, et al. Bang-bang control and singular arcs in reservoir flooding [J]. Journal of Petroleum Science & Engineering. 2007, 58: 186-200.
    [30] S. Effati, M. Janfada, M. Esmaeili, H. Roohparvar. Solving of optimal control problem of parabolic PDEs in exploitation of oil by iterative dynamic programming [J]. Applied Mathematics and Computation. 2006, 181: 1505-1512.
    [31]老大中.变分法基础[M].北京:国防工业出版社, 2004.
    [32] George Leitann. The Calculus of Variations and Optimal Control [M]. New York: Plenum Press, 1981.
    [33]解学书.最优控制理论与应用[M].北京:清华大学出版社, 1986.
    [34]吴沧浦.最优控制的理论与方法.第2版[M].北京:国防工业出版社, 2000.
    [35]高学东,周儒欣.最优控制的结构化理论[M].北京:冶金工业出版社, 1996
    [36]王康宁.最优控制的数学理论[M].北京:国防工业出版社, 1995.
    [37]张光澄.最优控制计算方法[M].成都:成都科技大学出版社, 1991.
    [38]邢继祥,张春蕊,徐洪泽.最优控制应用基础[M].北京:科学出版社, 2003.
    [39] R. Luus, Optimal control by dynamic programming using accessible grid points and region reduction [J], Hung. J. Ind. Chem. 17 (1989) 523-6543.
    [40] R. Luus, Optimal control by dynamic programming using systematic reduction in grid size [J], Int. J. Control 19 (1990) 995–1013.
    [41] R. Luus, Iterative Dynamic Programming [M], Chapman and Hall/CRC, London, UK, 2000.
    [42]宋菁,曹竹安.迭代动态规划在系统最优化中的应用[J].化工学报, 50(1), 1999: 125-129.
    [43] Narendra Nath Kota. Computational Methods for Nonlinear Optimal Control Problems [D]. University of Iowa, 1996.
    [44]张洪钺,王青.最优控制理论于应用[M].北京:高等教育出版社,2006.
    [45] Canon, M.D., Cullum, C.D. & Polak,E. Theory of Optimal Control and Nonlinear Programming [M], McGraw-Hill, New York, 1970.
    [46] David Benson. A Gauss Pseudospectral Transcription for Optimal Control [D]. Massachusetts Institute of Technology, 2005.
    [47] Rosenbrock, H.H. & Storey, C. Computational Techniques for Chemical Engineers [M], Pergamon, Oxford, UK, 1966.
    [48] T. Binder, A. Cruse, C.A. Cruz Villar, W. Marquardt. Dynamic optimization using a wavelet based adaptive control vector parameterization strategy [J]. Computers & Chemical Engineering, 2000, 24: 1201-1207.
    [49] Martin Schlegel, Klaus Stockmann, Thomas Binder, Wolfgang Marquardt. Dynamic optimization using adaptive control vector parameterization [J]. Computers & Chemical Engineering, 2005, 29: 1731-1751.
    [50]高雷阜.最优化理论与方法[M].沈阳:东北大学出版社,2005.
    [51]刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社, 1999.
    [52] Jorge Nocedal and Stephen J Wright. Numerical Optimization [M]. Springer-Verlag New York, 1999.
    [53] MOKHTAR S. BAZARRA, HANIF D.SHERALI AND C.M. SHETTY. Nonlinear Programming-Theory and Algorithms 3rd [M]. 2005. John Wiley & Sons, Inc, 2006.
    [54]王英勋,陈宗基.基于遗传算法(GA)的具有约束的飞行轨迹规划[J].北京航空航天大学学报. 1999, 25(3): 355-358.
    [55] Mangesh D. Kapadi, Ravindra D.Gudi. Optimal control of fed-batch fermentation involving multiple feeds using Differential Evolution [J]. Process Biochemistry, vol. 39, pp. 1709-1721, 2004.
    [56]曾进,任庆生.基于改进遗传算法的时间最优控制问题求解[J].控制与决策. 2002, 17(1): 41-44.
    [57] Inge Spangelo. Trajectory Optimization for Vehicles Using Control Vector Parameterization and Nonlinear Programming [D]. Department of Engineering Cybernetics The Norwegian Institute of Technology, Trondheim, Norway, 1994.
    [58] Philip E. Gill, Laurent O. Jay, Michael W. Leonard, et al. An SQP method for the optimal control of large-scale dynamical systems [J]. Journal of Computational and Applied Mathematics. 2000, 120: 197-213.
    [59]林卫东.无约束离散最优控制问题分段序列二次规划方法[J].纯粹数学与应用数学. 1998, 14(1): 66-73.
    [60]叶峰,邵之江,梁昔明,钱积新.四种无约束优化算法的比较研究[J].数学的实践与认识, 2004,34(5): 108-112.
    [61] Conn A R, Gould N I M, Toint P L. Numerical experiments with LANCELOT package (release A) for large-scale nonlinear optimization [J]. Math Prog, 1996, 73(1): 73-110.
    [62] C. Zhu, RH. Byrd, P. Lu, J. Nocedal, L-BFGS-B Fortran subroutines for large-scale bound constrained optimization [J], Report NAM-11, EECS Department, Northwestern University, 1994.
    [63]倪勤,袁亚湘. SLMQN:一个解大规模边界约束非线性规划子空间有限存储拟牛顿方法的FORTRAN优化软件[J].数值计算与计算机应用, 1997, 3: 173-179.
    [64]梁昔明,蔡自兴.大规模界约束极小化问题的有效集截断牛顿法[J].中南工业大学学报, 2002,33(1): 82-86.
    [65]梁昔明,钱积新.大规模界约束优化的子空间截断牛顿法[J].浙江大学学报(理学版), 2002, 29(1): 494-499.
    [66] Ismail Kucuk, Ibrahim Sadek. An efficient computational method for the optimal control problem for the Burgers equation [J]. Mathematical and Computer Modeling, 44 (2006) 973-982.
    [67] J.C. Bruch Jr.a,b, I.S. Sadek etc. A maximum principle approach to optimal control for one-dimensional hyperbolic systems with several state variables [J]. Journal of the Franklin Institute 343 (2006) 480-494.
    [68] C.-H. Huang, C.-C. Tsai. An inverse heat conduction problem of estimating boundary fluxes in an irregular domain with conjugate gradient method [J]. Heat and Mass Transfer 34 (1998) 47-54.
    [69] Cheng-Hung Huang, Chun-Yu Li. A three-dimensional optimal control problem in determining the boundary control heat fluxes [J]. Heat and Mass Transfer 39 (2003) 589-598.
    [70] Cheng-Hung Huang, Shao-Pei Wang. A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method [J]. International Journal of Heat and Mass Transfer 42 (1999) 3387-3403.
    [71] Cheng-Hung Huang, Wei-Chung Chen. A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method [J]. International Journal of Heat and Mass Transfer 43 (2000) 3171-3181.
    [72] J. Taler, P. Duda. A space marching method for multidimensional transient inverse heat conduction problems. Heat and Mass Transfer 34 (1999) 349-356.
    [73] N. M. AL-Najem. Whole time domain solution of inverse heat conduction problem in multi-layer media [J]. Heat and Mass Transfer 33 (1997) 233-240.
    [74]刘浩.溢油逆时追踪问题的数值模拟[D].大连海事大学,大连, 2003.
    [75] Jeff Borggaard and John Burns. A PDE Sensitivity Equation Method for Optimal Aerodynamic Design [J]. Journal of Computational Physics, vol. 136, pp. 366-384, 1997.
    [76] Shengtai Li, Linda Petzold, Software and algorithms for sensitivity analysis of large-scale differential algebraic systems [J]. Journal of Computational and Applied Mathematics, vol. 125, pp. 131-145, 2000.
    [77]吴惕华,李双虎,李华.工业分布参数系统的最优控制[J].河北省科学院学报, 1998, 2: 1-8.
    [78] Speyer, J.L., Kelley, H.J., Levine, H.J. & Denham, W.F. Accelerated gradient projection technique with application to rocket trajectory optimization [J]. Automatica, 1971, 7: 37-43.
    [79] Hsieh, C.C. & Arora, J.S. Design sensitivity analysis and optimization of dynamic response. Computer Methods in Applied Mechanics and Engineering, 1984,43: 195-219.
    [80] Brusch, R.G. A nonlinear programming approach to space shuttle trajectoryoptimization [J]. Optimization Theory and Applications, 1974, 13: 94-118.
    [81] Brusch, R.G. & Peltier, J.P. Parametric control models and gradient generation by impulsive response [J]. Proceedings IAF Congress, Baku, 1973.
    [82] Athans. M, Falb. P. L. Optimal Control. An introduction to the theory and its application [J], McGraw-Hill Book Company, New York, 1966.
    [83] YANG CAO, SHENGTAI LI, LINDA PETZOLD and RADU SERBAN. Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE Systemand its Numerical Solution [J]. SIAM J. SCI. COMPUT. 2003, 24(3): 1076-1089.
    [84] Shengtai Li, Linda Petzold, Wenjie Zhu. Sensitivity analysis of differential–algebraic equations: a comparison of methods on a special problem. Applied Numerical Mathematics [J]. 2000, 32: 161-174.
    [85] DERYA B. OZYURT AND PAUL I. BARTON.CHEAP SECOND ORDER DIRECTIONAL DERIVATIVES OF STIFF ODE EMBEDDED FUNCTIONALS [J]. SIAM J. SCI. COMPUT. 2005, 26(5): 1725-1743.
    [86] Derya B. Ozyurt and Paul I. Barton. Large-Scale Dynamic Optimization Using the Directional Second-Order Adjoint Method [J]. Ind. Eng. Chem. Res. 2005, 44: 1804-1881.
    [87] Eva Balsa Canto, Julio R. Banga, and Antonio A. Alonso, etc. Dynamic optimization of chemical and biochemical processes using restricted second-order information [J]. Computers and Chemical Engineering, vol. 25, pp. 539-546, 2001.
    [88] Eva Balsa Canto, Julio R. Banga, and Antonio A. Alonso, etc. Restricted second order information for the solution of optimal control problems using control vector parameterization [J]. Journal of Process Control, vol. 12, pp. 243-255, 2002.
    [89]葛家理,宁正福,刘月田等.现代油藏渗流力学原理[M].北京:石油工业出版社, 2003.
    [90]孔祥言.高等渗流力学基础[M].合肥:中国科学技术大学出版社, 1999.
    [91]陈月明.油藏数值模拟基础[M].东营:石油大学出版社, 1989.
    [92]刘慧卿.油藏数值模拟方法专题[M].东营:石油大学出版社,2001.
    [93]王晓冬.渗流力学基础[M].北京:石油工业出版社, 2006.
    [94]韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社, 2001.
    [95]塔雷克.艾哈迈德.油藏工程手册[M].冉新权,何江川译.北京:石油工业出版社, 2002.
    [96]孙焕泉,张以根,曹绪龙.聚合物驱油技术[M].东营:石油大学出版社, 2002.
    [97]肖伟,石成方等.聚合物驱油计算理论方法[M].石油工业出版社, 2004.
    [98]陈铁龙.三次采油概论[M].北京:石油工业出版社, 2000.
    [99]胡博仲,刘恒,立林.聚合物驱采油工程[M].北京:石油工业出版社, 1997.
    [100]张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及其提高驱油效率的机理[J].大庆石油地质与开发, 2002, 21(4): 57-60.
    [101]侯健,李振泉等.系统方法在注聚方案优化设计中的应用研究[J].河南石油, 2001, 15(3): 35-38.
    [102]韩培慧,董志林,张庆茹.聚合物驱油合理用量的选择[J].大庆石油地质与开发, 1999, 18(1): 40-41.
    [103]李宜强,张素梅等.泡沫复合驱物理模拟相似原理[J].大庆石油学院学报, 2003, 27(2) :93-95.
    [104]李宜强,孙连荣等.三元复合驱物理模拟相似原理[J].大庆石油学院学报, 2003, 27(2): 89-92.
    [105] Charles P. Thomas, Paul D. Fleming III, William K. Winter. A Ternary, Two-Phase, Mathematical Model of Oil Recovery with Surfactant Systems[J]. Society of Petroleum Engineers Journal. SPE(12934), Dec, 1984: 606-616.
    [106] Ye Jigen, Qi Yufen and Fang Yisheng. Application of Optimal Control Theory to Making Gas-Cycling Decision of Condensate Reservoir [J]. Chinese Journal of Computational Physics, Vol. 15, No. 1, Jan 1998, pp.71-76.
    [107] Yuan Shiyi, Yang Puhua. A Mathematical Model of Alkali Combination Flooding [J]. ACTA PETROLEI SINICA, Vol.15, No.1, Apr 1994, pp.76-88.
    [108] Karin Mannhardt, Idar Svorstol. Surfactant concentration for foam formation and propagation in Snorre reservoir core [J]. Journal of Petroleum Science and Engineering. 2001, 30: 105-119.
    [109]袁士义,杨普华.碱复合驱数学模型[J].石油学报, 1994, 15(2): 76-88.
    [110]侯健,李振泉等.考虑扩散和吸附作用的聚合物驱替过程渗流数值模拟[J].计算物理, 2003, 20(3):239-244.
    [111]侯健.用流线方法模拟碱/表面活性剂/聚合物三元复合驱[J].石油大学学报(自然科学版), 2004, 28(1): 58-62.
    [112]张德志,姚军,王友启.聚合物驱油藏数值试井解释方法研究[J].石油钻探技术. 2006, 34(3): 71-74.
    [113]李振泉,祝仰文等.三维非均质模型上聚合物及有机交联聚合物提高采收率研究[J].油田化学, 2002, 19(1): 73-76.
    [114]张德志,姚军,王友启.聚合物驱油藏数值试井解释方法研究[J].石油钻探技术. 2006, 34(3): 71-74.
    [115]王新海.聚合物驱数值模拟主要参数的确定[J].石油勘探与开发, 1990, 17(3): 69-76.
    [116] D.尤金. Mathematica使用指南[M].邓建松,彭冉冉译.北京:科学出版社, 2002.
    [117]丁大正.科学计算强档Mathematica4教程[M].北京:电子工业出版社, 2002.
    [118]徐长发.实用偏微分方程数值解法[M].武昌:华中理工大学出版社, 1990.
    [119]胡健伟,汤怀民.微分方程数值方法[M].北京:科学出版社, 2003.
    [120]陆金甫,顾丽珍,陈景良.偏微分方程差分方法[M].北京:高等教育出版社, 1988.
    [121] K.W. Morton, D.F. Mayers. Numerical Solution of Partial Differential Equations [M]. POST & TELECOM PRESS, 2006.
    [122] M. Afif, B. Amaziane. On convergence of finite volume schemes for one-dimensional two-phase flow in porous media [J]. Journal of Computational and Applied Mathematics, 2002, 145:31-48.
    [123] MinYanga, YirangYuan. A symmetric characteristic FVE method with second order accuracy for nonlinear convection diffusion problems [J]. Journal of Computational and Applied Mathematics, 2007, 200(2):677-700.
    [124] Xin-qiang Qin, Yi-chen Ma. Two-grid scheme for characteristics finite-element solution of nonlinear convection diffusion problems [J]. Applied Mathematics and Computation 165 (2005) 419-431.
    [125] MARTIN J C, WEGNER R E. Numerical solution of multiphase, two-dimensional incompressible flow using stream-tube relationships [J]. SPEJ, 1979, 19(10): 313- 323. POPE GA and NELSON R C. A chemical flooding composition simulator. SPEJ, 1978, 18(10): 339 - 354.
    [126]哈利德.阿齐兹,安东尼.塞特瑞.油藏数值模拟[M].袁士义,王家禄译.石油工业出版社, 2004.
    [127]章根德,刘曰武.多孔介质中流体流动的细观-宏观模拟[J].岩石力学与工程学报, 2000, 19:1006-1013.
    [128] Alexander Kurganov, Eitan Tadmory. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations[J]. Journal of Computational Physics 160, 241-282 (2000).
    [129]邓卫兵,陈玉娟.带非线性边界条件的反应扩散方程的数值方法[J].高等学校计算数学学报, 2000, 4:353-361.
    [130] A. Kulikovsky. Simple and Accurate Scheme for Nonlinear Convection–Diffusion Equation [J]. Journal of Computational Physics 173, 716-729 (2001).
    [131] N. M. Ivanovaa, C. Sophocleousb. On the group classification of variable-coefficient nonlinear diffusion–convection equations [J]. Journal of Computational and Applied Mathematics, 197 (2006) 322-344.
    [132] Takanori Ide, Masami Okada. Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method [J]. Journal of Computational and Applied Mathematics 194 (2006) 425-459.
    [133]侯健,王玉斗,陈月明.聚合物驱数学模型的流线方法求解[J].水动力学研究与进展, 2002, 17(3):343-352.
    [134]张德志,姚军.聚合物驱两相流试井参数敏感性[J].计算物理, 2006, 23(4): 425-430.
    [135]胡键伟,赵志勇,薛运华等译. C++数值算法[M].北京:电子工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700