以苯并三唑为主的多种含氮杂环构筑共轭聚合物及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物由于具有良好的环境和热稳定性,多样化的种类,可柔性加工性和有趣的光电特性,在有机半导体领域应用广泛。杂环化合物引入到共轭聚合物会产生特殊的电子结构变化和不同的光电性能,可作为聚合物发光二极管材料,聚合物场效应晶体管和聚合物太阳电池给体材料。在有机发光二极管中含杂环单元的聚合物作为发光活性层,可制备红绿蓝三色可见光和白光器件。杂环化合物作为缺电子单元与富电子单元共聚可得到多种窄带隙聚合物,与太阳光谱更加匹配,提高太阳光能利用率。
     本论文是从研究苯并三唑杂环开始,首先合成4,7-二噻吩-2-十二烷基-2,1,3-苯并三唑单体,并与常见的给电子单元芴,咔唑和烷氧基苯通过Suzuki缩聚反应得到三个交替聚合物PF-DTBTA, PCz-DTBTA和PPh-DTBTA。当聚合物与受体PCBM的共混比为1:2时,对于聚合物PF-DTBTA、PCz-DTBTA和PPh-DTBTA作为给体并且Al作为阴极的器件来说,电池效率分别是0.9%,1.51%和1.16%。当用PFN/Al作双层阴极时,如果相对于Al作为阴极开路电压有损失就会被恢复弥补。对于苯并三唑类聚合物,当阴极是PFN和Al双层时,由于苯并三唑类给体聚合物和PFN层有N-N相互作用,短路电流和填充因子会有相应的提高;从而对于聚合物PF-DTBTA、PCz-DTBTA和PPh-DTBTA作为电子给体说,相应的电池效率可以提高到1.3%, 2.75%和1.39%。电池效率提高最多的是聚合物PCz-DTBTA作为给体的器件,增幅有80%,这暂时归因于是咔唑单元和PFN层有额外的氮-氮相互作用。这些结果对研究电池器件界面修饰来说是有用的。我们的结果也表明双层阴极是有提高太阳电池效率的潜力的。
     第三章合成了一系列芴和二噻吩苯并三唑单元共聚的聚合物获得高效黄光,橙光和白光聚合物发光二极管。共聚物PF-DTBTA0.03?15是无规聚合物,而共聚物PF-DTBTA50是交替聚合物。八个能量转移型共聚物的薄膜具有高的光致发光外量子效率,在60?72%范围。共聚物PF-DTBTA1?15是黄光聚合物,外量子效率高达5.78%,而共聚物PF-DTBTA50是橙光聚合物,外量子效率约为3.3%。单元DTBTA含量高的交替聚合物PF-DTBTA50获得高的PL效率和外量子效率表明单元DTBTA是在固态PL和EL过程中受低浓度淬灭效应影响的高效发色团。由于从芴链段单元部分能量转移到单元DTBTA,单元DTBTA较低含量的共聚物PF-DTBTA0.03?0.1获得白光电致发光。在白光发光二极管中我们获得了流明效率高达11 cd/A的非掺杂单一白光聚合物。
     第四章合成了二噻吩并苯单体,并与苯并三唑,二噻吩苯并三唑,喹喔啉,二噻吩喹喔啉和吡咯并吡咯二酮缺电子单元共聚得到五个交替聚合物PBDT-BTA, PBDT-DTBTA, PBDT-Q, PBDT-DTQ和PBDT-PhDPP。不同聚合物太阳电池器件的开路电压与聚合物的HOMO能级是相反关系。对聚合物PBDT-BTA和PBDT-DTBTA的化学结构进行比较,额外多出的噻吩单元能减少聚合物的有效共轭长度,以至于聚合物的HOMO能降低和相应的开路电压变大。噻吩桥的作用同样对聚合物PBDT-Q也是有效的。聚合物PBDT-PhDPP为给体的器件,使用不同阴极,发现双层阴极可以提高其开路电压,并且PFN/铝阴极提高最多。
     第五章首次合成了两种基于烷氧基不同位置取代的喹喔啉的菲共聚物,作为聚合物给体材料应用在体异质结聚合物太阳电池。对比对位取代和间位取代,对位取代的聚合物可以拉低聚合物的HOMO能级和LUMO能级。尽管如此,聚合物器件开路电压却不是相同的结果,对位取代的反而高些。器件结果表明对位烷氧基取代苯的喹喔啉聚合物PPN-p-DTQ与PCBM共混比为1:2的器件开路电压比相同共混比例下的间位烷氧基取代苯的喹喔啉聚合物PPN-m-DTQ的较低一点,然而在共混比为1:4,器件开路电压的情况相反。
Conjugated polymers are widely utilized in organic semiconductor device due to their excellent environmental stability, thermal stability, diversity, processability and interesting optoelectronic properties. Incorporating heterocycles into conjugated polymers could induce the change of electronic properties of conjugated polymers, and different optoelectronic properties, which are candidates for polymer light-emitting diodes, polymer field-effect-transistor and polymer solar cells. Heterocycle-based copolymers as the active layer can emit red, green, blue and white light in OLED. Copolymers of heterocycle compounds as electron-poor unit and electron-rich unit as comonomer are widely used in BHJ PVCs to match the spectra of solar photons and effectively utilize it.
     In the beginning, this dissertation is focusing on the optoelectronic properties of benzotriazole unit. In chapter 2, three BTA-based conjugated polymers PF-DTBTA, PCz-DTBTA, and PPh-DTBTA, with electron-donating segments of fluorene, carbazole, and dialkoxybenzene respectively, were successfully synthesized as new polymeric donors in BHJ PVCs. Using PFN/Al bilayer cathode could elevate Voc if Voc loss was encountered when using Al cathode. Using PFN/Al bilayer cathode could also improve Isc and FF for the three BTA-based copolymers, from which N-N interactions between the BTA-based polymers and the PFN were proposed. Consequently, PFN/Al bilayer cathode elevated PCE values. The most significant increasing of PCE with a calculated value of 80% was found for PCz-DTBTA as the donor, and this might be related to the additional N-N interactions between the carbazole segments and the PFN. The results would supply useful information to understand the contribution of an interfacial layer on the photovoltaic performances. Our results also suggest that the bilayer cathode would have great potential to elevate PCE of BHJ PVCs.
     In chapter 3, a series of conjugated polymers PF-DTBTA derived from 2,7-fluorene and 4,7-dithienylbenzotriazole (DTBTA) were developed for high efficiency PLEDs with multi-colors of yellow, orange, and white lights. The PF-DTBTA0.03?15 are random copolymers while the PF-DTBTA50 is an alternating copolymer. PF-DTBTA1?15 showed yellow EL with EQEmax up to 5.78% while PF-DTBTA50 displayed orange EL with EQEmax of 3.3%. The highΦPL and EQEmax of PF-DTBTA50 with very high DTBTA content indicate that DTBTA is a high efficiency chromophore with very low concentration quenching effects in the solid state PL and EL processes. Introducing very low DTBTA contents in PF-DTBTA0.03?0.1 achieved white EL due to partial energy transfer from fluorene segments to the DTBTA units. WPLEDs with maximum luminous efficiency (LEmax) up to 11 cd/A could be realized from the non-doped single-polymer.
     In chapter 4, five BDT-based conjugated polymers PBDT-BTA, PBDT-DTBTA, PBDT-Q, PBDT-DTQ, and PBDT-PhDPP, with electron-accepting segments of benzotriazole, 4,7-dithienylbenzotriazole, 2,3-bis(4-octyloxyphenyl)quinoxaline, and 5,8-bis(thiophen- 2-yl)-2,3-bis(4-octyloxyphenyl)quinoxaline and 1,4-diketo-2,5-di(2-ethylhexyl)-3,6-diphenyl- pyrrolopyrrole, respectively, were successfully synthesized as new polymeric donors in BHJ PVCs. We found that the Voc of the devices varied inversely with the HOMO level of the electron donor materials. Compared with the chemical structure of the copolymers PBDT-BTA and PBDT-DTBTA, the additional thiophene unit could decrease the effect conjugated length of the copolymer, which results in low-lying HOMO level of the copolymer and higher Voc of the devices based on this copolymer. Similarly, the effect of thiophene spacer also works on the couple of copolymer PBDT-Q and PBDT-DTQ. In contrast with the device based on copolymer PBDT-PhDPP using Al as cathode, the bilayer cathodes such as PFN/Al, LiF/Al and Ca/Al could improve the Voc, of which the highest Voc value is obtained from the PFN/Al cathode.
     In chapter 5, for the first time, two quinoxaline-based copolymers PPN-p-DTQ and PPN-m-DTQ, with the different substitutions of octyloxy groups and phenanthrene as electron-donating segment, were successfully synthesized as new polymeric donors in polymer solar cells. The octyloxy substituents added to the para position of the phenyl rings on the quinoxaline monomer can push down the HOMO level and the LUMO level of the copolymer, which contrast the case of the copolymer with octyloxy sbustituents on the meta position of the phenyl rings on the quinoxaline unit. Nevertheless the Voc of the devices based on the two copolymers is not consistent with the HOMO level of these copolymers.
引文
[1] Burroughes J. H., Bradley D. D. C., Brown A.R., et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347: 539-541
    [2] Shirakawa H.; Louis E.J.; MacDiarmid A.G., et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene [J]. Chemical Communications, 1977: 578-580
    [3] Chiang C.K.; Fincher C.R.; Jr., et al. Electrical conductivity in doped polyacetylene [J]. Physical Review Letters, 1977, 39: 1098-1101
    [4] Braun D., Heeger A.J. Visible light emission from semiconducting polymer diodes [J]. Applied Physics Letters, 1991, 58 (18): 1982-1984
    [5] Gustafsson G.; Cao Y.; Treacy G.M., et al. Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357: 477-479
    [6] Chao C.-I., Chen S.-A. White light emission from exciplex in a bilayer device with two blue light-emitting polymers [J]. Applied Physics Letters, 1998, 73 (4): 426-428
    [7] Groenendaal B.L.; Jonas F.; Freitag D., et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future [J]. Advanced Materials, 2000, 12 (7): 481-494
    [8] Cao Y.; Yu G.; Zhang C., et al. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode [J]. Synthetic Metals, 1997, 87 (2): 171-174
    [9] Elschner A.; Bruder F.; Heuer H.W., et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes [J]. Synthetic Metals, 2000, 111: 139-143
    [10] Heeger A. J. Primary photoexcitations in conjugated polymers: Molecular Exciton versus semiconductor band model, Sariciftci, N. S., Eds., World Scientific
    [11] Brown A. R., Pichler K., Greenham N. C., et al. Optical spectroscopy of triplet excitons and charged excitations in ppv light emitting diodes [J]. Chemistry Physical Letter, 1993, 210: 61
    [12] Baldo M. A., O’Brien D. F., Thompson S. R., et al. Excitonic singlet-triplet ratio is a semiconducting organic thin film [J]. Physical Review B, 1999, 60: 14422
    [13] Adurodija F. O., Izumi H., Ishihar T. Highly conducting indium tin oxide (ITO) thin films deposited by pulsed laser ablation [J]. Thin Solid Films, 1999, 350: 79-84
    [14] Xu Y. H., Peng J. B., Mo Y. Q., Hou Q., Y Cao. Efficient polymer white light emitting diodes [J]. Applied Physics Letters, 2005, 86, 163502.
    [15] Lee Y.Z., Chen X.W., Chen M.C., Chen S.A. White-light electroluminescence from soluble oxadiazole-containing phenylene vinylene ether-linkage copolymer[J]. Applied Physics Letters, 2001,79,308
    [16] Tu G.L., Zhou Q.G., Cheng Y.X., Geng Y.H., Wang L.X., Ma D.G., Jing X.B., Wang F.S. Synthesis and properties of polyfluorenes containing 1,8-naphthalimide moieties for white electroluminescence [J]. Synthetic Metals, 2005, 152, 233
    [17] Tu G.L., Mei C.Y., Zhou Q.G., Cheng Y.X., Geng Y.H., Wang L.X., Ma D.G., Jing X.B., Wang F.S. Highly Efficient Pure-White-Light-Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties[J]. Advanced Functional Materials, 2006, 16, 101
    [18] Liu J., Zhou Q.G., Cheng Y.X., Geng Y.H., Wang L.X., Ma D.G., Jing X.B., Wang F.S. White Electroluminescence from a Single-Polymer System with Simultaneous Two-Color Emission: Polyfluorene as the Blue Host and a 2,1,3-Benzothiadiazole Derivative as the Orange Dopant on the Main Chain[J]. Advanced Functional Materials, 2006, 16, 957
    [19] Liu J., Guo X., Bu L.J., Xie Z.Y., Cheng Y.X., Geng Y.H., Wang L.X., Jing X.B., Wang F.S. White Electroluminescence from a Single-Polymer System with Simultaneous Two-Color Emission: Polyfluorene as Blue Host and 2,1,3-Benzothiadiazole Derivatives as Orange Dopants on the Side Chain[J]. Advanced Functional Materials, 2007, 17, 1917
    [20] Liu J., Shao S.Y., Chen L., Xie Z.Y., Cheng Y.X., Geng Y.H., Wang L.X., Jing X.B., Wang F.S. White Electroluminescence from a Single Polymer System: Improved Performance by Means of Enhanced Efficiency and Red-Shifted Luminescence of the Blue-Light-Emitting Species[J]. Advanced Materials, 2007, 19, 1859
    [21] Lee S.K., Jung B., Ahn T., Jung Y.K., Lee J., Kang I., Lee J., Park J., Shim H.K. White Electroluminescence From a Single Polyfluorene Containing Bis-DCM Units[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45, 3380
    [22] Liu J., Zhou Q.G., Cheng Y.X., Geng Y.H., Wang L.X., Ma D.G., Jing X.B., Wang F.S. The First Single Polymer with Simultaneous Blue, Green, and Red Emission for White Electroluminescence[J]. Advanced Materials, 2005, 17, 2974
    [23] Jiang J.X., Xu Y.H., Yang W., Guan R., Liu Z.Q., Zhen H.Y., Cao Y. High-Efficiency White-Light-Emitting Devices from a Single Polymer by Mixing Singlet and Triplet Emission[J]. Advanced Materials, 2006, 18, 1769
    [24] Liu J., Xie Z.Y., Cheng Y.X., Geng Y.H., Wang L.X., Jing X.B., Wang F.S. Molecular Design on Highly Efficient White Electroluminescence from a Single-Polymer System with Simultaneous Blue, Green, and Red Emission[J]. Advanced Materials, 2007, 19, 531
    [25] Wu W.C., Lee W.Y., Chen W.C. New Fluorene-Acceptor Random Copolymers: Towards Pure White Light Emission from a Single Polymer [J]. Macromolecular Chemistry and Physics, 2006, 207, 1131
    [26] Luo J., Li X.Z., Hou Q., Peng J.B., Yang W., Cao Y. High-Efficiency White-Light Emission from a Single Copolymer: Fluorescent Blue, Green, and Red Chromophores on a Conjugated Polymer Backbone[J]. Advanced Materials, 2007, 19, 1113
    [27] Smilowitz L. , Sariciftci N. S. , Wu R. , Gettinger C. , Heeger A. J. , Wudl F. Photoexcitation spectroscopy of conducting-polymer–C60 composites: Photoinduced electron transfer[J]. Physical Review B, 1993, 47, 13853
    [28] Sariciftci N. S. , Braun D. , Zhang C. , Srdanov V. I. , Heeger A. J. , Stucky G. , Wudl F. Semiconducting polymer‐ buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells[J]. Applied Physics Letters, 1993, 62, 585
    [29] Yu G., Gao J., Hummelen J.C., Wudl F., Heeger A.J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a network of Internal Donor-Acceptor Heterojunctions[J] Science. 1995, 270, 1789
    [30] Brabec C.J. Organic photovoltaics: technology and market [J]. Solar Energy Material and Solar Cells, 2004, 83, 273
    [31] Brabec C., Zerza G., Cerullo G., et al. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time [J]. Chemical Physics Letters, 2001, 340, 232
    [32] Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic solar cells [J]. Advanced Functional Materials, 2001, 11, 15-26
    [33] Frohne, H.; Shaheen, S. E.; Brabec, C. J., Influence of the anodic work function on the performance of organic solar cells [J]. Chemphyschem: a European journal of chemicalphysics and physical chemistry, 2002, 3, (9), 795
    [34] Zhang, T.; Ceder, M.; Inganas, O., Enhancing the photovoltage of polymer solar cells by using a modified cathode [J]. Advanced Materials, 2007, 19, (14), 1835
    [35] Hoppe H., Sariciftci N., Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells[J]. Journal of Material Chemistry, 2006, 16, 45
    [36] Shaheen S., Brabec C.J., Sciriciftci N.S., et al. 2.5% Efficient Organic Plastic Solar Cells[J]. Applied Physics Letters, 2001, 78, 841
    [37] Zheng L., Zhou Q., Deng X., et al. Methanofullerenes Used as Electron Acceptors in Polymer Photovoltaic Devices[J]. Journal of Physics Chemistry B, 2004, 108, 11921
    [38] Wang L., Liu Y., Jiang X., et al. Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorod Solar Cells[J]. The Journal of Physics Chemistry C, 2007, 111, 9538
    [39] Schilinsky P , Asawapirom U , Scherf U , et al. Influence of the Molecular Weight of Poly(3-hexylthiophene) on the Performance of Bulk Heterojunction Solar Cells[J]. Chemistry of Materials, 2005, 17, 2175
    [40] Kim Y., Cook S., Kirkpatrick J., McCulloch I. et al. Effect of the end group of regioregular poly(3-hexylthiophene) polymers on the performance of polymer/ fullerene solar cells[J]. The Journal of Physics Chemistry C, 2007, 111, 8137
    [41] Shi C.J., Yao Y., Yang Y., Pei Q.B. Regioregular Copolymers of 3-Alkoxythiophene and Their Photovoltaic Application[J]. Journal of the American Chemistry Society, 2006, 128, 8980
    [42] Rémi de B, Leroy J, Firon M, Sentein C. Study of P3HT: PCBM bulk heterojunction solar cells: Influence of components ratio and of the nature of electrodes on the lifetime, Proc. of SPIE, 2005, Vol. 5938, 59380C:1-14
    [43] MouléA.J, Bonekamp J.B, Ruhl A, Meerholz K.et al. The effect of active layer thickness on the efficiency of polymer solar cells. Proc. of SPIE ,2005,Vol. 5938, 593808
    [44] Yoo I.,Lee M.,Lee C.,Hwang D.H.et al. The effect of a buffer layer on the photovoltaic properties of solar cells with P3OT:fullerene composites[J] Synthtic Metals, 2005, 153:97~100
    [45] Maher A. I., Oliver A., Steffi S., et al. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene[J] Applied Physics Letters, 2005 ,86 (20) :1~3
    [46] Li G., Shrotriya V., Yang Y.et al . Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)[J]. Journal of Applied Physics, 2005 , 98 :043704 (1~5)
    [47] Yamanari T.,Taima T., Hara K, Saito K. Investigation of optimum conditions for high-efficiency organic thin-film solar cells based on polymer blends[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 269
    [48] Kim J., Kim S., Lee H., Lee K., Ma W., Huong X., Heeger A.J. New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer [J]. Advanced Materials, 2006, 18, 572.
    [49] Kim H.,So W.W.,Moon S.J. The importance of post-annealing process in the device performance of poly(3-hexylthiophene): Methanofullerene polymer solar cell[J] Solar Energy Material and Solar Cells, 2007,91:581–587
    [50] Wang W.L,Wu H.B,Yang G.Y, Luo C, Zhang Y,Chen J.W,Cao Y. High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C-61-butyric acid methyl ester processed with oleic acid surfactant [J]. Applied Physics Letters, 2007, 90, 183512
    [51] Jin S.H, Naidu B.V.K, Jeon H.S, Gal Y.S.et al. Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system[J] Solar Energy Material and Solar Cells, 2007, 91: 1187–1193
    [52] Hayashi Y., Sakuragi H., Amaratunga G.A.J.et al. A validation study of a scoring system to estimate the risk of lymph node metastasis for patients with endometrial cancer for tailoring the indication of lymphadenectomy Colloids and Surfaces A: Physicochem. Eng. Aspects xxx (2007) xxx–xxx
    [53] Yang X. N., Joachim L., Sjoerd C.W. et al. Nanoscale Morphology of High-Performance Polymer Solar Cells[J] Nano. Lett.,2005,5 (4) :579~583.
    [54] Klimov E.,Li W.,Yang X., Loos J.et al. Scanning Near-Field and Confocal Raman Microscopic Investigation of P3HT?PCBM Systems for Solar Cell Applications[J]Macromolecules 2006, 39, 4493-4496
    [55] Hoppe H., Shokhovets S., Gobsch G. Inverse relation between photocurrent and absorption layer thickness in polymer solar cells[J] physica status solidi (RRL)– Rapid Research Letters, 2007, 1, R40–R42
    [56] Kim K., Liu J.W., David L. Carroll.et al. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics[J] Applied Physics Letters, 2007,90,163511
    [57] Fujii A.,Mizukami H.,Yoshino K.et al. Highly efficient photovoltaic cells composed of interpenetrating conducting polymer/C60 heterojunction[J] Synthetic Metals, 152 (2005) 121
    [58] Zhou E.J, Tan Z.A., Huo L.J, Li Y.F.et al. Effect of Branched Conjugation Structure on the Optical, Electrochemical, Hole Mobility, and Photovoltaic Properties of Polythiophenes [J] The Journal of Physical Chemistry B, 2006, 110, 26062
    [59] Tan Z..A., Zhou E.J., Li Y.F.et al. Synthesis, characterization and photovoltaic properties of thiophene copolymers containing conjugated side-chain[J] European Polymer Journal, 2007, 43, 855
    [60] Hou J.H.,Tan Z.A.,Li Y.F.et al. Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains[J] Journal of the American Chemistry Society, 2006, 128, 4911-4916
    [61] Hou J.H., Tan Z.A.,Li Y.F.et al. Branched Poly(thienylene vinylene)s with Absorption Spectra Covering the Whole Visible Region[J] Macromolecules 2006, 39, 4657
    [62] Change Y.T., Hsu S.L. et al. Intramolecular Donor–Acceptor Regioregular Poly(hexylphenanthrenyl-imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications[J] Advanced Materials, 2009,21,2093
    [63] Yao Y., Liang Y.Y., Yu L.P., et al Plastic Near-Infrared Photodetectors Utilizing Low Band Gap Polymer[J]. Advanced Materials, 2007, 19, 3979
    [64] Liang Y.Y., Wu Y., Feng D.Q., et al Development of New Semiconducting Polymers for High Performance Solar Cells[J]. Journal of the American Chemistry Society, 2009,131, 56
    [65] Liang Y.Y., Feng D.Q., Wu Y., et al Highly Efficient Solar Cell Polymers Developed viaFine-Tuning of Structural and Electronic Properties[J]. Journal of the American Chemistry Society, 2009,131, 7792
    [66] Liang Y.Y., Xu Z., Xia J.B., Li G., et al For the Bright Future-Bulk heterojunction Polymer Solar Cells of Power Conversion Efficiency of 7.4%[J]. Advanced Materials, 2010, 22, E135
    [67] Hou J.H., Chen H.-Y., Zhang S.Q., et al. Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells[J]. Journal of the American Chemistry Society, 2009, 131, 15586
    [68] Chen H.Y., Hou J.H., Zhang S.Q., et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[J]. Nature Photonics, 2009, 3, 649
    [69] Huang F., Chen K.S., Yip H.L., et al. Development of New Conjugated Polymers with Donor-π-Bridge-Acceptor Side Chains for High Performance Solar Cells[J]. Journal of the American Chemistry Society, 2009,131, 13886
    [70] Duan C.H., Cai W.Z., Huang F., Zhang J., Wang M., Yang T.B., Zhong C.M., et al. Novel Silafluorene-Based Conjugated Polymers with Pendant Acceptor Groups for High Performance Solar Cells[J]. Macromolecules, 2010, 43, 5262
    [71] Zhang Z.G., Liu Y.L., Yang Y., Hou K.Y., Peng B., Zhao G.J., et al. Alternating Copolymers of Carbazole and Triphenylamine with Conjugated Side Chain Attaching Acceptor Groups: Synthesis and Photovoltaic Application[J]. Macromolecules, 2010, 43, 9376
    [72] Duan C.H., Chen K.S., Huang F., Yip H.L., Liu S.J., Zhang J., Jen A.K.-Y., et al Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional Conjugated Polymers with Donor-π-Bridge-Acceptor Side Chains[J]. Chemistry of Materials, 2010, 22, 6444
    [73] Svensson M., Zhang F., Inganas O., Andersson M.R., et al. Synthesis and properties of alternating polyfluorene copolymers with redshifted absorption for use in solar cells[J]. Synthetic Metals, 2003,135-136, 137
    [74] Svensson M., Zhang F., Inganas O., Andersson M.R., et al. High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative[J]. Advanced Materials, 2003, 15, 988
    [75] Zhang F.L., Gadisa A., Inganas O., Andersson M.R., et al. Influence of buffer layers on the performance of polymer solar cells[J]. Applied Physics Letters, 2004, 84, 3906
    [76] Slooff H.L., Veenstra S.C., Kroon J.M., et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling[J]. Applied Physics Letters, 2007, 90, 143506
    [77] Chen M.H., Hou J.H., Hong Z., et al. Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions[J]. Advanced Materials, 2009, 21, 4238
    [78] Blouin N., Michaud A., Leclerc M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells[J]. Advanced Materials, 2007, 19, 2295
    [79] Park S.H., Roy A., Lee K., Heeger A.J., et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nature Photonics, 2009, 3, 297
    [80] Wang E.G., Wang L., Lan L.F., Cao Y., et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative[J]. Applied Physics Letters, 2008, 92, 033307
    [81] Huo L.J., Hou J.H., Zhang S.Q., Chen H.Y., Yang Y. A Polybenzo[1,2-b:4,5-b’] dithiophene Derivative with Deep HOMO Level and Its Application in High- Performance Polymer Solar Cells[J]. Angewandte Chemie International Edition, 2010, 49, 1500
    [82] Moule A.J., Tsami A., Scherf U., et al. Two Novel Cyclopentadithiophene-Based Alternating Copolymers as Potential Donor Components for High-Efficiency Bulk-Heterojunction-Type Solar Cells[J]. Chemistry Materials, 2008, 20, 4045
    [83] Liao L., Dai L.M., et al. Photovoltaic-Active Dithienosilole-Containing Polymers[J]. Macromolecules, 2007, 40, 9406
    [84] Huo L.J., Chen H.Y., Hou J.H., et al. Low band gap dithieno[3,2-b:20,30-d] silole-containing polymers, synthesis, characterization and photovoltaic application [J]. Chemistry Communication, 2009,5570
    [85] Zhou E.J., Nakamura M., Nishizawa T., Zhang Y., et al. Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2′,3′-d]pyrrole[J]. Macromolecules, 2008, 41, 8302
    [86] Muhlbacher D., Scharber M., Morana M., Zhu Z.G., et al High Photovoltaic Performanceof a Low-Bandgap Polymer[J]. Advanced Materials, 2006, 18, 2884
    [87] Zhu Z.G., Waller D., Scharber M., Morana M., et al. Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications [J].Macromolecules, 2007, 40, 1981
    [88] Peet J., Kim J.Y., Heeger A.J., et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nature Materials, NM07030460A
    [89] Hou J.H., Chen H.Y., Zhang S.Q., Li G., Yang Y, Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole[J]. Journal of the American Chemistry Society, 2008, 130, 16144
    [90] Yue W., Zhao Y., Shao S.Y., Xie Z.Y., Geng Y.H., et al. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance[J]. Journal of Materials Chemistry, 2009, 19, 2199
    [91] Blouin N., Michaud A., Gendron D., Leclerc M., et al. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells[J]. Journal of the American Chemistry Society, 2008, 130, 732
    [92] Zhou H.X., Yang L.Q., Price S.C., Knight K.J., You W. Enhanced Photovoltaic Performance of Low-Bandgap Polymers with Deep LUMO Levels[J]. Angewandte Chemie International Edition, 2010, 49, 7992
    [93] Wienk M.M., Turbiez M., Gilot J., Janssen R.A.J. Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance[J]. Advanced Materials, 2008, 20, 2556
    [94] Zou Y.P., Gendron D., Leclerc M., et al. A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications[J]. Macromolecules, 2009, 42, 2891
    [95] Zou Y.P., Gendron D., Leclerc M., et al. Synthesis and Characterization of New Low-Bandgap Diketopyrrolopyrrole-Based Copolymers[J]. Macromolecules, 2009, 42, 6361
    [96] Zhou E.J., Yamakawa S.P., Tajima K., et al. Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole-Based Donor-Acceptor Copolymers[J]. Chemistry of Materials,2009, 21, 4055
    [97] Hou J.H., Park M.H., Zhang S.Q., et al. Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b’] dithiophene[J]. Macromolecules, 2008, 41, 6012
    [98] Bijleveld J.C., Zoombelt A.P., Janssen R.A., et al. Poly(diketopyrrolopyrrole- terthiophene) for Ambipolar Logic and Photovoltaics[J]. Journal of the American Chemistry Society, 2009, 131, 16616
    [99] Bijleveld J.C., Gevaert V.S., Nuzzo D.D., Janssen R.A., et al. Efficient Solar Cells Based on Easily Accessible Diketopyrrolopyrrole Polymer[J]. Advanced Materials, 2010, 22, E242
    [100] Woo C.H., Beaujuge P.M., Holcombe T.W., Lee O.P., Frechet J.M. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells[J]. Journal of the American Chemistry Society, 2010, 132, 15547
    [101] Bundgaard E., Krebs F.C., Low band gap polymers for organic photovoltaics [J]. Solar Energy Material and Solar Cells, 2007, 91, 954
    [102] Gunes S., Neugebauer H.S., Sariciftci N.S., Conjugated Polymer-Based Organic Solar Cells [J]. Chemical Reviews, 2007, 107, 1324
    [103] Thompson B.C., Frechet J.M.J., Polymer–Fullerene Composite Solar Cells [J]. Angewandte Chemie International Edition, 2008, 47, 58
    [104] Li Y., Zou Y., Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility [J]. Advanced Materials, 2008, 20, 2952
    [105] Dennler G., Scharber M.C., Brabec C.J., Polymer-Fullerene Bulk- Heterojunction Solar Cells [J]. Advanced Materials, 2009, 21, 1323
    [106] Cheng Y.J., Yang S.H., Hsu C.S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J]. Chemical Reviews, 2009, 109, 5868
    [107] Peet J., Senatore M.L., Heeger A.J., Bazan G.C., The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells [J]. Advanced Materials, 2009, 21, 1521
    [108] Shaheen S., Brabec C.J., Sariciftci N.S., Padinger F., Fromherz T., et al. 2.5% efficient organic plastic solar cells [J]. Applied Physics Letters, 2001, 78, 841
    [109] Coates N.E., Ma W.L., Moses D., et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J]. Nature Materials, 2007, 6, 497
    [110] Chen J.W., Cao Y., Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices[J]. Accounts of Chemical Research, 2009, 42, 1709
    [111] Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nature Materials, 2005, 4, 864
    [112] Shi C., Yao Y., Yang Y., Pei Q., Regioregular Copolymers of 3-Alkoxythiophene and Their Photovoltaic Application [J]. Journal of the American Chemistry Society, 2006, 128, 8980
    [113] Zhang Y., Hau S.K., Yip H.L., Sun Y., Acton O., Jen A.K.Y. Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione [J]. Chemistry of Materials, 2010, 22,2696
    [114] Zhang M., Fan H., Guo X., He Y., Zhang Z., Min J., et al. Synthesis and Photovoltaic Properties of a Copolymer of Benzo[1,2-b:4,5-b ']dithiophene and Bithiazole [J]. Maromolecules, 2010, 43, 8714
    [115] Zoombelt A.P., Mathijssen S.G.J., Turbiez M.G.R., Wienk M.M., et al. Small band gap polymers based on diketopyrrolopyrrole [J]. Journal of Material Chemistry, 2010, 20, 2240
    [116] Svensson M., Zhang F., Veenstra S.C., Verhees W.J.H., Hummelen J.C., et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative [J]. Advanced Materials, 2003, 15, 988
    [117] Blouin N., Michaud A., Leclerc M., A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells [J]. Advanced Materials, 2007, 19, 2295
    [118] Zou Y., Gendron D., Badrou-Aich R., Najari A., A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications [J]. Macromolecules, 2009, 42, 2891
    [119] Chan S.H., Chen C.P., Chao T.C., Ting C., Lin C.S., Synthesis, Characterization, and Photovoltaic Properties of Novel Semiconducting Polymers withThiophene?Phenylene?Thiophene (TPT) as Coplanar Units [J]. Macromolecules, 2008, 41, 5519
    [120] Zhang F., Mammo W., Andersson L.M., Admassie S., Andersson M.R., Inganas O., Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells [J]. Advanced Materials, 2006, 18, 2169
    [121] Gadisa A., Mammo W., Andersson L.M., Admassie S., Zhang F., et al. A New Donor–Acceptor–Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility [J]. Advanced Functional Materials, 2007, 17, 3836
    [122] Wang F., Luo J., Yang K., Chen J., Huang F., Cao Y., Conjugated Fluorene and Silole Copolymers: Synthesis, Characterization, Electronic Transition, Light Emission, Photovoltaic Cell, and Field Effect Hole Mobility[J]. Macromolecules, 2005, 38,2253
    [123] Tanimoto A., Yamamoto T., Synthesis of n-Type Poly(benzotriazole)s Having p-Conducting and Polymerizable Carbazole Pendants[J]. Macromolecules, 2006,39,3546
    [124] Tanimoto A.,Yamamoto T., Nickel-2,2’-Bipyridyl and Palladium-Triphenyl phosphine Complex Promoted Synthesis of New p-Conjugated Poly(2-hexylbenzotriazole)s and Characterization of the Polymers[J]. Advanced Synthetic Catalyst, 2004, 346,1818
    [125] Balan A., Gunbas G., Durmus A., et al. Donor-Acceptor Polymer with Benzotriazole Moiety: Enhancing the Electrochromic Properties of the“Donor Unit”[J]. Chemistry of Materials, 2008, 20, 7510
    [126] Balan A., Baran D., Gunbas G., One polymer for all: benzotriazole containing donor–acceptor type polymer as a multi-purpose material [J]. Chemical Communications, 2009, 6768
    [127] Baran D., Balan A., Celebi S., Esteban B.M., Neugebauer H., et al. Processable Multipurpose Conjugated Polymer for Electrochromic and Photovoltaic Applications [J]. Chemistry of Materials, 2010, 22, 2978
    [128] Wu H., Huang F., Mo Y., Yang W., Wang D., Peng J.,et al Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers [J]. Advanced Materials, 2004, 16, 1826
    [129] He C., Zhong C.M., Wu H., Yang R., Yang W., et al. Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugatedpolyelectrolytes[J]. Journal of Material Chemistry, 2010, 20, 2617
    [130] Sun M., Niu Q., Yang R., Du B., Liu R., Yang W., et al. Fluorene-based copolymers for color-stable blue light-emitting diodes [J]. European Polymer of Journal, 2007, 43, 1916
    [131] Zou Y., Gendron D., Neagu-Plesu R., et al. Synthesis and Characterization of New Low-Bandgap Diketopyrrolopyrrole-Based Copolymers [J]. Macromolecules, 2009, 42, 6361
    [132] Ng S.C., Lu H.F., Chan H.S.O., Fujii A., et al. Novel efficient blue fluorescent polymers comprising alternating phenylene pyridine repeat units: Their syntheses, characterization, and optical properties [J]. Macromolecules, 2001, 34, 6895
    [133] Gong X., Wang S., Moses D., Bazan G.C., Heeger A.J., Multilayer polymer light-emitting diodes: White-light emission with high efficiency[J]. Advanced Materials, 2005, 17, 2053
    [134] Huang F, Niu Y.H., Zhang Y., Ka J.W., Liu M.S., et al. A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes [J]. Advanced Materials, 2007, 19, 2010
    [135] Hoven C.V., Garcia A., Bazan G.C., Nguyen T.Q. Recent Applications of Conjugated Polyelectrolytes in Optoelectronic Devices [J]. Advanced Materials, 2008, 20, 3793
    [136] Seo J.W., Gutacker A., Walker B., Cho S., Garcia A., Yang R., et al. Improved Injection in n-Type Organic Transistors with Conjugated Polyelectrolytes [J]. Journal of the American Chemistry Society, 2009, 131, 18220
    [137] Lan L., Peng J., Sun M., Zhou J., et al. Low-voltage, high-performance n-channel organic thin-film transistors based on tantalum pentoxide insulator modified by polar polymers [J]. Organic Electronics, 2009, 10, 346
    [138] Zhao Y., Xie Z., Qin C., Qu Y., et al. Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer [J]. Solar Energy Material and Solar Cells, 2009, 93, 604
    [139] Na S.I., Oh S.H., Kim S.S., Kim D.Y., Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer [J]. Organic Electronics, 2009, 10, 496
    [140] Scharber M.C., Muhlbacher D., Koppe M., et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency [J]Advanced Materials, 2006, 18, 789
    [141] Kido J., Ohtaki C., Hongawa K., Okuyama K., Nagai K., 1,2,4-TRIAZOLE DERIVATIVE AS AN ELECTRON-TRANSPORT LAYER IN ORGANIC ELECTROLUMINESCENT DEVICES [J]Japanese Journal of Applied Physics, 1993, 32, L917
    [142] Thelakkat M., Fink R., Posch P., Ring J., Schmidt H.W., Electrochemical characterization of hole transport and electron transport materials for organic LEDs [J]. Polymer Prepare, 1997, 38, 394
    [143] Lo S.C., Shipley C.P., Bera R.N., Harding R.E., Cowley A.R., et al. Blue Phosphorescence from Iridium(III) Complexes at Room Temperature[J] Chemistry of Materials, 2006, 18, 5119
    [144] Ahn S.H., Czae M.Z., Kim E.R., Lee H., Han S.H., et al. Synthesis and Characterization of Soluble Polythiophene Derivatives Containing Electron-Transporting Moiety[J]. Macromolecules, 2001, 34, 2522
    [145] Wang E.G., Wang M., Wang L., Cao Y., et al Donor Polymer Containing Benzothiadiazole and Four Thiophene Rings in Their Repeating Units with Improved Photovoltaic Performance[J]. Macromolecules, 2009, 42, 4410
    [146] Hou J.H., Park M.H., Zhang S.Q., et al Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b’] dithiophene[J]. Macromolecules, 2008, 41, 6012
    [147] Song S., Jin Y., Kim S.H., Moon J., et al Stabilized Polymers with Novel Indenoindene Backbone against Photodegradation for LEDs and Solar Cells[J]. Macromolecules, 2008, 41, 7296
    [148] Cai W.Z., Wang M., Zhang J., Wang E.G., et al Solvent Effect Leading to High Performance of Bulk Heterojunction Polymer Solar Cells by Novel Polysilafluorene Derivatives[J]. The Journal of Physics Chemistry C, 2011, 115, 2314
    [149] Zhou E.J., Yamakawa S.P., Zhang Y., Tajima K., et al Indolo[3,2-b]carbazole- based alternating donor-acceptor copolymers: synthesis, properties and photovoltaic application[J]. Journal of Material Chemistry, 2009, 19, 7730
    [150] Helgesen M., Gevorgyan S.A., Krebs F.C., Janssen R.A.J., Substituted 2,1,3-Benzothiadiazole- And Thiophene-Based Polymers for Solar CellsIntroducing a New Thermocleavable Precursor[J]. Chemistry of Materials, 2009, 21, 4669
    [151] Tian H.K., Shi J.W., He B., Hu N.H., Dong S.Q., et al Naphthyl and Thionaphthyl End-Capped Oligothiophenes as Organic Semiconductors: Effect of Chain Length and End-Capping Groups[J]. Advanced Functional Materials, 2007, 17, 1940
    [152] Scharber M.C., Koppe M., Gao J., Cordella F., et al Influence of the Bridging Atom on the Performance of a Low-Bandgap Bulk Heterojunction Solar Cell[J]. Advanced Materials, 2010, 22, 367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700