变速恒频双馈风力发电系统励磁控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境是当今人类生存和发展所要解决的紧迫问题,风能作为一种清洁的可再生能源,已经受到世界各国的高度重视。而随着风力发电机组容量的不断增大,提高运行效率、最大程度利用风能已经成为风力发电技术的研究热点。面对更多采用双馈型异步发电机(DFIG)的风力发电系统,对其控制策略的研究以及如何进一步提高系统稳定性和动态运行能力具有重要的意义。
     矢量控制以其优良的动静态性能、高品质的精度控制、成熟的工业应用成为电机控制领域的主流技术。但是它的缺点是需要进行反复的坐标变换,控制系统复杂。直接功率控制(DPC)策略是在直接转矩控制(DTC)基础上发展而来的,具有结构简单,动态响应快速,参数的鲁棒性能好等特点。但是传统的DPC策略具有开关频率不能恒定,输出电流谐波大,启动时直流电压、有功无功功率波动大,控制精度不高等缺点。
     针对直接功率控制的特点,提出了两种改进的控制策略:基于模糊PI控制的直接功率控制策略和基于空间矢量调制(SVM)的直接功率控制策略。针对传统PI控制器的弱点,提出的一种模糊PI控制器,并成功应用于直接功率控制策略的直流环节中。仿真结果表明该策略有效地减小了传统DPC策略启动过程中直流电压、有功和无功功率的波动。基于SVM的直接功率控制策略是在传统DPC策略中引入了SVM,同时针对直接功率控制输出电流谐波大、无功功率出现小范围的失控的缺点,提出了一种构造电压空间矢量的新方法。仿真结果表明了该策略能够使开关频率恒定,同时有效减小了无功功率失控的区域,减小了输出电流谐波。
Energy and environment are the urgent problems that human beings exist and development nowadays.Wind power has attacted more and more highly attention as one kind of clean regenerative energy sources. With the wind generator capacity increasing, How to improve th operation efficiency and maximum use the wind power has become a hotspot. More and more doubly-fed induction generator (DFIG) of wind power system has been used, the research on its control strategy and how to further improve the system stability and dynamic operation ability has a vital significance.
     Consider of the excellent static and dynamic performance, high-quality precision of control, matrue for industrial areas. But it has some weakness like that it must need repeated coordinate transformation and the control system has complicated structure.Direct Powe Control (DPC) strategy is based on in direct torque control (DTC), It's characteristic is that the simple structure, fast dynamic response and robust performance of the parameters is good. But it's has some obvious weakness in traditional DPC strategy,such as the switch frequency not constant, output current has a little harmonics, the fluctuation of direct voltage and active power and reactive power when the system strats., control accuracy is not high.
     The paper puts forward two improved strategies aimed at the characteristics of the DPC strategy:DPC strategy based on fuzzy PI controller and DPC strategy based on Space Vector Modulation (SVM). A fuzzy PI controller is proposed and successfully applied in DPC strategy which is the core content of the DPC strategy based on fuzzy PI controller. Simulation results show that the strategy could effectively reduce the fluctuation of the direct volage,active power and reactive power when the system strats. DPC strategy based on SVM introduced SVM in traditional DPC strategy and proposed a new construction method of voltage space vector which aimed at the DPC strategy weakness that output current has a little harmonics, reactive power out of control in small areas. Simulation results show that the strategy could make the switching frequency constant, effectively reduce the area of reactive power out of control and reduce the output current harmonics.
引文
[1].姚兴佳,王士荣,董丽萍.风力发电技术的发展与现状[J].可再生能源,2006,12(01):86-88.
    [2].李永东,苑国锋.中国风力发电的发展现状和前景[J].电气时代,2006,5(03):16-20.
    [3]. Bimal K B. Energy, environment, and advances in power electronics[J]. IEEE Trans. Power Electronics,2000,15(4):68-70.
    [4]. Sahin A D. Progress and recent trends in wind energy[J]. Progress in Energy and Combustion Science,2004,30(4):501-543.
    [5].易跃春.风力发电现状、前景及市场分析[J].国际电力,2004,8(4):18-22.
    [6].王承煦,张源.风力发电[M].北京:中国电力出版社,2003:15-20.
    [7].郭全英.中国风力发电成本研究[D].沈阳:沈阳工业大学硕士学位论文,2002:25-30.
    [8].范万新,苏志.国内外风能开发利用的现状和发展趋势[J].大众科技,2009,118(06):131-133.
    [9].邓小凌,冯志文.我国风力发电产业发展的现状、问题与对策[J].电力环境保护,2001,17(3):48-51.
    [10].王承熙,张源.风力发电[M].北京:中国电力出版社,2003:71-80.
    [11].姚兴佳.风力发电发展之路[J].大众用电,2005,12(3):11-15.
    [12].陈树勇.大型并网风力发电场规划方法研究[D].北京:中国电力科学研究院博士论文,1998:23-27.
    [13].苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变换器的研究[J].中国电机工程学报,2005,18(10):90-94.
    [14].沈妍.变速恒频交流励磁风力发电机并网同期控制研究[D].北京:华北电力大学硕士学位论文,2007:12-20.
    [15].刘伟东.交流励磁变速恒频系统运行与并网控制的仿真研究[D].北京:华北电力大学(北京)硕士学位论文,2007:13-20.
    [16].赵鑫.双馈风力发电机组并网运行特性与控制策略研究[D].北京:华北电力大学(北京)硕士学位论文,2008:19-25.
    [17].苏彦民.交流调速系统的控制策略[M].北京:北京机械工业出版社,1998,6(20)20-22.
    [18].胡崇岳.现代交流调速技术[M].北京:机械工业出版社,1998:114- 118.
    [19].李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002:56-70.
    [20].伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-11.
    [21]. S. Muller, M. Deicke and Rik W, De Doncker. Doubly Fed Induction Generator System for Wind Turbines[J]. IEEE Industry Application Magazine, 2002,5(3):26-33.
    [22].张兴.PWM整流器及其控制策略的研究[D].合肥:合肥工业大学博士论文,2003:25-40.
    [23].汤蕴谬,史乃等.电机学[M].北京:机械工业出版社,2001:30-45.
    [24].黄济荣.电力牵引交流传动与控制[M].北京:机械工业出版社,1998:110-115.
    [25].何其辉.变速恒频风力发电系统运行与控制研究[D].杭州:浙江大学博士论文,2005:15-40.
    [26]. Yifan Tang, Longya Xu. A flexible active and reactive power control strategy for a variable speed constant frequency generation system[J]. IEEE Trans. on power Electronics,1995,10(4):472-478.
    [27]. L. Kreindler, J. C. Moreira. Direct Field Orientation Controller Using the Stator Phase Voltage Third Harmonic[J]. IEEE Transactions on Industry Applications, 1994,30(2):441-447.
    [28].陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,1998:120-130.
    [29].李汉强.异步电机新型矢量控制系统建模与仿真[J].电气传动,1996,2(10): 5-10.
    [30].许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制[J].太阳能学报,1998,20(1):30-35.
    [31].芮晓明,马志勇,康传明.并网型垂直轴风机的基本构成与气动特性[J].太阳能,2007,5(2):12-16.
    [32].卞松江.变速恒频风力发电关键技术研究[D].杭州:浙江大学博士论文,2003:32-40.
    [33].刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,10(20):63-68.
    [34].蒋禹,高雪松.双馈型变速恒频风力发电系统最大风能追踪控制研究[J].电 工技术,2008,12(2):41-46.
    [35].詹长江,秦荃华,韩英铎等.三电平脉宽调制高频整流器系统数学模型及仿真分析[J].中国电机工程学报,1999,19(7):45-48.
    [36].陈坚.交流电机数学模型及调速系统[M].上海:上海交通大学出版社,1984:23-31.
    [37]. Shibashis Bhowmik. Performance optimization of doubly-fed generation systems[D]. England:OregonState Univ,1997:33-41.
    [38]. Dajib Datta. Rotor side control of grid-connected wound rotor induction machine and its application to wind power generation[D]. Eng:Indian Inst Sci Bangalore,2000:25-30.
    [39]. A Nabase, I Takahashi, H KAGI. Anew neutral-point-clamped PWM-inverter [J]. IEEE Trans.onindustry applications,1981,1(17):518-523.
    [40].李辉,杨顺,廖勇.并网双馈发电机电网电压定向励磁控制研究[J].中国电机工程学报,2003,23(5):159-162.
    [41]. Y Tang, L Xu. A flexible active and reactive power control strategy for a variable speed constant frequency generating system[J]. IEEE Transactions On Power Electronics,1996,10(4):472-478.
    [42]. Liu Qihui, He Yikang, Zhang Jianhua. Operation control and modeling& simulation of AC-excited variable-speed constant-frequency wind power generator[J]. Proceeding of the CSEE,2006,26(5):43-50.
    [43]. Dajib Datta, Ranaganathan. Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors[J], IEEE Industry Application Systems,1999,10(5):23-30.
    [44].王兆安,黄俊主编.电力电子技术[M].北京:机械工业出版社,2000:120-130.
    [45].陈坚.电力电子变换和控制技术[M].北京:高等教育出版社,2002:15-21.
    [46]. Mitsutoshi Yamamoto, Osamu Motoyoshi. Active and reactive power control for doubly-fed wound rotor induction generator[J]. IEEE Trans on Power Electronics,2003,6(4):624-629.
    [47].黄科元,贺益康.三相PWM整流器空间矢量控制的全数字实现[J].电力电子技术,2006,37(3):79-82.
    [48].姜卫东,王群京.一种完全基于两电平空间矢量调制的三电平空间矢量调制算法[J].电工技术学报,2009,10(1):15-20.
    [49]. H Akagi, Y Kanazawa, A Nabae. Generalized theory of the instantaneous reactive power in three-phase circuits[J]. Power Electron,1983,13(8):1375-1386.
    [50]. Furuhoshi T, Okuma S, Uchikawa Y. A study on the theory of instantaneous reactive power[J]. IEEE Trans Ind Electron,1990,37(2):86-90.
    [51]. Soares V, Verdelho P, Marques GD. An instantaneous active and reactive current component method of active filters[J]. IEEE Trans Power Electron, 2007,54(3):1261-1271.
    [52]. Suh Y. Modeling and analysis of instantaneous active and reactive power for PWMAD/DC converter under generalized unbalanced network [J]. IEEE Transactions on Power Delivery,2006,21(3):1530-1540.
    [53]. Malinowski M, Jasinski M, Kazmierkowski MP. Simple direct power control of three phase PWM rectifier using space vector modulation (DPC-SVM) [J]. IEEE Trans Ind Electron,2004,17(2):447-454.
    [54]. Dawei Zhi, Xu Lie. Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance [J]. IEEE Trans on Energy Conversion,2007,22(1):110-117.
    [55]. Noguchi T, Tomikj H, Kondo S. Direct Power Control of PWM Converter without Power source Voltage Sensors [J]. IEEE Trans On Ind,1998,34(3): 476-479.
    [56]. Zhi Dawei, Lie Xu. Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance [J]. IEEE Trans on Energy Conversion,2007, (22):110-118.
    [57]. Noguchi T, Tomiki H, Kondo S, Takahashil. Direct power control of PWM converter without power-source voltage sensors[J]. IEEE Trans Ind,1998, 25(3):473-479.
    [58].石辛民.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,2008:43-51.
    [59].何克忠.计算机控制系统[M].北京:清华大学出版社,1998:13-25.
    [60].薛定宇.控制系统仿真与计算机辅助设计[M].北京:机械工业出版社,2005:14-18.
    [61].李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998:21-40.
    [62].汤兵勇,路林吉,王文杰.模糊控制理论与应用技术[M].北京:清华大 学出版社,2002:15-31.
    [63].邢传鼎,杨家明等.人工智能原理及应用[M].上海:东华大学出版社,2005:23-29.
    [64].蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2005:31-35.
    [65]. Abdelouahab Bouafia, Fateh Krim. Design and implementation of high performance direct power control of three-phase PWM rectifier, via fuzzy and PI controller for output voltage regulation[J]. Energy Conversion and Management,2009,09(12):6-13.
    [66].黄正,年晓红,邓明,吴仲辉.基于模糊控制的直接功率控制在双馈风力发电系统中的应用[J].大功率变流技术,2009,15(5):27-30.
    [67].张俊峰,毛承雄,陆继明,吴建东.双馈感应发电机的直接功率控制策略[J].电力自动化设备,2006,26(4):31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700