矩阵变换器及其在风电系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩阵变换器是一种新型交-交型变频器,它具有能量能够双向流通,可实现真正的四象限运行、不需要中间直流环节、输入/输出电流为正弦、输入功率因数可调等一系列优点,是电力电子技术研究的一个新方向。
     本文首先简单介绍了三相-三相矩阵变换器的基本拓扑结构、双向开关构成及换流和其开关函数等问题,并分析了目前应用比较广泛的几种调制策略。然后结合矩阵变换器的实际电路结构,建立了其在三相坐标系及旋转坐标下的数学模型,并对推导出的开关矩阵进行研究,分析结果表明矩阵变换器不仅能够控制输出电压的幅值、相位和频率,而且还能够任意调节输入功率因数,起到静止无功补偿的作用。在此数学模型的基础上,本文建立了标量和双闭环两种闭环控制结构,并对基于固定环宽滞环电流控制的双闭环控制系统进行了仿真研究。仿真结果表明达到了实时控制的要求,矩阵变换器的输出电压和输入电流都为正弦波,减少了输出谐波分量,提高了输入电流品质。最后分析了风力机的数学模型,对比了目前采用的不同类型的变速恒频风力发电系统。在基于双馈发电机定子磁链定向的dq坐标系下,建立了基于矩阵变换器的双馈风力发电系统模型,并对此进行了仿真分析。仿真结果证明了矩阵变换器在双馈风力发电系统中应用的可行性和有效性。
Matrix converter is a new AC—AC converter, which has competitive advantages that bidirectional flowing of power can be true in four quadrant operation, without intermediate DC link, input/output current sinusoidal, input power factor could be controlled. So Matrix converter is a new direction of Power Electronics Technology.
     This article first briefly introduces the matrix converter about the basic circuit topology, the Synthesis of the bi-directional switch, current commutation and several current widely used modulation strategy. Then gives the actual matrix converter circuit and the matrix converter mathematics model has been set up in 3-phase static and circumrotate coordinate system. The analysis results on its switch matrix show that the amplitude, phase and frequency of output voltage and input fundamental displacement factor of the matrix converter is not only could be controlled freely, but also can be able to adjust input power factor and plays the role of SVC. Based on the mathematical model, this paper has established scalar quantity and double closed-loop control structure, and then simulation the double closed-loop control structure with fixed-band hysteresis current control strategy. Simulation results show that input signal and output signal are both sinusoidal, and they also indicate that the double closed—loop structure could reduce output harmonious waves, improve the current quality. Finally this article analyzed the mathematical model of wind turbine, compared to the current different types of variable speed constant frequency wind power systems. Based on doubly-fed generator's stator flux oriented dq coordinate system, the double-fed wind power generation system model is established. Then the article conducts a simulation analysis. The simulation results showed that the matrix converter in doubly fed induction generator system is feasible and effective.
引文
1. L.Gyugi and B.Pelly. Static power frequency changers:Theoty, Performance and Application.[M].New York:Wiley,1976.
    2. M. Venturini. A New High Switching Rate Direct Frequency converter[J]. Italian Patent,1979;207: 70-79.
    3. M.Venturni. A new sine wave in sine wave out, conversion technique which eliminates reactive elements [C]//Proceedings POWERCON7,1980, E3-1-E3-15.
    4. M. Venturni and A.Alesina. The generalized transformer:A new bidirectional sinusoidal waveform frequency converter with continuously adjustable input power factor[C]//Proceedings IEEE PESC80, 1980:242-252.
    5. J.Rodriguez. A new control technique for AC-AC converters[C]//Proceedings IFAC Control in Power Electronics and Electrical Drives Conf, Lausanne, Switzerland,1983:203-208.
    6. P.D.Ziogas,S.I.Khan,and M.H.Rashid. Analysis and design of forced commutated cycloconverter structures with improved transfer characteristics[J].IEEE Trans. Ind. Election, vol. IE-33:271-280, Aug, 1986.
    7. P.D.Ziogas,S.I.Khan,and M.H.Rashid. Some improved forced commutated cycloconverter structures[J]. IEEE Trans. Ind. Applicat, vol. 1A-21:1242-1253,Sept./Oct.1985.
    8. M.Braun and K. Hasse. A direct frequency changer with control of input reactive power [C]//Proceedings IFAC Control in Power Electronics and Electrical Drives Conf, Lausanne, Switzerland,1983:187-194.
    9. G.Kastner and J.Rodriguez. A forced commutated cycloconverter with control of the source and load currents [C]//Proceedings EPE'85,1985:1141-1146.
    10. L.Huber, D.Borojevic, and N.Burany. Voltage space vector based PWM control of forced commutated cycloconverters [C]//Proceedings IEEE, IECON'89.1989:360-367.
    11. L.Huber, D.Borojevic. Space vector modulator for forced commutated cycloconverters [C]//Proceedings IEEE IAS'89.1989:871-876.
    12. L.Huber, D.Borojevic, and N.Burany. Analysis, design and implementation of the space-vector modulator for forced commutated cycloconverters[J].Proc. Inst. Elect. Eng. Pt. B,vol.139, no.2, pp.103-113, Mar. 1992.
    13. L.Huber, D.Borojevic, X. Zhuang.and F.Lee, Design and implementation of a three-phase to three-phase matrix converter with input power factor correction[C]//Proceedings IEEE APEC'93,1993:860-865.
    14. L.Huber, D.Borojevic. Space vector modulated three phase to three phase matrix converter with input power factor correction[J]. IEEE Trans. Ind. Applicat, vol.31:1234-1246, Nov./Dec.1995.
    15. J.Oyama, T.Higuchi, E.Yamada, T.Koga, and T.Lipo. New control strategy for matrix converter[C] //Proceedings IEEE PESC'89,1989:360-367.
    16. J.Oyama, X.Xia, T.Higuchi, et al. A new on-line gate circuit for matrix converter [C]//Proceedings IPEC-Yokohama.1995,2:754-759.
    17. J.Oyama, X.Xia, T.Higuchi, et al. Displacement angle control for matrix converter [C]//Proceedings IEEE PESC'97.1997:1033-1039.
    18. N.Burany. Safe control of four-quadrant switches[C]//Proceedings IEEE IAS'89.1989:1190-1194.
    19. M.Ziegler, W.Hoffman. Semi natural two steps commutation strategy for martrix converters[C] //Proceedings IEEE PESC'98.1998,1:727-731.
    20. M.Ziegler, W.Hoffman. Implementation of a two steps commutated martrix converters[C] //Proceedings IEEE PESC'99.1999,1:175-180.
    21. L.Empringham, P.Wheeler, J.Clare. Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques[C]//Proceedings IEEE PESC'98.1998,1:707-713.
    22. L.Empringham, P.Wheeler, J.Clare. A matrix converter induction motor drive using intelligent gate drive level current commutation techniques[C]//Proceedings IEEE IAS'00.2000:1936-1941.
    23. J.Mahlein,J.igney, J.Weigold.,et al. Matrix converter commutation strategies with and without explict input voltage sign measurement[J].IEEE Transactions on Inductrial Electaonics,2002, 49(2):407-414.
    24. Lixiang Wei, T.Lipo, H.Chan. Robust voltage commutation of the conventional matrix converter[C] //Proceedings IEEE PESC'03.2003,2:717-722.
    25.庄心复.交一交型矩阵变换器的控制原理与试验研究[J].电力电子技术,1994,(2):1-6.
    26.穆新华,庄心复.交一交矩阵变换器的双电压控制原理及波形合成[J].南京航空航天大学学报,1997,29(2):151-157.
    27.陈伯时.矩阵变换器的发展与展望[J]. 电工技术杂志,2004,10:13-18.
    28.陈希有,陈学允.一般矩阵式电力变换器的等效电路及其应用[J].电工技术学报,1999,14(5):31-34.
    29.陈希有,陈学允.矩阵电力变换器的无功功率分析[J].中国电机工程学报,1999,19(11):5-9.
    30.陈希有,陈学允.基于PARK变换的空间矢量调制矩阵变换器的暂态分析[J].中国电机工程学报,2000,(5):80-84.
    31.王毅,陈希有.空间矢量调制矩阵变换器闭环控制的研究[J].中国电机工程学报.2003,23(6):164-169.
    32.陈希有,陈学允.空间矢量调制矩阵式电力变换器的灵敏度分析[J]. 电力系统自动化,2000,61.24(6):40-43,47.
    33.王毅,陈希有,徐殿国.双电压合成矩阵变换器闭环控制的研究[J].中国电机工程学报,2002,22(1):74-79.
    34.陈希有,陈学允,韦奇.改进矩阵变换器在非对称输入情况下的空间矢量调制策略[J].电工技术学报,2000,15(2):78-83.
    35.李志勇,朱建林,易灵芝.空间矢量调制的矩阵变换器仿真模型的研究[J].中国机电工程学报.2003,23(3):80-83.
    36.易灵芝,李志勇,朱建林,谭平安.用DSP和IGBT实现矩阵式变换器[J].变频器世界.2004,9: 49-52.
    37.易灵芝等.用S函数实现矩阵变换器输入电流控制策略[J].变频器世界.2004.7:47-49.
    38.易灵芝等.输入非平衡条件下矩阵变换器两种电流偏置角调制策略的谐波分析[J].电力自动化设备.2004,24(6):29-32.
    39.易灵芝等.非平衡条件下矩阵变换器动态调制策略仿真实现[J].系统仿真学报.2004,16(9):2017-2021.
    40.郭有贵,喻寿益,朱建林.基于改善电压传输比的矩阵变换器研究[J].电气传动.2004,5:3-6.
    41.张林亭,朱建林.矩阵式交一交变换器的空间矢量调制原理[J].变频器世界,2001(8):26-31.
    42.孙凯,周大宁,梅杨.矩阵式变换器技术及其应用[M].北京:机械工业出版社,2007.9.
    43.孙凯,周大宁,黄立培,等.矩阵式变换器在电源异常时的运行性能分析[J].电工电能新技术,2004,23(2):9-12,55.
    44.孙凯,黄立培,松濑贡规.基于矩阵式变换器的异步电动机矢量控制[J].清华大学学报,2004,44(7):909-912.
    45.黄立培,孙凯,邓毅晟,等.交流调速用三相-三相矩阵式变换器研究[J].电源技术学报,2003,1(7):504-511.
    46.梅杨,孙凯,黄立培.基于逆阻式IGBT的三相/单相矩阵式变换器[J].电工技术学报,2007,22(3):91-95.
    47.穆新华,庄心复,陈怀亚.双电压控制的矩阵变换器的开关状态与仿真分析[J].电工技术学报,1998,13(1):46-50.
    48.郭有贵,朱建林,罗伟斌,等.空间矢量调制的矩阵变换器设计与实现[J].电子技术应用,2007,(4):111-114.
    49. Lars Helle, Kim B Larsen, Evaluation of Modulation Schemes for Three-phase to Three-phase Matrix Converters[J]. IEEE Transations on Industrial Electronics,2004,51(2):158-171.
    50.汤宁平,方旭阳.电流滞环控制的矩阵变换器的仿真模型[J].电力电子技术.1999,(5):52-54.
    51.汤宁平,方旭阳,邱培基.电流跟踪控制的矩阵变换器的控制策略与试验研究[J].电工技术学报,1998,14(4):48-52.
    52. Dorin O Neacsu, Andrei Alistar, Mehrdad Kazerani. Insightful Analysis of Carrier PWM Algorithms for Direct AC-AC Matrix Converter Based on Voltage-Source Converter Modules. In:Proc. of 37th IAS Annual Meeting Ind. Appl. Conf. Pennsylvania,2002,1:459-465.
    53.王辉,卢娟,杜建辉等.基于固定环宽的矩阵变换器的滞环电流控制策略的研究.湖南大学学报,2003.30(5):40-43
    54.潘文霞,艾斯卡尔,史林军,庄敏辉.变速恒频风力发电系统控制方案的分析与比较[J].湖南:太阳能,2004,(6):45-48.
    55.宋战锋,夏长亮.基于定子磁链的双馈风力发电系统矩阵变换器调制策略[J].电力科学与技术学报,2009,24(3):10-14.
    56.史伟伟,蒋全,胡敏强等.三相电压型P WM整流器的数学模型和主电路设计.东南大学学报(自然科学版),2002,32(1):50-55.
    57.高平,王辉.电压源型矩阵变换器的研究及其在风电系统中的应用.湖南大学硕士毕业论文,2006.
    58.陈国呈译.电力电子电路.北京:科学出版社,2003,78-91.
    59.王兆安,黄俊.电力电子技术.北京:机械工业出版社,2000,164-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700