抽水蓄能电站竖井式进水口水力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的飞速发展,全国各地电网容量不断增大,解决电网的调峰容量已成为当前电力生产中的紧迫问题,开发大型抽水蓄能电站是缓解这一问题的有效途径。抽水蓄能电站的进/出水口是电站输水系统的重要组成部分,其具有双向水流的特点,对于上库而言,发电时为进水口,抽水时为出水口。国内抽水蓄能电站的进/出水口大部分以侧式为主,竖井式的相对较少。竖井式进/出水口的水流流态复杂,国内外的参考实例较少,为优化竖井式进/出水口的体型设计,有必要探索各体型参数对进/出水口水力特性的影响。
     本论文依托西龙池抽水蓄能电站上水库进水口,利用k-ε紊流数学模型对抽水蓄能电站井式进水口水力特性进行数值模拟,研究进水口各段体型变化对发电工况下进水口水力特性的影响。
     针对已进行过物理模型试验的西龙池竖井式进水口体型(试验体型),利用三维k-ε紊流数学模型,进行了典型发电工况下进水口的数值模拟,分析比较了进水口的水头损失、各孔口的流量分配以及流速分布特点等水力特性,表明所建数值模型合理、可靠。
     在模型验证的基础上,以数值计算为手段,采用单因素比较的方法对进水口各主要体型参数进行了分析。分别研究了直管段长度变化、弯道段转弯半径变化、渐变段扩散比变化对进水口水头损失、流量分配及流速分布等水力特性的影响,并给出了进水口主要体型参数的推荐取值范围。
Along with the rapid development of our national economy, electric capacity is increasing fast in our country. It has become a pressing problem to solve the load capacity of the power systems, the development of large pumped-storage power station is an effective way to alleviate the problem. The intake at upper reservoirs of pumped storage plant is an important component of the water conveyance system. The intakes adopted in the pump storage plant have the characteristic of two-direction flow. As to the upper reservoir, under the power generating condition, it is used as inlet. At present, the pumped storage plant with lateral pipe intake is applied more expansively than that with vertical pipe intake. Not only the hydraulic characteristics of this type intake are complex, but also the overseas & domestic reference examples are quite few. As a result, it is necessary to explore how the shape parameters to influence the hydraulic characteristics of inlet/outlet, so that we can optimize the vertical pipe intake.
     This paper describes mainly the vertical pipe intake of the upper reservoir of Xilongchi pumped-storage power station. The hydraulic characteristics of the vertical pipe intake in the upper reservoir are analoged with three-dimensional k-εturbulent model. So that we can obtain the influence factors that each part of the vertical pipe intake to the hydraulic characteristics in the powering condition.
     The vertical pipe intake, which was studied by physical experiments, is investigated with three-dimensional k-εturbulent mode in the powering condition. The analysis and comparison of hydraulic characteristics, including head loss, flow distribution of 8 orifices and velocity distribution, indicate that the numerical model is reasonable and reliable.
     On the basis of modelling verification, the inlet’s main size parameters are analyzed with three-dimensional k-εturbulent mode, and contrasted in each shape parameter. The influence of shape parameter of the intake on the hydraulic characteristics is studied in this paper. The hydraulic characteristics include head loss,flow distribution of 8 orifices and velocity distribution. The shape parameter of the intake includes the different types of the straight length, the curved conduit and the diffuser. The recommnd scope of the main size shape parameters is provided.
引文
[1]邱彬如,世界抽水蓄能电站新发展[M],北京:中国电力出版社,2006,1-36
    [2]梅彦祖,抽水蓄能发电技术[M],北京:清华大学出版社,1988,1-16
    [3]潘家铮,何憬,中国抽水蓄能电站建设[M],北京:中国电力出版社,2000,25-64
    [4]邱彬如,抽水蓄能电站工程技术[M],北京:中国电力出版社,2008,1-12
    [5]陆佑楣,潘家铮,抽水蓄能电站[M],北京:水利电力出版社,1992,178-184
    [6] Anwar,H.O,Weller, J.A,and Amphlett, M.B., Similarity of Free-vortex at Horizontal Intake[J], Journal of Hydraulic Research, Vol. 16, No. 2, 1978, 95-105
    [7] Amphlett, M.B., Air-Entraining Vortices at a Horizontal Intake[J], Hydraulic Research Station, Wallingford, Oxfordshire, England, Apr., 1976
    [8] Jain, A.K., Raju, K.G.R., and Garde, R.J., Vortex Formation at Vertical Pipe Intakes, Journal of the Hydraulics Division[J], ASCE, Vol. 104, HY10, October,1978: 1429-1445
    [9] Dexter, R.B., and Zeigler, E.R., Penstock Intake Vortex and Related Turbine Operation Model Studies, Proceedings of the ASCE/ASME International Association of Hydraulic Research Joint Symposium on Design and Operation of Fluid Machinery[J], Colorado State University, Fort Collins, Colo- Vol. 1, June,1978, 425-436
    [10] Linford, A., The Application of Models to Hydraulic Engineering, Part 2: Air-Entraining Vortices[J], Water and Water Engineering, March, 1965, 105-110
    [11] Denny, D.F., An Experimental Study of Air-Entraining Vortices at Pump Sumps, Proceeding of the Institution of Mechanical Engineers[J], London, England, Vol. 170, No. 2, 1956, 106~116.
    [12] Hattersley, R.T., Hydraulic Design of Pump Intakes, Journal of the Hydraulics Division [J], ASCE, Vol. 91,No. HY2, Proc. Paper 4276, March, 1965, 223-248
    [13]章军军,毛欣炜,毛根海等,侧式短进出水口水力试验及体型优化[J],水力发电学报,2006,25(2):38-41
    [14]张从联,朱红华,钟伟强等,惠州抽水蓄能电站上库进出水口水力学模型试验[J],水利水电科技进展,2004,24(6):13-16
    [15]张从联,朱红华,钟伟强等,惠州抽水蓄能电站下库进出水口水工模型试验研究[J],人民珠江,2003,6:10-14
    [16]黄智敏、张从联、朱红华,抽水蓄能电站侧式进/出水口的体型研究[J],水电站设计,2007,23(3):22-28
    [17]包中进,卞祖铭,龙观抽水蓄能电站下库进(出)水口水力特性试验研究[J],浙江水利科技,1997,4:3-6
    [18]邹敬民,高树华,李宝红等,荒沟抽水蓄能电站上池侧式进口和出口水力学试验研究[J],水利水电技术,1999,3:42-44
    [19]水电部北京勘测设计院,十三陵抽水蓄能电站上、下池取水口水力学模型试验研究[R],1987.2.
    [20]广东省水利水电科学研究所,广州抽水蓄能电站上下库库盆及进出水口(一管四机)水工模型试验研究报告[R],1988.2
    [21]黄智敏,何小惠,朱红华等,广州抽水蓄能电站下库进出水口试验研究[J],Water Resources and Power,2005,23(1):4-7
    [22]邱彬如、刘连希,抽水蓄能电站工程技术[M],中国电力出版社,北京:2008.10:222-233
    [23]天津大学,西龙池抽水蓄能电站招标阶段上水库进/出水口模型试验研究报告[R],2002.10
    [24]天津大学,西龙池抽水蓄能电站招标阶段上水库进/出水口模型试验研究报告[R],1998.7
    [25]高学平、宋慧芳、张效先等,西龙池抽水蓄能电站竖井式进/出水口体型研究[J],水利水电技术,2004(2):34-37
    [26]高学平,张效先,王志国等,西龙池抽水蓄能电站竖井式进/出水口水力学试验研究[J],水力发电学报,2002,1:52-60.
    [27]王福军.计算流体动力学分析----CFD软件原理与应用[M],北京:清华大学出版社,2004
    [28]成立,泵站水流运动特性及水力性能数值模拟研究,河海大学博士学位论文[D],2006,1
    [29]屈磊飞,王林锁,陈松山,彭大田,何平,闸站合建枢纽泵站三维水流的数值模拟[J],水利与建筑工程学报,2006,4(1):15-17
    [30]牟介刚,张生昌,CFD技术在离心泵设计工作中的应用[J],水泵技术,2006,(2):29-31
    [31]吴治将,赵万勇,混流泵内流场的数值模拟[J],流体机械,2005,33(10):15-19
    [32]刘小兵,曾永忠,混流式水轮机中旋涡流的LES法预测[J], Fluent中国用户大会论文集,2005:132-140
    [33]张莹,陆振华,一种小型轴流式水轮机的数值模拟[J],水动力学研究与进展,A辑第20卷增刊:822-828
    [34]董延超,郭维东,杨天恩等,水库主溢洪道三维流场数值模拟[J],安徽农业科学,2006,34(1):183-188
    [35]沙海性,吴时强,泄洪洞有压段体型优化的三维数值模拟[J],水动力学研究与进展,A辑第19卷增刊:942-947
    [36]方样位,李建中,魏文礼,紊流数值模拟的现状及进展[J],陕西水力发电,2000,(1):16-19
    [37]天津大学,西龙池抽水蓄能电站招标阶段上水库进/出水口数值模拟[R],2003.11.
    [38]天津大学,溧阳抽水蓄能电站上水库进/出水口数值模拟[R],2005.10.
    [39]高学平,张亚,刘健等,抽水蓄能电站竖井式出水口三维数据模拟[J],水力发电学报,2003.11,23(2):35-38
    [40]高学平,刘健,宋慧芳等,抽水蓄能电站竖井式出水口二维数据模拟[J],水利水电技术,2004.4,34:73-87
    [41]高学平,叶飞,宋慧芳,侧式进/出水口水流运动三维数值模拟[J],天津大学学报,2006,39(5):518-522.
    [42]刘健,抽水蓄能电站竖井式进/出水口数值模拟[D],天津大学硕士学位论文,2003.12
    [43]宋慧芳,抽水蓄能电站盖板竖井式进/出水口水力特性研究[D],天津大学硕士学位论文,2003.12
    [44]程伟平,毛根海,胡云进等,马山抽水蓄能电站竖井式进/出水口轴对称流场数值模拟[J],水力发学报,2005,24(3):56-60
    [45]陈丽芬,无锡马山抽水蓄能电站井式进/出水口设计[J],浙江水利科技,2006,6:28-30
    [46]陈云良,伍超,叶茂等,水电站进水口水流流态的研究[J],水动力学研究与进展,2005,20(3):340-345
    [47] Forkel, C, Jokiel, C, Bergen, O,Doinghaus P,Kongeter, J, Model and Numerical Simulations for the intake works of Bakun Reservior [J], Journal on Hydropower & Dams, 1996, 6
    [48] K Rettemeier, G. Demny, C. Forkel & J. Kongeter, Verification of the simulated 3D flow through the intake of a river run power plan[J], t, Hydro-informatics 98, (2): 1433-1439
    [49] G. Demny, K. Rettemeier, C. Forkel & J. Kongeter, 3D-numerical investigation for the intake of a river run power plant[J], Hydro-informatics 98, (2):1331-1338
    [50] C. Y. Wei, M. ASCE & John Boknecht, A. M. ASCE, A Rocky Mountain Project Intake/Discharge Channel Flow Simulation Study[J], Waterpower 91, volume 3: 1667-1675
    [51]莫乃榕,工程流体力学[M],武汉:华中理工大学出版社,2000
    [52]金忠青,N-S方程的数值解和紊流模型[M],南京:河海大学出版社,1998
    [53]方样位,李建中,魏文礼.紊流数值模拟的现状及进展[J].陕西水力发电,2000,(1):16-19.
    [54] B. Van Leer. Toward the Ultimate Convective Difference Scheme. IV.A Second Order Sequel to Godunov's Method [J], Journal of Computational Physics 1979(32)
    [55] S. V. Patanker, D. B. Spalding, A calculation processsure for heatmass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer l5, 1972: 1787一1806
    [56] R. Aris. Vectors tensors and the basic equations of fluid mechanics [M]. Dovor publics-tions. New York. 1989.
    [57] Shih T.I.P, Bailey R.T, Algebraic grid generation for complex geometries, [J] Int. J. Numer. Meth. in Fluids, 1991,(l3): 1-13
    [58] Thompson J. F, Composite grid generation code for 3-Dregions-the EAGLE code[J]. AIAA J., 1998, (26): 271-272
    [59] Chars W.M., Steger J.L., Ageneralized scheme for three-dimensional hyperbolic grid generation[J], 1991, AIAA, 91-158
    [60] Thompson J.F., Weatherill N.P, Aspects of numerical grid generation[J], current and art, AIAA(paper): 93-35
    [61] Steinbrener J.P, Chawner J.R, Multiple block grid generation in the interactive environment[J]. AIAA (paper): 90-1602
    [62] T. H. Shih, W. W. Liou, A. Shabbir and J. Zhu. A New k- Eddy-ViscosityModel for High Reynolds Number Turbulent Flows - Model Development andValidation. Computers Fluids[J], 1995, 24(3): 227-238,
    [63] Spekreuse S.P, Elliptic grid generation based on Laplace equation and algebraic J.of Compu.Phys[J].1995, (118) : 38-61
    [64] H.K.Versteeg, W.Malalasekera, An Introduction to Computational Fluid Dynamics[J], The Finite Volume Method,Wiley, New York, 1995: 3-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700