聚炔合成新路线探索及功能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能化聚炔的设计合成一直是聚炔领域的研究热点之一。作为最简单的聚炔,聚乙炔便以其掺杂导电性闻名于世。聚炔侧基含有功能性基团时,聚合物整体可以表现出相应的功能,如液晶性、发光性、光学非线性、光学活性、溶致变色性、亲水性、生物活性等。通过控制侧基上功能基团与主链的连接方式(直接相连、刚性链相连、柔性链相连),可调节二者之间的相互作用(如电子效应、空间效应、电荷或能量转移等),使聚炔的功能化更加复杂多样。然而,将功能基团接到聚炔侧基的指定位置,得到结构和分子量及其分布可控的功能化聚炔,并非易事。原因有二:(1)炔烃聚合本身的不可控性,即单体结构、催化剂和溶剂的种类会对聚合结果产生无法预知的影响;(2)催化剂对功能基团的耐受性很差,尤其是双取代炔烃聚合必须使用的易位催化剂,遇到含活泼氢的极性基团会中毒失效。为了系统研究功能化聚炔结构-性能关系,在开发新型催化剂、完善直接聚合法的同时,也有必要探索制备功能化聚炔的类似于模版法的新方法。
     本论文首先以有机铑络合物[Rh(diene)Cl]2为催化剂合成了带四种侧基含偶氮苯液晶基元的聚苯乙炔衍生物P1(6)、P2(6)、P1(12)和P2(12),其化学结构与预期一致,分子量及其分布适当。研究了四种聚炔的光致异构化行为、热稳定性和液晶性,讨论了刚性主链、偶氮苯结构和柔性烷基间隔链三者对聚合物性质的影响。结果表明:刚性主链和偶氮苯基元之间的柔性烷基链对聚合物光致异构化的速率和液晶相的形成有很大影响。烷基链由C6变为C12时,不但异构化速率加快,而且能够形成各向异性的POM图像。此外,偶氮苯基元上的三氟甲基对形成典型的SmA液晶相有较大贡献。据XRD数据和理论计算结果推断聚炔主链与侧链呈“鱼骨”状,偶氮苯基元连在侧链末端,且相邻基元之间以“插指”模式平行排列。这些结论在一定程度上揭示了聚合物主链、柔性间隔基和偶氮苯功能团之间的相互作用,有助于进一步构筑新型的功能化共轭聚合物。
     本论文进一步探索了反应性侧基在合成单取代功能化聚炔中的作用,拓展了聚炔侧基后功能化的范围。选择有机铑络合物为催化剂,设计合成了三种侧基含五氟苯酯结构的聚苯乙炔衍生物P1、P2和P3,而后利用五氟苯酯与有机胺的亲核取代反应,将亲水性PEG链、疏水性烷基链、手性碳等功能性结构引入聚合物侧基上,得到十八种单取代功能化聚炔。红外和核磁结果与预期一致,并且证明了活性酯的取代具有便捷、定量转化、无副反应等特性。GPC结果表明,所得功能化聚炔的分子量及其分布与相应的母体聚合物高度一致。我们进一步实施了两种功能性胺(如亲水性的氨基PEG和疏水性的烷基胺)与活性酯聚炔反应,得到了双重功能化的聚炔,1H NMR结果表明聚合物侧基中两种功能基团的比例与两种胺的投料比是一致的。因此,我们可以通过控制两种后功能化试剂的比例,定量地调节聚炔侧基双重功能化的程度,得到类似于两种炔单体无规共聚的产物。研究发现,侧基上的手性碳能够诱导聚炔主链呈螺旋构象,并且诱导螺旋的能力与手性碳构型、手性侧基比例和手性碳与主链的连接方式有关:第一,构型相反的手性碳诱导主链呈方向相反的螺旋构象;第二,手性侧基的比例越低,聚炔溶液测得的圆二色(CD)信号强度越小,但是手性侧基间的协同性(cooperativity)较弱,因而没有明显的手性放大效应;第三,当聚苯乙炔主链与手性碳之间有C5和C10烷基间隔链时,聚炔溶液检测不到CD信号,这说明手性碳与聚苯乙炔主链直接相连是手性诱导的充分条件。研究还发现,侧基含PEG链的聚炔具有两亲性和温敏性。一方面,PEG功能化聚炔能够溶于水形成表观澄清的溶液,但是核磁结果表明只有PEG链溶解,而疏水部分被包裹在内。PEG链的引入也使得聚炔薄膜的接触角大幅度下降,出现疏水性到亲水性的转变,而PEG链和烷基间隔链的长度分别对亲水性起积极和消极作用,并且亲水性侧基的含量也对聚炔的亲水性有很大影响。另一方面,PEG赋予聚炔LCST行为,PEG链越长浊点越高,烷基间隔链越长浊点越低。
     在此基础上,本论文将活性酯策略运用到双取代聚炔的侧基功能化改性中。首先选用W催化剂合成了侧基含五氟苯酯的聚二苯乙炔衍生物(P4),之后与多种手性胺反应得到侧基含羟基、酯基、羧基等高极性基团的功能化聚二苯乙炔(P5-P10),而由于催化剂中毒问题,含高极性基团的双取代炔单体无法直接聚合得到聚合产物。同样用红外和核磁表征了单体和聚合物的结构,结果与预期一致,确定无疑地证实了活性酯侧基后功能改性可用于双取代聚炔领域。研究发现,不同结构的手性碳具有不同的诱导主链螺旋的能力,同时由于侧基结构不同,导致主链共轭长度改变,所以不同功能化聚炔的荧光发射性质有所不同。水分的不断加入使得聚炔分子发生聚集,而不同侧基基团对分子聚集的影响不同,具体可归结为短程相互作用的增强和苯基发色团内旋转受阻两个方面,最终导致聚炔溶液的荧光强度发生先增大后减小的变化。
     利用活性酯法将芘结构引入聚合物侧基上,得到两种单取代聚炔(P12和P13)和两种双取代聚炔(P14和P15)。由于侧基含芘,四种聚炔的紫外吸收都表现出聚炔主链与芘叠加的性质,然而它们表现出不同的荧光发射性质。单取代聚炔P12和P13的聚合物主链不发光,所以荧光光谱中只出现侧基芘的“单体”和“激基缔合物”在400和480nm附近的发光。对于双取代聚炔P14和P15,343nm激发时,由于存在芘“单体”“激基缔合物”和主链三个潜在发光物种,并且发生了从侧基芘到主链的荧光共振能量转移,所以芘“激基缔合物”的发光消失,芘“单体”的发光明显减弱,而主链的发光比380nm激发时增强了2-3倍。另外,除了主链结构外,芘发色团与主链的连接方式对聚炔的荧光发射性质也有影响。当芘直接连于单取代聚炔主链时,聚合物(P12)更多地表现为“激基缔合物”的发光,而含C10烷基间隔链的聚炔(P13),芘“单体”的发光明显增强。双取代聚炔中,C5烷基间隔链也有助于芘“单体”发光的增强。
The design and synthesis of functional polyacetylenes has been a hot topic in the field of polyacetylenes. Polyacetylene, with the simplest structure, is famous for its outstanding electrical conductivity. Generally, functional side groups can endow the whole polymer with corresponding functionality, such as liquid crystallinity. light emission, optical nonlinearity, optical activity, solvatochromism, hydrophilicity, and biological activity. Even versatile functionalities can be achieved by adjusting the interaction between polymer backbone and functional side groups, i. e. electronic interaction, steric effect, charge transfer, or energy transfer. However, functional groups are usually not easy to be attached to the desired position in the side chain. On one hand, the controlled polymerization of acetylenic monomers has not successfully been achieved with nomal catalysts; On the other hand, the polymerization catalysts, especially the metathesis catalysts, are intolerant of polar functional groups in the monomers. Therefore, it is necessary to develop new platform-like synthetic route toward various functional polyacetylenes, besides catalyst development and direct polymerization implementation, in order to systematically study the structure-property relationship.
     Four azobenzene-bearing polyphenylacetylenes, P1(6), P2(6), P1(12), and P2(12) were synthesized by using organorhodium complexes [Rh(diene)Cl]2as catalysts. Their photoinduced isomerization behavior, thermal stability, and liquid crystalline property were carefully studied. Results show that longer alky] spacer contributes to quicker isomerization rate and is essential to the formation of anisotropic liquid crystal phase. In addition. the mesophase was assigned to SmA phase when the azobenzene is attached with trifluoromethyl. Combind XRD results and theoretical calculation, we believe that a single polymer chain takes a fishbone configuration with a mesogen at the end of each side chain. The mesogens on the adjacent polymer side chains take an interdigital arrangement. In summary, this work demonstrated the interdependent properties between three key structural parameters of rigid polymer backbone, flexible alkyl spacer, and photoisomerization-capable mesogen. thus provides helpful information to the designation and preparation of conjugated polymers with desirable opto-electronic properties.
     We further explored the role of reactive pendants in the functionalization of monosubstituted polyacetylenes. Pentafluorophenyl (PFP) ester-functionalized poly(phenylacetylene)s (PPAs, P1, P2and P3) were designed and synthesized in desirable yields and molecular weight by using organorhodium complexes as catalysts. These PFP-containing PPAs were further used as precursors to prepare a series of18mono-and dual-functionalized PPAs by the substitution of the activated ester moieties with functional amines. The experimental details and the IR and NMR characterization data demonstrate that activated ester synthetic route to functional PPAs is facile (just stirring the precursor polymer with proper amine(s) at room temperature for hours), efficient (complete transition from ester to amide has been confirmed), and quantitative (the relative content of a specific functionality can be precisely preset by controlling the feed ratio of the functional amines). CD measurements indicated that the incorporation of chiral amine into polymer side chains induced helicity formation of P1backbone. P1-C*Ph(L) and P1-C*Ph(D) backbones adopt predominantly right-handed and left-handed helical conformation. respectively. While the flexible spacer between the chiral center and the rigid PPA backbone blocked the induction of main-chain helicity by chiral pendants, thus no CD signals were recorded for P2-C*Ph(L) and P3-C*Ph(L). Substitution of PFP ester with amine-functionalized PEGs transited the hydrophobic PPAs to hydrophilic. All of the PEG-contain ing PPAs can be dissolved in water and form clear solutions. Meanwhile, all of the aqueous solutions exhibit LCST behavior and the hydrophilic PEG chains and hydrophobic alkyl spacers have positive and negative impact on the cloud point, respectively. Contact angles measurements showed that the length and content of the PEG chains contribute greatly to the hydrophilic property, and the length of the alkyl spacers and the content of the alkyl amine component played a contrary role. By controlling the ratio of the PEGylated and alkyl amines, the amphiphilic property of the PPAs can be well tailored.
     Activated ester strategy was further utilized to synthesize functional disubstituted polyacetylenes. which contains highly polar groups on their side chain and can not be obtained through direct polymerization with metathesis catalysts. A pentafluorophenyl (PFP) ester-containing diphenylacetylene was designed and polymerized to obtain PFP activated ester-functionalized disubstituted polyacetylene (P4). P4was used as a parent polymer to further react separately with diverse amines, giving rise to a series of functional disubstituted polyacetylenes (P5-P10) with chiral moiety, and/or hydroxyl. carboxyl groups in high yields under mild condition. Spectral characterization data indicated that the polymers" structures were well consistent with the expected results. The helicity and emission property of polymers were also studied. Results show that different chiral structure has different ability to induce backbone helicity, and postfunctionalization cause different conjugation length and different emission property.
     Pyrene was incorporated into the side chain of four polyacetylenes through activated ester strategy, obtaing two monosubstituted (P12and P13) and two disubstituted (P14and P15) pyrene-containing polyacetylenes. Excited at343nm, P12and P13emit around400and480nm, which is ascribed to the pyrene "monomer" and "excimer" respectively. However, the emission property of P14and P15is rather complicated, because fluorescence resonance energy transfer (FRET) is occurred from pyrene to polymer backbone. When excited at380nm, only the polymer backbone emits around510nm. When excited at343nm, there are three kind of potential emissive species, i. e. pyrene "monomer", pyrene "excimer". and polymer backbone. However, the PL spectra only show two emission peaks around400and510nm which can be ascribed to pyrene "monomer" and polymer backbone respectively. The pyrene "excimer" emission is completely disappeared and the "monomer" emission is weaker, but the backbone emission intensity is2-3times stronger than excited at380nm.
引文
(1)Lam, J. W. Y.; Tang, B. Z. Liquid-crystalline and light-emitting polyacetylenes, J. Polym. Sci. Part A: Polym. Chem.2003,41:2607-2629.
    (2)Lam, J. W. Y.; Tang, B. Z. Functional polyacetylenes, Acc. Chem. Res.2005,38:745-754.
    (3)Liu, J. Z.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers:syntheses, structures, and functions, Chem. Rev.2009.109:5799-5867.
    (4)Shiotsuki, M.; Sanda, F.; Masuda, T. Polymerization of substituted acetylenes and features of the formed polymers, Polym. Chem.2011,2:1044-1058.
    (5)Natta, G.; Mazzanti, G.; Corradini, P. Atti, Accad. Naz. Lincei, Rend. Classe Sci. Fis. Mat. Nut.1958,25, 3.
    (6)Ito, T.; Shirakaw, H.:Ikeda, S. Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution, J. Polym. Sci.. Part A:Polym. Chem.1974, 12:11-20.
    (7)Chiang, C. K., Fincher, C. R., Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gau, S. C.. MacDiarmid, A. G., Electrical conductivity in doped polyacetylene, Phys. Rev. Lett.1977,39: 1098-1101.
    (8)Masuda. T.; Hasegawa, K.; Higashimura, T. Polymerization of phenylacetylene.1.Polymerization of phenylacetylene catalyzed by WCl6 and MoCl5, Macromolecules 1974,7:728-731.
    (9)Masuda, T.; Sasaki, N.; Higashimura, T. Polymerization of phenylacetylenes. Ⅲ. Structure and properties of poly(phenylacetylene)s obtained by WCl6 and MoCl5. Macromolecules 1975,8:717-721.
    (10)Katz, T. J.; Lee, S. J. Initiation of acetylene polymerization by metal carbenes, J. Am. Chem. Soc.1980, 102:423-425.
    (11)Katz, T. J.; Hacker. S. M.; Kendrick, R. D.; Yannoni, C. S. Mechanisms of phenylacetylene polymerization by molybdenum and titanium initiators, J. Am.Chem. Soc.1985,107:2182-2183.
    (12)Cotton, F. A.; Hall, W. T.; Cann, K. J.; Karol, F. J. Reactions of niobium(Ⅲ) and tantalum(Ⅲ) compounds with acetylene.4. Polymerization of internal acetylenes, Macromolecules 1981,14:233-236.
    (13)Masuda, T.; Takahashi, T.; Higashimura, T. Polymerization of 1-phenyl-l-alkynes by halides of niobium and tantalum, Macromolecules 1985,18:311-317.
    (14)Masuda, T.; Niki, A.; Isobe, E.; Higashimura, T. Effect of organometallic cocatalysts on the polymerization of 1-phenyl-l-propyne by tantalum pentachloride (TaCl5) and niobium pentachloride (NbCl5), Macromolecules 1985,18:2109-2113.
    (15)Niki, A.; Masuda, T.; Higashimura, T. Effects of organometallic cocatalysts on the polymerization of disubstituted acetylenes by TaCl5 and NbCl5,J. Polym. Sci. Part A:Polym. Chem.1987,25:1553-1562.
    (16)Masuda. T.; Kuwane, Y.; Higashimura, T. Polymerization of 1-chloro-2-phenylacetylene induced by UV irradiation of Mo(CO)6,J. Polym. Sci. Part A:Polym. Chem.1982,20:1043-1050.
    (17)Masuda, T.; Yamamoto, K.; Higashimura, T. Polymerization of phenylacetylene induced by u.v. irradiation of group 6 transition metal carbonyls. Polymer 1982,23:1663-1666.
    (18)Tang. B. Z.; Kotera, N. Synthesis of optically active polyacetylene containing an asymmetric silicon by using organotransition-metal complexes as catalysts, Macromolecules 1989,22:4388-4390.
    (19)Xu, K.; Peng, H.; Lam, J. W. Y.; Poon, T. W. H.; Dong, Y.; Xu, H.:Sun, Q.; Cheuk, K. K. L.; Salhi, F.; Lee, P. P. S.; Tang, B. Z. Transition metal carbonyl catalysts for polymerizations of substituted acetvlenes, Macromolecules 2000,33:6918-6924.
    (20)Santhosh. N. S.;Sundararajan. G. Metathesis polymerisation of phenylacetylene catalysed by (arene)Mo(CO)3 activated by electron acceptor chloranil. Eur. Polym. J.2007,43:4306-4315.
    (21)Kunzler. J. F.:Percec. V. Polym. Bull.1987.18:303-309.
    (22)Masuda. T.:Yoshimura. T.:Fujimori. J.:Higashimura. T. J Chem. Soc. Chem. Commun.1987. 1805-1806.
    (23)Masuda, T.:Yoshimura. T.:Higashimura. T. Living polymerization of 1-chloro-l-alkynes by MoOCl4-n-Bu4Sn-EtOH catalyst. Macromolecules 1989,22:3804-3806.
    (24)Masuda, T.; Mishima, K.:Fujimori, J.; Nishida, M.; Muramatsu, H.:Higashimura, T. Living metathesis polymerization of [o-(trifluoromethyl)phenyl]acetylene by molybdenum-based three-component catalysts, Macromolecules 1992,25:1401-1404.
    (25)Nakano, M.;Masuda. T.;Higashimura. T. Stereospecific living polymerization of tert-butylacetylene by molybdenum-based ternary catalyst systems, Macromolecules 1994,27:1344-1348.
    (26)Hayano, S.; Kaneshiro, H.; Masuda. T. Kobunshi Ronbunshu,1997,54:587-595.
    (27)Hayano, S.; Masuda. T. Living polymerization of [o-(trifluoromethyl)phenyl] acetylene by WOCl4-based catalysts such as WOCl4-n-Bu4Sn-t-BuOH (1:1:1), Macromolecules 1999,32: 7344-7348.
    (28)Wallace, K. C.; Liu, A. H.; Davis, W. M.; Schrock, R. R. Living polymerization of 2-butyne using a well-characterized tantalum catalyst, Organometallics 1989,8,644-654.
    (29)Schrock, R. R.lLuo, S. F.; Zanetti, N. C.; Fox, H. H. Living polymerization of (o-(Trimethylsilyl)phenyl)acetylene using "small alkoxide" molybdenum(VI) initiators, Organometallics 1994.13,3396-3398.
    (30)Schrock. R. R.; Luo, S.; Lee, J. C., Jr.; Zanetti, N. C.; Davis, W. M. Living polymerization of (o-(trimethylsilyl)phenyl)acetylene by molybdenum imido alkylidene complexes. J. Am. Chem. Soc. 1996.118,3883-3895.
    (31)Balcar. H.; Topka, P.; Sedlacek. J.; Zednik. J.; Cejka, J. Polymerization of aliphatic alkynes with heterogeneous Mo catalysts supported on mesoporous molecular sieves, J. Polym. Sci.. Part A:Polym. Chem.2008,46:2593-2599.
    (32)Floros. G.; Saragas. N.; Pararaskevopoulou, P.:Choinopoulos, I.; Koinis, S.; Psaroudakis, N.; Pitsikalis, M.; Metris, K. Catalytic polymerization of alkynes with the quadruply bonded octachloroditungsten anion, J. Mol. Catal. A:Chem.2008,289:76-81.
    (33)Saragas, N.; Floros, G.; Paraskevopoulou, P.; Psaroudakis. N.;Koinis, S.; Pitsikalis, M.; Mertis, K. Polymerization of terminal alkynes with a triply bonded ditungsten halo-complex, J. Mol. Catal. A: Chem.2009,303:124-131.
    (34)Furlani, A.; Napoletano, C.; Russo, M. V. The influence of the ligands on the catalytic activity of a series of RhI complexes in reactions with phenylacetylene:Synthesis of stereoregular poly(phenyl) acetylene. J. Polym. Sci.. Part A:Polym. Chem.1989,27:75-86.
    (35)Yang, W.; Tabata, M.; Kobayashi, S.; Yokota, K.; Shimizu, A. Polym. J.1991,23,1135.
    (36)Kanki, K.; Misumi, Y.:Masuda, T. Remarkable cocatalytic effect of organometallics and rate control by triphenylphosphine in the Rh-catalyzed polymerization of phenylacetylene. Macromolecules 1999,32: 2384-2386.
    (37)Kishimoto, Y.; Itou, M.; Miyatake, T.; Ikariya, T.; Noyori. R. Polymerization of monosubstituted acetylenes with a zwitterionic rhodium(I) complex. Rh+(2,5-norbornadiene)[.eta.6-C6H5)B'(C6H5)3]. Macromolecules 1995,28:6662-6666.
    (38)Tang, B. Z.; Poon, W. H.; Leung. S. M.; Leung, W. H.; Peng, H. Synthesis of stereoregular poly(phenylacetylene)s by organorhodium complexes in aqueous media, Macromolecules 1997,30: 2209-2212.
    (39)Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Ikariya, T.; Noyori, R. Living Polymerization of Phenylacetylenes Initiated by Rh(C.tplbond.CC6H5) (2.5-norbornadiene)[P(C6H5)3]2, J Am. Chem. Soc.. 1994, 116:12131-12132.
    (40)Kishimoto, Y.; Miyatake, T.; Ikariya, T.; Noyori, R. An efficient rhodium(I) initiator for stereospecific living polymerization of phenylacetylenes, Macromolecules 1996, 29: 5054-5055.
    (41)Misumi, Y.; Masuda, T. Living polymerization of phenylacetylene by novel rhodium catalysts. Quantitative initiation and introduction of functional groups at the initiating chain end, Macromolecules 1998,31:7572-7573.
    (42)Saeed, I.: Shiotsuki. M.; Masuda, T. Effect of diene ligands in the rhodium-catalyzed polymerization of phenylacetylene, Macromolecules 2006, 39. 8977-8981.
    (43)Saeed, 1.; Shiotsuki, M.; Masuda, T. Living polymerization of phenylacetylene with tetrafluorobenzobarrelene ligand-containing rhodium catalyst systems featuring the synthesis of high molecular weight polymer, Macromolecules 2006. 39: 8567-8573.
    (44)Onishi, N.; Shiotsuki, M.; Sanda, F.; Masuda,T. Polymerization of phenylacetylenes with rhodium zwitterionic complexes: enhanced catalytic activity by π-acidic diene ligands, Macromolecules 2009, 42: 4071-4076.
    (45)Nishimura, T.; Ichikawa, Y.; Hayashi, T.; Onishi, N.; Shiotsuki, M.; Masuda, T. Asymmetric polymerization of achiral arylacetylenes giving helical polyacetylenes in the presence of a rhodium catalyst with a C2-symmetric tetrafluorobenzobarrelene ligand, Organomet allics 2009, 28: 4890-4893.
    (46)Xue, P.: Sung. H. S. Y.; Williams. I. D.; Jia, G. Alkyne oligomerization mediated by rhodium complexes with a phosphinosulfonamido ligand and isolation and characterization of a rhodacyclopentadiene complex, J. Organomet. Chem. 2006,691: 1945-1953.
    (47)Jimenez, M. V.; Perez-Torrente, J. J.; Bartolome, M. I.; Vispe. E.: Lahoz. F. J.; Oro, L. A. Cationic Rhodium Complexes with Hemilabile Phosphine Ligands as Polymerization Catalyst for High Molecular Weight Stereoregular Poly(phenylacetylene), Macromolecules 2009, 42: 8146-8156.
    (48)Kopaczynska, M.; Fuhrhop, J. H.; Trzeciak, A. M.; Ziolkowski, J. J.; Choukroun, R. AFM and TEM image of phenylacetylene polymerization on Rh/PVP colloidal nanoparticles , New J. Chem. 2008, 32: 1509-1512.
    (49)Ojwach, S. O.; Guzei, 1. A.; Darkwa, J.; Mapolie, S. F. Crystal structure of an unusual bis(fluorous phosphine) ruthenium(Ⅲ) complex derived from a fluorous Grubbs' catalyst, Polyhedron 2007, 26: 851-861.
    (50)Li, K.; Mohlala. M. S.; Segapelo, T. V.; Shumbula, P. M.; Guzei, 1. A.; Darkwa. J. Bis(pyrazole)- and bis(pyrazolyl)-palladium complexes as phenylacetylene polymerization catalysts , Polyhedron 2008, 27: 1017-1023.
    (51)Buchowicz. W.; Wojtczak, W.; Pietrzykowski, A.; Lupa, A.; Jerzykiewicz, L. B.; Makal, A.; Wozniak, K. Synthesis, structure, and polymerization activity of cyclopentadienylnickel(II) N-heterocyclic carbene complexes: selective cross-metathesis in metal coordination spheres, Eur. J. Inorg. Chem. 2010, 2010: 648-656.
    (52)Cheuk, K. L. Synthesis, helical structures, self-assembling, morphologies, and biological activities of amphiphilic polyacetylenes. Ph.D. Dissertation, HKUST, February 2002.
    (53)Simionescu, C. I.; Percec, V. Polyarylacetylenes: structure and properties, J. Polym. Sci., Polym. Symp. 1980,67:43-71.
    (54)Masuda, T.; Higashimura, T. Synthesis of high polymers from substituted acetylenes, Acc. Chem. Res. 1984. 17:51-56.
    (55)Tang. B. Z.;Kong. X.;Wan. X.;Feng. X.-D.:Kwok. H. S. Liquid crystalline polyacetylenes:synthesis and properties of poly(n-(((4-cyano-4-biphenylyl)oxy) carbonyl)-1-alkynes).. Macromolecules 1998,31: 2419-2432.
    (56)Lam. W. Y.;Dong. Y.;Cheuk. K. L.;Luo, J.; Kwok, H. S.; Tang, B. Z. Synthesis and properties of biphenyl-containing poly(1-alkynes)., Macromolecules 2002,35:1229-1240.
    (57)Lam, W. Y.:Dong, Y.:Tang, B. Z. Synthesis, thermal stability, liquid cry stallinity, and light emission of polypropiolates, Macromolecules 2002,35:8288-8299.
    (58)Law, C. W. Synthesis, light emission, optical activity, and thermal stability of acetyleneic polymers. M.Phil. Thesis, HKUST, August 2004.
    (59)Law, C. W.; Lam, W. Y.; Tang, B. Z. Poly-(diphenylacetylene)s:synthesis and their thermal and light-emitting properties, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2004,45:839-840.
    (60)Lam. W. Y.; Dong, Y.; Tang, B. Z. Synthesis, stability, and chiroptical properties of poly(alkyl phenylpropiolate)s, Macromolecules 2004,37:6695-6704.
    (61)Lam, W. Y.; Dong, Y.:Kwok, H. S.; Shen, J. C.; Tang, B. Z. Functional disubstituted polyacetylenes and soluble cross-linked polyenes, Macromolecules 2005,38:3290-3300.
    (62)Xu, K.; Peng. H.; Lam, W. Y.; Dong, Y.; Sun, Q.; Salhi, F.; Tang, B. Z. Transition metal carbonyl catalysts for polymerizations of substituted acetylenes, Macromolecules 2000,33:6918-6924.
    (63)Masuda, T.; Okano, Y.; Kuwane, Y.; Higashimura, T. Polym J,1980,12,907-913.
    (64)Masuda, T. Substituted polyacetylenes, J. Polym. Sci., Part A:Polym. Chem.,2007,45:165-180.
    (65)Masuda, T.; Yamagata, M.; Higashimura, T. Polymerization of 1-chloro-2-phenylacetylene by molybdenum pentachloride-based catalysts, Macromolecules 1984,17:126-129.
    (66)Masuda, T.; Hamano, T.:Higashimura, T.; Ueda. T.:Muramatsu. H. Synthesis and characterization of poly((o-(trifluoromethyl)phenyl)acetylene), Macromolecules 1988,21:281-286.
    (67)Masuda, T.:Yoshimura, T.; Tamura, K.;Higashimura. T. Synthesis and properties of poly(1-chloro-l-alkynes), Macromolecules 1987,20:1734-1739.
    (68)Okano, Y.; Masuda, T.; Higashimura, T. Polymerization of trimethylsilylacetylene by WCl6-based catalysts, J Polym. Sci. Polym. Chem. Ed.1984,22:1603-1610.
    (69)Masuda, T.; Tajima, H.; Yoshimura. T.; Higashimura. T. Synthesis and properties of poly(3-(trimethylsilyl)-l-alkynes), Macromolecules 1987,20:1467-1472.
    (70)Masuda, T.; Hamano, T.; Tsuchihara, K.; Higashimura, T. Synthesis and characterization of poly((o-(trimethylsilyl)phenyl)acetylene), Macromolecules 1990,23:1374-1380.
    (71)Masuda. T.; Isobe, E.; Higashimura, T.; Takada, K. Poly(l-(trimethylsilyl)-l-propyne):a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability, J Am. Chem. Soc.1983,105:7473-7474.
    (72)Masuda, T.; Isobe, E.; Higashimura, T. Polymerization of 1-(trimethylsilyl)-1-propyne by halides of niobium(V) and tantalum(V) and polymer properties. Macromolecules 1985,18:841-845.
    (73)Masuda, T.; Isobe. E.; Hamano, T.; Higashimura, T. Synthesis of poly(1-(trimethylsilyl)-l-propyne) with extremely high molecular weight by using tantalum pentachloride-triphenylbismuth (1:1) catalyst, Macromolecules 1986,19:2448-2450.
    (74)Fujimori, J.; Masuda, T.; Higashimura, T. Synthesis of poly(1-(trimethylsilyl)-1-propyne) with a narrow molecular weight distribution by using NbC15 catalyst in cyclohexane, Polym. Bull.1988,20:1-6.
    (75)Masuda, T.; Takahashi. T.; Higashimura, T. Polymerization of 1-phenyl-l-alkynes by halides of niobium and tantalum, Macromolecules 1985,18:311-317.
    (76)Tsuchihara, K.; Masuda, T.; Higashimura, T. Tractable silicon-containing poly(diphenylacetylenes): their synthesis and high gas permeability, J Am. Chem. Soc.1991,113:8548-8549.
    (77)Tsuchihara, K.; Masuda, T.; Higashimura, T. Polymerization of silicon-containing diphenylacetylenes and high gas permeability of the product polymers. Macromolecules 1992.25:5816-5820.
    (78)Kouzai. H.; Masuda, T.; Higashimura, T. Synthesis and properties of poly (diphenylacetylenes) having aliphatic para-substituents, J Polym. Sci. Part A:Polym. Chem.1994,32:2523-2530.
    (79)Yuan, W. Z.; Tang, L.; Zhao, H.; Jin. J. K.; Sun, J. Z.; Qin. A.; Xu, H. P.; Liu,J.;Yang, F.; Zheng. Q.; Chen, E.; Tang, B. Z. Direct polymerization of highly polar acetylene derivatives and facile fabrication of nanoparticle-decorated carbon nanotubes, Macromolecules 2009,42:52-61.
    (80)Cheuk, K. K. L.; Lam, J. W. Y.; Li, B. S.; Xie, Y.; Tang, B. Z. Decorating conjugated polymer chains with naturally occuring molecules:synthesis, solvatochromism. chain helicity, and biological activity of sugar-containing poly(phenylacetylene)s, Macromolecules 2007,40:2633-2642.
    (81)Tong, H.; Lam, J. W. Y.; Haussler, M.; Tang, B. Z. Polym. Prepr.2004,45,835.
    (82)Xu, H.; Sun, J. Z.; Qin, A.; Hua, J.; Li, Z.; Dong, Y.; Xu, H.; Yuan, W.:Ma. Y.; Wang, M.; Tang, B. Z. Functional perovskite hybrid of poly acetylene ammoium and lead bromide:synthesis, light emission, and fluorescence imaging, J. Phys. Chem. B 2006,110:21701-21709.
    (83)Hua, J. L.; Lam. J. W. Y.; Li, Z.; Qin, A.; Sun, J. Z.; Dong, Y. Q.; Dong, Y.; Tang, B. Z. Synthesis of liquid crystalline poly(1-pentyne)s and fabrication of polyacetylene-perovskite hybrids. J. Polym. Sci., Part A:Polym. Chem.2006,44:3538-3550.
    (84)Shida. Y.; Sakaguchi, T.:Shiotsuki. M.; Sanda. F.; Freeman, B. D.; Masuda, T. Synthesis and properties of poly(diphenylacetylenes) having hydroxyl groups, Macromolecules 2005,38:4096-4102.
    (85)Li, Z.; Dong, Y.:Qin, A.; Lam, J. W. Y.; Dong, Y.; Yuan. W.; Sun, J.; Hua, J.; Wong. K. S.:Tang, B. Z. Functionalization of disubstituted polyacetylenes through polymer reaction:syntheses of functional poly(1-phenyl-l-alkyne)s, Macromolecules 2006,39,467-469.
    (86)Li, Z.;Li. Q.; Qin, A.; Dong, Y.; Lam, J. W. Y.; Dong, Y.; Ye, C.; Qin, J.; Tang, B. Z. Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains. J. Polym. Sci., Part A:Polym. Chem.2006,44:5672-5681.
    (87)Zeng, Q.:Cai, P.:Li, Z.; Qin, J.; Tang, B. Z. An imidazole-functionalized polyacetylene:convenient synthesis and selective chemosensor for metal ions and cyanide, Chem. Comm.2008,1094-1096.
    (88)Zeng, Q.; Zhang, L.; Li, Z.; Qin, J.; Tang, B. Z. New polyacetylene-based chemosensory materials for the "turn-on" sensing of a-amino acids, Polymer 2009,50:434-440.
    (89)Zeng, Q.; Lam, J. W. Y.; Jim, C. K. W.:Qin, A.; Qin, J.:Li, Z.; Tang, B. Z. New chemosensory materials based on disubstituted polyacetylene with strong green fluorescence. J. Polym. Sci., Part A:Polym. Chem.2008,46:8070-8080.
    (90)Li, Z.:Dong, Y.; Haussler, M.; Lam, J. W. Y.; Dong, Y.; Wu, L.; Wong. K. S.; Tang, B. Z. Synthesis of, light emission from, and optical power limiting in soluble single-walled carbon nanotubes functionalized by disubstituted polyacetylenes. J. Phys. Chem. B 2006,110:2302-2309.
    (91)Zeng, Q.; Li, Z.; Li, Z.; Ye. C; Qin, J.; Tang, B. Z. Convenient attachment of highly polar azo chromophore moieties to disubstituted polyacetylene through polymer reactions by using click chemistry, Macromolecules 2007,40:5634-5637.
    (92)Tang, B. Z.; Chen, H. Z.; Xu, R. S.; Lam, J. W. Y.; Cheuk, K. K. L.; Wong, H. N. C.; Wang, M. Structure-property relationships for photoconduction in substituted polyacetylenes, Chem. Mater.2000, 12:213-221.
    (93)Zhao, H.; Yuan. W. Z.; Tang, L.;Sun, J. Z.; Xu, H.:Qin, A.; Mao, Y.; Jin, J. K.; Tang, B.Z. Hybrids of triphenylamine-functionalized polyacetylenes and multiwalled carbon nanotubes:high solubility, strong donor-acceptor interaction, and excellent photoconductivity. Macromolecules 2008,41:8566-8574.
    (94)Yuan, W. Z.;Sun. J. Z.; Dong, Y; HauBler, M.; Yang. F.; Xu, H. P.; Qin, A.;Lam. J. W. Y.;Zheng, Q.:Tang, B. Z. Wrapping carbon nanotubes in pyrene-containing poly(phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties. Macromolecules 2006,39: 8011-8020.
    (95)Yuan. W. Z.; Mao, Y.;Zhao. H.;Sun. J. Z.;Xu. H. P.;Jin. J. K.; Zheng. Q.:Tang, B. Z. Electronic interactions and polymer effect in the functionalization and solvation of carbon nanotubes by pyrene-and ferrocene-containing poly(1-alkyne)s, Macromolecules 2008,41:701-707.
    (96)Yuan, W. Z.;Sun. J. Z.; Liu, J. Z.; Dong, Y.:Li. Z.; Xu, H. P.; Qin, A.; Haussler, M.; Jin, J. K. Zheng, Q.; Tang, B. Z. Processable hybrids of ferrocene-containing poly(phenylacetylene)s and carbon nanotubes:fabrication and properties, J Phys. Chem. B 2008,112:8896-8905.
    (97)Xu, H.; Xie. B.-Y.; Yuan, W.; Sun, J.-Z.; Yang, F.:Dong, Y.;Qin, A.;Zhang, S.; Wang. M.; Tang, B. Z. Hybridization of thiol-functionalized poly(phenylacetylene) with cadmium sulfide nanorods:improved miscibility and enhanced photoconductivity, Chem. Commun.2007,1322-1324.
    (98)Xu, H.; Sun, J.; Qin, A.; Hua, J.; Li, Z.; Dong, Y.; Xu, H.; Yuan, W.; Ma, Y.; Wang, M.; Tang, B. Z. Functional perovskite hybrid of polyacetylene ammonium and lead bromide:synthesis, light emission, and fluorescence imagining, J. Phys. Chem. B 2006,110:21701-21709.
    (99)Simionescu, C.;Dumitrescu, S.;Percec, V. J. Polym. Sci., Part C:Polym. Symp.,1978,209.
    (100)Simionescu, C. I.; Percec. V. J. Polym. Sci., Part C:Polym. Lett.,1979,17,421.
    (101)Simionescu. C. I.; Percec, V. Thermal cis-trans isomerization of cis-transoidal polyphenylacetylene, J. Polym. Sci.. Part A:Polym. Chem.1980,18:147-155.
    (102)Percec, V.;Rudick, J. G.; Nombel, P.; Buchowicz, W. Dramatic decrease of the cis content and molecular weight of cis-transoidal polyphenylacetylene at 23 ℃ in solutions prepared in air. J. Polym. Sci., Part A:Polym. Chem.2002,40:3212-3220.
    (103)Percec, V.:Rudick, J. G. Independent electrocyclization and oxidative chain cleavage along the backbone of cis-poly(phenylacetylene), Macromolecules 2005,38:7241-7250.
    (104)Percec, V.; Rudick, J. G.; Aqad, E. Diminished helical character in para-substituted cis-transoidal polyphenylacetylenes due to intramolecular cyclization, Macromolecules 2005,38:7205-7206.
    (105)Kong, X.; Lam, J. W. Y.; Tang, B. Z. Synthesis, mesomorphism, isomerization, and aromatization of stereoregular poly((4-(((6-(((4-(heptyl)oxy-4-biphenyl)carbonyl)oxy)-hexyl)oxy)carbonyl)phenyl)acetylene), Macromolecules 1999,32:1722-1730.
    (106)Simionescu, C. I.; Percec, V. J. Polym. Sci., Part C:Polym. Symp.,1980,43.
    (107)Ciardelli. F.;Benedetti, E.; Pieroni. O. Makromol. Chem.,1967,103,1.
    (108)Pieroni, O.; Matera, F.; Ciardelli, F. Chiroptical properties of linear non-planar polyenes, Tetrahedron Lett.1972,13:597-600.
    (109)Ciardelli, F.; Lanzillo, S.; Pieroni, O. Optically active polymers of 1-alkynes, Macromolecules 1974,7: 174-179.
    (110)Tang, B. Z.; Kotera, N. Synthesis of optically active polyacetylene containing an asymmetric silicon by using organotransition-metal complexes as catalysts, Macromolecules 1989,22:4388-4390.
    (111)Aoki, T.; Kokai, M.;Shinohara, K.; Oikawa, E. Chem. Lett,1993,2009.
    (112)Yashima, E.; Huang, S. L.; Matsushima, T.; Okamoto, Y. Synthesis and conformational study of optically active poly(phenylacetylene) derivatives bearing a bulky substituent, Macromolecules 1995, 28:4184-4194.
    (113)Yashima, E.; Maeda. Y.; Okamoto. Y. Helix-helix transition of optically active poly((1R,2S)-N-(4-ethynylbenzyl)norephedrine) induced by diastereomeric acid-base complexation using chiral stimuli, J. Am. Chem. Soc.1998,120:8895-8896.
    (114)Kwak, G.; Masuda, T. Synthesis, chiroptical properties, and high gas permeability of poly(phenylacetylene) with bulky chiral silyl groups, Macromolecules 2000,33:6633-6635.
    (115)Li, B. S.; Cheuk, K. K. L.; Salhi, F.; Lam, J. W. Y.; Cha, J. A. K.; Xiao, X.; Bai, C; Tang, B. Z. Tuning the chain helicity and organizational morphology of an l-valine-containing polyacetylene by pH change, Nano Lett. 2001, 1: 323-328.
    (116)Li, B. S.; Cheuk, K. K. L.; Ling, L.; Chen. J.; Xiao, X.; Bai, C; Tang, B. Z. Synthesis and hierarchical structures of amphiphilic polyphenylacetylenes carrying l-valine pendants, Macromolecules 2003, 36: 77-85.
    (117)Cheuk. K. K. L.; Lam, J. W. Y.; Chen. J. W.; Lai, L. M.; Tang, B. Z. Amino acid-containing polyacetylenes: synthesis, hydrogen bonding, chirality transcription, and chain helicity of amphiphilic poly(phenylacetylene)s carrying l-Leucine pendants. Macromolecules 2003, 36: 5947-5959.
    (118)Li, B. S.; Cheuk, K. K. L.; Yang, D. L.; Lam, J. W. Y.; Wan, L. J.; Bai, C. L.; Tang, B. Z. Self-assembling of an amphiphilic polyacetylene carrying 1-Leucine pendants: a homopolymer case. Macromolecules 2003, 36: 5447-5450.
    (119)Li, B. S.; Kang, S. Z.; Cheuk, K. K. L.; Wan, L. J.; Ling, L. S.; Bai, C. L.; Tang, B. Z. Self-assembling of helical poly(phenylacetylene) carrying l-Valine pendants in solution, on mica substrate, and on water surface, Langmuir 2004, 20: 7598-7603.
    (120)Li, B. S.; Chen, J.; Zhu, C. F.; Leung, K. K. L.; Wan, L.: Bai, C; Tang, B. Z. Formation of porous films and vesicular fibers via self-organization of an amphiphilic chiral oligomer, Langmuir 2004, 20: 2515-2518.
    (121)Lai, L. M.; Lam, J. W. Y.; Cheuk, K. K. L.; Sung. H. H. Y.; Williams, I. D.; Tang, B. Z. Optically active polyacetylene: Synthesis and helical conformation of a poly(phenylacetylene) carrying L-alanyl-L-alanine pendants. J. Polym. Sci., Part A: Polym. Chem. 2005,43: 3701-3707.
    (122)Lai, L. M.; Lam. J. W. Y.; Qin, A.; Dong, Y.; Tang, B. Z. Synthesis, helicity, and chromism of optically active poly(phenylacetylene)s carrying different amino acid moieties and pendant terminal groups, J. Phys. Chem. B 2006, 110: 1 1128-11138.
    (123)Lai, L. M.; Lam, J. W. Y.; Tang, B. Z. Synthesis and chiroptical properties of L-valine-containing poly(phenylacetylene)s with (a)chiral pendant terminal groups, J. Polym. Sci., Part A: Polym. Chem. 2006,44:2117-2129.
    (124)Liu, J. H.; Yan, J. J.; Chen, E. Q.; Lam, J. W. Y.; Dong, Y. P.; Liang, D. H.; Tang, B. Z. Chain helicity of a poly(phenylacetylene) with chiral centers between backbone and mesogenic groups on side chains, Polymer 2008, 49: 3366-3370.
    (125)Cheuk, K. K. L.; Li, B. S.; Lam, J. W. Y.; Xie, Y.; Tang, B. Z. Synthesis, chain helicity, assembling structure, and biological compatibility of poly(phenylacetylene)s containing l-Alanine moieties. Macromolecules 2008, 41: 5997-6005.
    (126)Kishimoto, Y.; Itou, M.; Miyatake, T.; Ikariya, T.; Noyori, R. Polymerization of monosubstituted acetylenes with a zwitterionic rhodium(I) complex, Rh+(2.5-norbornadiene)[.eta.6-C6H5)B-(C6H5)3]. Macromolecules 1995, 28: 6662-6666.
    (127)Nakako, H.; Nomura, R.; Tabata, M.; Masuda, T. Synthesis and structure in solution of poly[(-)-menthyl propiolate] as a new class of helical polyacetylene, Macromolecules 1999, 32: 2861-2864.
    (128)Lai, L. M.; Lam, J. W. Y.; Tang, B. Z. Facile synthesis and high optical activity' of poly(l-pentyne)s carrying amino-acid pendant groups, J. Polym. Sci., Part A: Polym. Chem. 2006,44: 6190-6201.
    (129)Nakako, H.; Mayahara. Y.; Nomura, R.; Tabata, M.; Masuda, T. Effect of chiral substituents on the helical conformation of poly(propiolic esters), Macromolecules 2000. 33: 3978-3982.
    (130)Nomura, R.; Fukushima, Y.; Nakako, H.; Masuda, T. Conformational study of helical poly(propiolic esters) in solution, J. Am. Chem. Soc. 2000, 122: 8830-8836.
    (131)Aoki. T.; Shinohara. K.;Kaneko. T.:Oikawa. E. Enantioselective permeation of various racemates through an optically active poly(1-(dimethyl(10-pinanyl)sily1)-1-propyne) membrane. Macromolecules 1996.29:4192-4198.
    (132)Aoki. T.;Kobayashi. Y.; Kaneko. T.; Oikawa. E.:Yamamura. Y.:Fujita. Y.; Teraguchi, M.:Nomura. R.:Masuda. T. Synthesis and properties of polymers from disubstituted acetylenes with chiral pinanyl groups. Macromolecules 1999.32:79-85.
    (133)Lam. J. W. Y.; Dong, Y. P.; Cheuk. K. K. L.; Tang. B. Z. Helical disubstituted polyacetylenes: synthesis and chiroptical properties of poly(phenylpropiolate)s, Macromolecules 2003,36:7927-7938.
    (134)Lam, J. W. Y.; Dong, Y. P.:Cheuk. K. K. L.; Law. C. C. W.; Lai, L. M.; Tang, B. Z. Helical conjugated polymers:synthesis, stability, and chiroptical properties of poly(alkyl phenylpropiolate)s bearing stereogenic pendants. Macromolecules 2004,37:6695-6704.
    (135)Jim, C. K. W.; Lam, J. W. Y.:Leung, C. W. T.;Qin, A.;Mahtab. F.:Tang, B.Z. Helical and luminescent disubstituted polyacetylenes:synthesis, helicity, and light emission of poly(diphenylacetylene)s bearing chiral menthyl pendant groups, Macromolecules 2011,44: 2427-2437.
    (136)Percec, V.; Rudick, J. G.; Peterca, M.; Staley, S. R.; Wagner, M.; Obata, M.; Mitchell, C. M.; Cho, W. D.; Balagurusamy, V. S. K.; Lowe, J. N.; Glodde, M.; Weichold, O.; Chung, K. J.; Ghionni, N.; Magonov, S. N.; Heiney, P. A. Synthesis, structural analysis, and visualization of a library of dendronized polyphenylacetylenes. Chem. Eur. J.2006,12:5731-5746.
    (137)Percec, V.; Aqad, E.; Peterca, M.; Rudick, J. G.; Lemon, L.; Ronda, J. C.; De, B. B.; Heiney, P. A.; Meijer. E. W. Steric communication of chiral information observed in dendronized polyacetylenes, J. Am. Chem. Soc.2006.128:16365-16372.
    (138)Rudick. J. G.; Percec, V. Helical chirality in dendronized polyarylacetylenes, New J. Chem.2007.31: 1083-1096.
    (139)Rudick, J. G.; Percec. V. Induced helical backbone conformations of self-organizable dendronized polymers, Acc. Chem. Res.2008,41,1641-1652.
    (140)Percec. V.:Rudick, J. G.; Peterca, M.; Wagner, M.; Obata. M.; Mitchell, C. M.;Cho. W. D.; Balagurusamy. V. S. K.; Heiney, P. A. Thermoreversible cis-cisoidal to cis-transoidal isomerization of helical dendronized polyphenylacetylenes, J. Am. Chem. Soc.2005,127:15257-15264.
    (141)Akagi, K.; Piao, G.; Kaneko. S.; Sakamaki. K.; Shirakawa, H.; Kyotani, M. Helical Polyacetylene synthesized with a chiral nematic reaction field. Science 1998,282:1683-1686.
    (142)Aoki. T.; Kaneko. T.; Maruyama, N.; Sumi, A.; Takahashi, M.; Sato. T.:Teraguchi, M. Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system, J. Am. Chem. Soc.2003.125:6346-6347.
    (143)Yashima, E.; Maeda, K.; Okamoto, Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules, Nature 1999,399:449-451.
    (144)Yashima, E.; Maeda, K. Chirality-responsive helical polymers. Macromolecules 2008,41:3-12.
    (145)Yashima. E.; Maeda. K.;Furusho. Y. Single-and double-stranded helical polymers:synthesis, structures, and functions, Acc. Chem. Res.2008,41:1166-1180.
    (146)Teraguchi, M.; Masuda, T. Poly(diphenylacetylene) membranes with high gas permeability and remarkable chiral memory, Macromolecules 2002,35:1149-1151.
    (147)Sakaguchi, T.:Yumoto, K.; Shiotsuki, M.; Sanda. F.; Yoshikawa, M.; Masuda, T. Synthesis of poly(diphenylacetylene) membranes by desilylation of various precursor polymers and their properties. Macromolecules 2005.38:2704-2709.
    (148)Sakaguchi, T.; Kwak, G.; Masuda, T. Synthesis of poly(1-β-naphthyl-2-phenylacetylene) membranes through desilylation and their properties. Polymer 2002.43:3937-3942.
    (149)Sakaguchi, T.; Shiotsuki, M.; Masuda, T. Synthesis and properties of Si-containing poly(diarylacetylene)s and their desilylated polymer membranes, Macromolecules 2004,37: 4104-4108.
    (150)Sakaguchi. T.; Shiotsuki, M.; Sanda, F.; Freeman, B. D.; Masuda, T. Synthesis and properties of F-containing poly(diphenylacetylene) membranes, Macromolecules 2005,38:8327-8332.
    (151)Hu, Y.; Shiotsuki, M.; Sanda, F.; Masuda, T. Synthesis and extremely high gas permeability of polyacetylenes containing polymethylated indan/tetrahydronaphthalene moieties, Chem. Commun. 2007.4269-4270.
    (152)Hu. Y.; Shiotsuki, M.; Sanda, F.; Freeman, B. D.; Masuda, T. Synthesis and properties of indan-based polyacetylenes that feature the highest gas permeability among all the existing polymers, Macromolecules 2008,41:8525-8532.
    (153)Fukui. A.; Hattori. K.; Hu, Y; Shiotsuki, M.; Sanda, F.; Masuda, T. Synthesis, characterization, and high gas permeability of poly(diarylacetylene)s having fluorenyl groups, Polymer 2009,50: 4159-4165.
    (154)Hu, Y.; Shimizu, T.; Hattori, K.; Shiotsuki, M.; Sanda, F.; Masuda, T. Synthesis and gas permeation properties of poly(diarylacetylene)s having substituted and twisted biphenyl moieties, J Polym. Sci. Part A:Polym. Chem.2010,48:861-868.
    (155)Masuda, T.; Iguchi, Y.; Tang, B. Z.; Higashimura, T. Diffusion and solution of gases in substituted polyacetylene membranes, Polymer 1988,29:2041-2049.
    (156)Chen, J.; Peng. H.; Law, C. C. W.; Dong, Y.; Williams. I. D.; Tang, B. Z. Hyperbranched poly(phenylenesilolene)s:synthesis, thermal stability, electronic conjugation, optical power limiting, and cooling-enhanced light emission, Macromolecules 2003,36:4319-4327.
    (157)Ye. C.; Lam. W. Y.; Liu, Z.-F.; Cheng, S. Z. D.; Chen, E.-Q.; Tang, B. Z. Frustrated molecular packing in highly ordered smectic phase of side-chain liquid crystalline polymer with rigid polyacetylene backbone, J Am. Chem. Soc.2005,127:7668-7669.
    (158)Yuan, W. Z.; Lam, J. W. Y.; Shen. X. Y.; Sun, J. Z.; Mahtab, F.; Zheng, Q.; Tang, B. Z. Functional polyacetylenes carrying mesogenic and polynuclear aromatic pendants:polymer synthesis, hybridization with carbon nanotubes, liquid crystallinity, light emission, and electrical conductivity, Macromolecules 2009,42:2523-2531.
    (159)Liu, L. M.; Liu, K. P.; Dong, Y. P.; Chen, E. Q.; Tang, B. Z. Smectic aggregates of sheet-like side-chain liquid crystalline polyacetylenes directly formed during solution polymerization, Macromolecules 2010,43:6014-6023.
    (160)Nagai, K.; Sakajiri, K.; Maeda, K.; Okoshi, K.; Sato, T.; Yashima, E. Hierarchical amplification of macromolecular helicity in a lyotropic liquid crystalline charged poly(phenylacetylene) by nonracemic dopants in water and its helical structure, Macromolecules 2006,39:5371-5380.
    (161)Kwak. G.; Minakuchi, M.; Sakaguchi, T.; Masuda, T.; Fujiki. M. Poly(diphenylacetylene) bearing long alkyl side chain via silylene linkage:its lyotropic liquid crystallinity and optical anisotropy, Chem. Mater.2007,19:3654-3661.
    (162)Yuan, W. Z.; Qin, A.; Lam, J. W. Y.; Sun, J. Z.; Dong, Y.; Haussler, M.; Liu, J.; Xu, H. P.:Zheng, Q.; Tang, B. Z. Disubstituted polyacetylenes containing photopolymerizable vinyl groups and polar ester functionality: polymer synthesis, aggregation-enhanced emission, and fluorescent pattern formation, Macromolecules 2007,40:3159-3166.
    (163)Qin, A. J.; Jim, C. K. W.; Tang, Y. H.; Lam. J. W. Y.; Liu, J. Z.; Mahtab. F.; Gao, P.; Tang, B. Z. Aggregation-enhanced emissions of intramolecular excimers in disubstituted polyacetylenes, J. Phys. Chem.B 2008,112:9281-9288.
    (164)Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.:Holmes. A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev.2009,109:897-1091.
    (165)Zhang. L.;Lou. X.;Yu. Y.;Qin. J.; Li. Z. A new disubstituted polyacetylene bearing pyridine moieties: convenient synthesis and sensitive chemosensor toward sulfide anion with high selectivity. Macromolecules 2011.44:5186-5193.
    (166)Yin. S. C.; Xu. H. Y.; Su, X. Y.; Gao, Y. C.; Song, Y. L.; Jacky, W. Y. L.; Tang, B. Z.;Shi. W. F. Synthesis and optical properties of azobenzene-containing poly(1-alkyne)s with different spacer lengths and ring substituents, Polymer 2005,46:10592-10600.
    (167)Shirakawa, H. The discovery of polyacetylene film:The dawning of an era of conducting polymers, Angew. Chem. Int. Ed.2001,40:2574-2580 (Nobel Lectures).
    (168)MacDiarmid, A. G. "Synthetic metals":A novel role for organic polymers, Angew. Chem. Int. Ed. 2001,40:2581-2590 (Nobel Lectures).
    (169)Heeger, A. J. Semiconducting and metallic polymers:the fourth generation of polymeric materials, Angew. Chem. Int. Ed.2001,40:2591-2611 (Nobel Lectures).
    (170)Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B. D.; Pinnau, Z. Poly[1-(trimethylsilyl)-1-propyne] and related polymers:synthesis, properties and functions, Prog. Polym. Sci.2001,26:721-798.
    (171)Akagi, K. Helical polyacetylene:asymmetric polymerization in a chiral liquid-crystal field, Chem. Rev. 2009,109:5354-5401.
    (172)Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers:synthesis, structure, and functions, Chem. Rev.2009,109,6102-6211.
    (173)Rosen, B. M.; Wilson, C. J. Wilson, D. A.; Peterca, M.; Imam, M. R.; Percec, V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems, Chem. Rev.2009,109: 6275-6540.
    (174)Lam, J. W. Y.; Qin. A.;Dong, Y.; Lai, L. M.; Haussler, M.; Dong, Y.; Tang. B.Z. Functional disubstituted polyacetylenes:synthesis, liquid crystallinity, light emission and fluorescent photopatterning of biphenyl-containing poly(l-phenyl-octyne)s with different functional bridges, J. Phvs. Chem. B 2006,110:21613-21622.
    (175)Iftime, G.; Labarthet, F. L.; Natansohn, A.; Rochon, P. Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light, J. Am. Chem. Soc.2000,122:12646-12650.
    (176)Zebger, I.; Rutloh, M.; Hoffmann, U.;Stumpe, J.; Siesler, H. W.; Hvilsted, S. Photoorientation of a liquid crystalline polyester with azobenzene side groups.1. effects of irradiation with linearly polarized blue light, J. Phys. Chem. A 2002,106:3454-3462.
    (177)Tian, Y. Q.; Watanabe, K.; Kong, X. X.; Abe. J.; lyoda, T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties, Macromolecules 2002, 35:3739-3747.
    (178)Zebger, I.; Rutloh, M.; Hoffmann, U.; Stumpe, J.; Siesler, H. W.; Hvilsted, S. Photoorientation of a liquid-crystalline polyester with azobenzene side groups:effects of irradiation with linearly polarized red light after photochemical pretreatment, Macromolecules 2003,36:9373-9382.
    (179)Freiberg, S.; Labarthet, F. L.; Rochon, P.; Natansohn. A. Synthesis and characterization of a series of azobenzene-containing side-chain liquid crystalline polymers, Macromolecules 2003,36:2680-2688.
    (180)Gui, T. L.; Jin, S. H.; Park, J. W.; Ahn, W. S.; Koh, K. N.; Kim, S. H.; Gal, Y. S.; Synthesis and properties of poly(2-ethynylpyridinium bromide) having side-chain liquid crystalline moieties, Opt. Mater.2002.21:637-641.
    (181)Tong. X.:Cui, L.; Zhao, Y. Confinement effects on photoalignment. photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers, Macromolecules 2004,37:3101-3112.
    (182)Yu, Y. L.; Nakano, M.; Shishido, A.; Shiono, T.; Ikeda, T. Effect of cross-linking density on photoinduced bending behavior of oriented liquid-Crystalline network films containing azobenzene. Chem. Mater. 2004, 16: 1637-1643.
    (183)Rosenhauer, R.; Fischer, T.; Sturape, J.; Gimenez, R.; Pinol, M.; Serrano. J. L.; Vinuales, A.; Broer, D. Light-induced orientation of liquid crystalline terpolymers containing azobenzene and dye moieties, Macromolecules 2005, 38: 2213-2222.
    (184)Sapich, B.; Vix. A. B. E.: Rabe, J. P.; Stumpe, P. Photoinduced self-organization and photoorientation of a LC main-chain polyester containing azobenzene moieties, Macromolecules 2005, 38: 10480-10486.
    (185)Deng, W.; Albouy, P.; Lacaze, E.; Keller, P.; Wang, X. G.; Li, M. H. Azobenzene-containing liquid crystal triblock copolymers: synthesis, characterization, and self-assembly behavior, Macromolecules 2008,41:2459-2466.
    (186)Ding, L. M.; Mao, H. M.; Xu, J.; He, J. B.; Ding, X.; Russell. T. P.; Robello. D. R.; Mis, M. Morphological study on an azobenzene-containing liquid crystalline diblock copolymer, Macromolecules 2008, 41:1897-1900.
    (187)Uekusa, T. ; Nagano, S. ; Seki, T. Highly ordered in-plane photoalignment attained by the brush architecture of liquid crystalline azobenzene polymer, Macromolecules 2009, 42: 312-318.
    (188)Li, X. J. ; Wen, R. B. ; Zhang, Y. ; Zhu, L. R. ; Zhang, B. L. ; Zhang, H. Q. Photoresponsive side-chain liquid crystalline polymers with an easily cross-linkable azobenzene mesogen, J. Mater. Chem. 2009, 19:236-245.
    (189)Li, C. S.; Lo, C. W.; Zhu, D. F.; Li, C. H.; Liu, Y.; Jiang, H. R. Synthesis of a photoresponsive liquid-crystalline polymer containing azobenzene. Macromol. Rapid. Commun. 2009, 30: 1928-1935.
    (190)Han. D. H.; Tong. X.; Zhao, Y.; Galstian, T.; Zhao, Y. Cyclic azobenzene-containing side-chain liquid crystalline polymers: synthesis and topological effect on mesophase transition, order, and photoinduced birefringence, Macromolecules 2010, 43: 3664-3671.
    (191)Yoshino, T.; Kondo, M.; Mamiya, J. I.; Kinoshita, M.; Yu, Y. L.: Ikeda, T. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers, Adv. Mater. 2010, 22: 1361-1363.
    (192)Yamamoto, T.; Hasegawa, M.: Kanazawa. A.; Shiono, T.; Ikeda, T. Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films, J. Mater. Chem. 2000, 10: 337-342.
    (193)Ubukata, T.; Seki, T.; Ichimura, K. Surface relief gratings in host-guest supramolecular materials, Adv. Mater. 2000, 12: 1675-1678.
    (194)Zettsu, N.; Ubukata, T.; Seki, T.; Ichimura, K. Soft crosslinkable azo polymer for rapid surface relief formation and persistent fixation, Adv. Mater. 2001, 13: 1693-1697.
    (195)Yoneyama, S.; Yamamoto, T.: Hasegawa, M.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda. T. Formation of intensity grating in polymer liquid crystal with a side-chain azobenzene moiety by photoinduced alignment change of mesogens, J. Mater. Chem. 2001, 11: 3008-3013.
    (196)Ubukata. T.; Hara, M.; Ichimura. K.: Seki, T. Phototactic mass transport in polymer films for micropatterning and alignment of functional materials, Adv. Mater. 2004, 16: 220-223.
    (197)Zettsu, N.; Seki, T. Highly efficient photogeneration of surface relief structure and its immobilization in cross-linkable liquid crystalline azobenzene polymers, Macromolecules 2004, 37: 8692-8698.
    (198)Bo, Q.; Yavrian, A.; Galstian. T.: Zhao. Y. Liquid crystalline ionomers containing azobenzene mesogens: phase stability', photoinduced birefringence, and holographic grating, Macromolecules 2005, 38: 3079-3086.
    (199)Zettsu. N.:Ogasawara. T.:Arakawa. R.:Nagano. S.:Ubukata,. T.:Seki. T. Highly photosensitive surface relief gratings formation in a liquid crystalline azobenzene polymer:new implications for migration process. Macromolecules 2007.40:4607-4613.
    (200)Isavama. J.; Nagano, S.; Seki. T. Phototriggered mass migrating motions in liquid crystalline azobenzene polymer films with systematically varied thermal properties. Macromolecules 2010,43: 4105-4112.
    (201)Sobolewska, A.; Bartkiewicz, S.; Miniewicz, A. Schab-Balcerzak, E., Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light, J. Phys. Chem. B 2010,114:9751-9760.
    (202)Li, Z.; Qin, A.; Lam, J. W. Y.; Dong, Y.; Dong. Y.; Ye, C.; Williams,I. D.; Tang, B. Z. Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores. Macromolecules 2006,39: 1436-1442.
    (203)Li. Z. A.; Wu, W.:Ye, C.; Qin. J.; Li. Z. New hyperbranched polyaryleneethynylene containing azobenzene chromophore moieties in the main chain:facile synthesis, large optical nonlinearity and high thermal stability, Polym. Chem.2010,1:78-81.
    (204)Li, Z.; Wu, W.; Ye, C.; Qin, J.; Li, Z. New second-order nonlinear optical polymers derived from AB2 and AB monomers via sonogashira coupling reaction, Macromol. Chem. Phys.2010,211:916-923.
    (205)Ouazzani, H. E.; Iliopoulos, K.:Pranaitis, M.; Krupka, O.; Smokal, V.; Kolendo, A.; Sahraoui, B. Second-and third-order nonlinearities of novel push-pull azobenzene polymers, J. Phys. Chem. B 2011, 115:1944-1949.
    (206)Ho, M. S.; Barrett, C.; Paterson, J.; Esteghamatian. M.; "Natansohn. A.; Rochon, P. Synthesis and optical properties of poly((4-nitrophenyl)-(3-(N-(2-(methacryloyloxy) ethyl)-carbazolyl))diazene), Macromolecules 1996,29:4613-4618.
    (207)Andruzzi. L.; Hvilsted, S.; Ramanujam, P. S. Holographic gratings in azobenzene side-chain polymethacrylates, Macromolecules 1999,32:448-454.
    (208)Wu, Y.; Natansohn, A.; Rochon, P. Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene chromophore in the hard segment, Macromolecules 2004,37: 6090-6095.
    (209)Li, Y.; He, Y.; Tong. X.; Wang, X. Photoinduced deformation of amphiphilic azo polymer colloidal spheres, J. Am. Chem. Soc.2005,127:2402-2403.
    (210)Goldenberg, L. M.; Kulikovska, O.; Stumpe, J. Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte, Langmuir 2005, 21:4794-4796.
    (211)Gao, J.; He, Y.; Xu, H.; Song, B.; Zhang, X.; Wang, Z.:Wang, X. Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings, Chem. Mater.2007,19:14-17.
    (212)Gao, J.; He, Y.; Liu, F.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings, Chem. Mater.2007,19:3877-3881.
    (213)Sobolewska, A.; Miniewicz. A. Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers, J. Phys. Chem. B 2007,111: 1536-1544.
    (214)Nakano. H.; Tanino, T.; Takahashi, T.; Ando, H.:Shirota, Y. Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials, J Mater. Chem.2008,18:242-246.
    (215)Lee, J.:Kim, M.; Nakayama, T. A single-dipole model of surface relief grating formation on azobenzene polymer films, Langmuir 2008,24:4260-4264.
    (216)Priimagi, A; Lindfors, K.; Kaivola, M.; Rochon, P. Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes, Appl. Mater. Interf.2009,1:1183-1189.
    (217)Xue, X.; Zhu, J.; Zhang, Z.; Zhou, N.; Tu, Y.; Zhu, X. Soluble main-chain azobenzene polymers via thermal 1,3-dipolar cycloaddition:preparation and photoresponsive behavior. Macromolecules 2010, 43:2704-2712.
    (218)Goldenberg, L. M.; Kulikovsky, L.; Kulikovsky, O.; Tomczyk, J.; Stumpe, J. Thin layers of low molecular azobenzene materials with effective light-induced mass transport, Langmuir 2010,26: 2214-2217.
    (219)Harbron, E. J.; Vicente. D. A.:Hoyt, M.T. Fluorescence modulation via isomer-dependent energy transfer in an azobenzene-functionalized poly(phenylenevinylene) derivative, J Phys. Chem. B 2004, 108:18789-18793.
    (220)Harbron, E. J.; Vicente, D. A.; Hadley, D. H.; Imm, M. R. Phototriggered fluorescence color changes in azobenzene-functionalized conjugated polymers, J Phys. Chem. A 2005,109:10846-10853.
    (221)Grimes, A. F.; Call, S. E.; Vicente, D. A.; English, D. S.; Harbron, E.J. Toward efficient photomodulation of conjugated polymer emission:optimizing differential energy transfer in azobenzene-substituted PPV derivatives, J Phys. Chem. B 2006,110:19183-19190.
    (222)Lewis, S. M.; Harbron, E. J. Photomodulated PPV emission in a photochromic polymer film. J Phys. Chem. C 2007. 111:4425-4430.
    (223)Harbron, E. J.; Hadley, D. H.; Imm. M. R. Solvent effects on phototriggered conformational change in an azobenzene-functionalized poly(p-phenylene vinylene), J Photochem. Photobio. A:Chem.2007, 186:151-157.
    (224)Grimes, A. F.; Call, S. E.; Harbron. E. J.; English, D.S. Wavelength-resolved studies of forster enery transfer in azobenzene-modified conjugated polymers:the competing roles of exciton migration and spectral resonance, J Phys. Chem. C2007,111:14257-14265.
    (225)Tomatsu, I.; Hashidzume, A.; Harada, A. Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based a-cyclodextrin and azobenzene polymers, J Am. Chem. Soc.2006, 128:2226-2227.
    (226)Pouliquen, G.; Amiel, C.; Tribet, C. Photoresponsive viscosity and host-guest association in aqueous mixtures of poly-cyclodextrin with azobenzene modified poly(acrylic)acid, J Phys. Chem. B 2007,111: 5587-5595.
    (227)Ruchmann, J.; Fouilloux, S.; Tribet, C. Light-responsive hydrophobic association of surfactants with azobenzene-modified polymers. Soft Matter 2008,4:2098-2108.
    (228)Zhao, Y. L.; Stoddart, J. F. Azobenzene based light responsive hydrogel system, Langmuir 2009,25: 8442-8446.
    (229)Chen, X.; Hong, L.; You, X.; Wang, Y.; Zou, G.; Su, W.; Zhang. Q. Photo-controlled molecular recognition of a-cyclodextrin with azobenzene containing polydiacetylene vesicles, Chem, Commun. 2009,1356-1358.
    (230)Natansohn, A.; Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev.2002,102: 4139-4175.
    (231)Schultz, T.; Quenneville, J.; Levine, B.; Toniolo. A.; Martinez, T. J.; Lochbrunner, S.; Schmitt, M.; Shaffer, J. P.; Zgierski, M. Z.; Stolow, A. Mechanism and dynamics of azobenzene photoisomerization, JAm. Chem. Soc.2003.125:8098-8099.
    (233)Ikegami, T.; Kurita, N.; Sekino, H.; Ishikawa, Y. Mechanism of cis-to-trans isomerization of azobenzene:direct MD study, J Phys. Chem. A 2003,107:4555-4562.
    (234)Loudwig, S.; Bayley. H. Photoisomerization of an individual azobenzene molecule in water:an on-off switch triggered by light at a fixed wavelength, J Am. Chem. Soc.2006,128:12404-12405.
    (235)Francesca. S.; Eugene. M. T. Effects of solvent viscosity and polarity on the isomerization of azobenzene. Macromolecules 2008,41:981-986.
    (236)Uchida. K.:Yamaguchi. S.; Yamada. H.; Akazawa. M.; Katayama, T.; Ishibashi. Y.; Miyasaka, H. Photoisomerization of an azobenzene gel by pulsed laser irradiation, Chem. Commun.2009. 4420-4422.
    (237)Yu, B.; Jiang. X.; Wang, R.; Yin, J. Multistimuli responsive polymer nanoparticles on the basis of the amphiphilic azobenzene-contained hyperbranched poly(ether amine) (hPEA-AZO), Macromolecules 2010,43:10457-10465.
    (238)Lee, K. M.; Koerner, H.:Vaia, R. A.:Bunning, T. J.; White, T.J. Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks, Macromolecules 2010,43:8185-8190.
    (239)Chen, W.; Wei, X.; Balazs, A. C.; Matyjaszewski, K.; Russell, T. P. Phase behavior and photoresponse of azobenzene-containing polystyrene-block-poly(n-butyl methacrylate) block copolymers, Macromolecules 2011,44:1125-1131.
    (240)Masuda, T.:Tang, B. Z.; Higashimura, T. Yamaoka, H., Thermal degradation of polyacetylenes carrying substituents, Macromolecules 1985,18:2369-2373.
    (241)Zhao. H.; Yuan. W. Z.; Tang, L.; Sun, J. Z.; Xu, H.; Qin, A.; Mao, Y.; Jin, J. K.; Tang, B.Z. Hybrids of triphenylamine-functionalized polyacetylenes and multiwalled carbon nanotubes:high solubility, strong donor—acceptor interaction, and excellent photoconductivity, Macromolecules 2008, 41:8566-8574.
    (242)Lam, J. W. Y.; Cheuk, K. K. L.:Tang, B. Z. Polym. Mater. Sci. Eng.2003,89:496.
    (243)Morino, K.; Maeda, K.; Yashima, E. Helix-sense inversion of poly(phenylacetylene) derivatives bearing an optically active substituent induced by external chiral and achiral stimuli, Macromolecules 2003,36:1480-1486.
    (244)Sanda, F.; Araki, H.; Masuda, T. Synthesis and properties of serine-and threonine-based helical polyacetylenes. Macromolecules 2004,37:8510-8516.
    (245)Liu, Y.; Mills, R. C.; Boncella, J. M.; Schanze, K. S. Fluorescent polyacetylene thin film sensor for nitroaromatics, Langmuir 2001,17:7452-7455.
    (246)Kanaya, T.:Tsukushi, I.; Kaji, K.:Sakaguchi, T.; Kwak, G.; Masuda, T. Role of local dynamics in the gas permeability of glassy substituted polyacetylenes. A quasielastic neutron scattering study, Macromolecules 2002,35:5559-5564.
    (247)Batz, H. G.; Franzmann, G.; Ringsdorf, H. Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angew. Chem. Int. Ed.1972,11: 1103-1104.
    (248)Ferruti, A.; Bettelli, A.; Fere, A. High polymers of acrylic and methacrylic esters of N-hydroxysuccinimide as polyacrylamide and polymethacrylamide precursors. Polymer 1972,13: 462-464.
    (249)Theato, P. Synthesis of well-defined polymeric activated esters, J. Polym. Sci. Part A:Polym. Chem. 2008,46,6677-6687.
    (250)Wiss. K. T.:Krishna, O. D.; Roth, P. J.;Kiick, K. L.; Theato, P. A versatile grafting-to approach for the bioconjugation of polymers to collagen-like peptides using an activated ester chain transfer agent, Macromolecules 2009,42:3860-3863.
    (251)Roth, P. J.; Kim, K. S.; Bae, S. H.; Sohn, B. H.; Theato, P.; Zentel, R. Hetero-telechelic dye-labeled polymer for nanoparticle decoration, Macromol. Rapid Commun.2009,30:1274-1278.
    (252)Roth, P. J.; Jochum, F. D.; Forst, F. R.; Zentel, R.: Theato, P. Infuence of end groups on the stimulus-responsive behavior of poly(oligo(ethylene glycol)methacrylate) in water, Macromolecul.es 2010,43:4638-4645.
    (253)Pauly, A. C; Theato, P. Synthesis and characterization of poly(phenylacetylenes) featuring activated ester side group. J. Polym. Sci. Part A: Polym. Chem. 2011, 49: 211-224.
    (254)Tang, B. Z.; Kong, X.; Wan, X.; Feng. X. D. Synthesis and properties of stereoregular polyacetylenes containing cyano groups, Macromolecules 1997, 30: 5620-5628.
    (255)Dictionary of Organometallic Compounds, 2nd ed.; Chapman & Hall: London, 1995.
    (256)Schrock, R. R.; Osborn, J. A. pi-bonded complexes of the tetraphenylborate ion with rhodium(I) and iridium(I), Inorg. Chem. 1970, 9: 2339-2343.
    (257)Xu. H. P.; Jin, J. K.; Mao, Y.; Sun, J. Z.; Yang. F.; Yuan, W. Z.; Dong, Y; Wang, M.; Tang. B. Z. Synthesis of sulfur-containing polyacetylenes and fabrication of their hybrids with ZnO nanoparticles, Macromolecules 2008, 41: 3874-3883.
    (258)Hayano, S.; Masuda, T. Living polymerization of substituted acetylenes by a novel binary catalyst MoOCl4-n-BuLi, Macromolecules 1998, 31: 3170-3174.
    (259)Miyake, M.; Misumi, Y.; Masuda, T. Living polymerization of phenylacetylene by isolated rhodium complexes, Macromolecules 2000, 33: 6636-6639.
    (260)Cheng, Z. P.; Zhu, X. L.; Kang, E. T.; Neoh, K. G. Brush-type amphiphilic diblock copolymers from controlled radical polymerization and their aggregation behavior, Langmuir 2005, 21:7180-7185.
    (261)Zhang, M. F.; Muller. A. H. E. Cylindrical polymer brushes, J. Polym. Sci. Part A: Polym. Chem. 2005.43:3461-3481.
    (262)Lutz. J. F.; Hoth, A. Preparation of ideal PEG analogues with a tunable thermosensitivity by-controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 2006, 39: 893-896.
    (263)Tan, B. H.; Hussain, H.; Liu, Y.; He, C. B.; Davis. T. P. Synthesis and self-assembly of brush-type poly(poly(ethylene glycol)methyl ether methacrylate)-block- poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution, Langmuir 2009, 26: 2361-2368.
    (264)Bondarev, D.; Zednic, J.; Plutnarova, I.; Vohlidal, J.; Sedlacek. J. Molecular weight and configurational stability of poly((fluorophenyl)acetylene)s prepared with metathesis and insertion catalysts. J. Polym. Sci. Part A: Polym. Chem. 2010, 48: 4296-4309.
    (265)Moore, J. S.; Gorman, C. B.; Grubbs, R. H. Soluble, chiral polyacetylenes: syntheses and investigation of their solution conformation. J. Am. Chem. Soc. 1991, 113: 1704-1712.
    (266)Yamaguchi, M.; Omata, K.; Hirama, M. Chem. Lett. 1992, 2261.
    (267)Aoki, T.; Kokai, M.; Shinohara, K.; Oikawa E. Chem. Lett. 1993, 2009.
    (268)Yashima. E.: Maeda, Y.; Okamoto, Y. Memory of macromolecular heliciry assisted by interaction with achiral small molecules, Nature 1999, 399: 449-452.
    (269)Mitsuyama. M.: Kondo, K. Induced chiral helical effect on the main chain of aliphatic polyacetylenes,./. Polym. Sci. Part A: Polym. Chem. 2001. 39: 913-917.
    (270)Nomura, R.; Tabei, J.; Masuda,T. Biomimetic stabilization of helical structure in a synthetic polymer by means of intramolecular hydrogen bonds, J. Am. Chem. Soc. 2001, 123: 8430-8431.
    (271)Schenning, A. P. H. J.; Fransen, M.; Meijer, E. W. Side-chain-functionalized polyacetylenes, 1 liquid crystalline and stereomutational properties, Macromol. Rapid Commun. 2002, 23: 265-269.
    (272)Percec, V.; Obata,M.; Rudick, J. G.: De, B. B.; Glodde, M.; Bera, T. K.; Magonov, S. N.; Balagurusamy, V. S. K.; Heiney, P. A. Synthesis, structural analysis, and visualization of poly(2-ethynyl-9-substituted carbazole)s and poly(3-ethynyl-9-substituted carbazole)s containing chiral and achiral minidendritic substituents. J. Polym. Sci. Part A:Polvm. Chem.2002,40: 3509-3533.
    (273)Yashima. E.:Matsushima. T.:Okamoto. Y. Poly((4-carboxyphenyl)acetylene) as a probe for chirality assignment of amines by circular dichroism. J. Am. Chem. Soc.1995,117:11596-11597.
    (274)Mitsuyama. M.; Kondo. K. Synthesis and properties of helical aliphatic polyacetylene containing a cholesterol group in the side group. Macromol. Chem. Phys.2000.201:1613-1618.
    (275)Nussbaumer, A. L.:Studer, D.; Malinovskii, V. L.; Haner, R. Amplification of chirality by supramolecular polymerization of pyrene oligomers, Angew. Chem.2011,123:5604-5608.
    (276)Mikami. K.; Daikuhara, H.; lnagaki, Y.; Yokoyama. A.:Yokozawa, T. Chiral amplification based on sergeants and soldiers effect in helically folded poly(naphthalenecarboxamide), Macromolecules 2011,44:3185-3188.
    (277)Kalinina,1.:Worsley, K.; Lugo. C.; Mandal. S.; Bekyarova, E.; Haddon. R. C. Synthesis, dispersion, and viscosity of poly(ethylene glycol)-functionalized water-soluble single-walled carbon nanotubes, Chem. Mater.2011,23:1246-1253.
    (278)Yuan. S.:Wan. D.; Liang, B.; Pehkonen, S. O.:Ting, Y. P.; Neoh. K. G.:Kang, E. T. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces, Langmuir 2011,27:2761-2774.
    (279)Wang, Y.; Betts, D. E.; Finlay, J. A.; Brewer, L.; Callow, M. E.; Callow, J. A.; Wendt, D. E.; DeSimone, J. M. Photocurable amphiphilic perfluoropolyether/poly(ethylene glycol) networks for fouling-release coatings, Macromolecules 2011,44:878-885.
    (280)Zhang, X.; Cheng, J.; Wang, Q.;Zhong. Z.; Zhuo, R. Miktoarm copolymers bearing one poly(ethylene glycol) chain and several poly(ε-caprolactone) chains on a hyperbranched polyglycerol core, Macromolecules 2010,43:6671-6677.
    (281)Zhang. W.; Li. Y.:Liu, L.; Sun, Q.; Shuai, X.; Zhu, W.; Chen. Y. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(s-caprolactone) as drug carriers with enhanced properties, Biomacromolecules 2010,11:1331-1338.
    (282)Yue. X.; Qiao, Y.; Qiao, N.;Guo, S.; Xing, J.; Deng, L.; Xu. J.; Dong, A. Amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-dimethylaminoethyl methacrylate) cationic copolymer nanoparticles as a vector for gene and drug delivery, Biomacromolecules 2010,11: 2306-2312.
    (283)Alang Ahmad, S.; Hucknall. A.:Chilkoti, A.; Leggett, G. J. Protein patterning by UV-induced photodegradation of poly(oligo(ethylene glycol) methacrylate) brushes, Langmuir 2010,26: 9937-9942.
    (284)Casadio. Y. S.; Brown. D. H.; Chirila. T. V.;Kraatz, H. B.;Baker, M. V. Biodegradation of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly((2-hydroxyethyl methacrylate)-co-(poly(ethylene glycol) methyl ether methacrylate)) hydrogels containing peptide-based cross-linking agents. Biomacromolecules 2010,11:2949-2959.
    (285)Di Meo, E. M.; Di Crescenzo, A.;Velluto. D.;O'Neil. C. P.:Demurtas. D.; Hubbell, J. A.; Fontana. A. Assessing the role of polyethylene glycol-bl-propylene sulfide) (PEG-PPS) block copolymers in the preparation of carbon nanotube biocompatible dispersions, Macromolecules 2010,43:3429-3437.
    (286)Fu. S.;Wang, X.;Guo, G.; Shi, S.; Liang, H.;Luo, F.; Wei, Y.; Qian, Z. Preparation and characterization of nano-hydroxyapatite/poly(ε-caprolactone)-poly(ethylene glycol)-poly(E-caprolactone) composite fibers for tissue engineering, J. Phys. Chem. C 2010,114: 18372-18378.
    (287)Kim, W.; Yamasaki, Y.; Jang, W. D.; Kataoka, K. Thermodynamics of DNA condensation induced by poly(ethylene glycol)-block-polylysine through polyion complex micelle formation, Biomacromolecules 2010,11:1180-1186.
    (288)Lee, S. J.; Min, K. H.;Lee, H. J.; Koo, A. N.; Rim, H. P.; Jeon, B. J.; Jeong, S. Y.; Heo, J. S.; Lee, S. C. Ketal cross-linked poly(ethylene glycol)-poly(amino acid)s copolymer micelles for efficient intracellular delivery of doxorubicin. Biomacromolecules 2011,12:1224-1233.
    (289)Poon, Y. F.; Cao, Y.; Zhu, Y.; Judeh, Z. M. A.; Chan-Park, M. B. Addition of β-malic acid-containing poly(ethylene glycol) dimethacrylate to form biodegradable and biocompatible hydrogels. Biomacromolecules 2009,10:2043-2052.
    (290)Kizhakkedathu, J. N.:Janzen. J.; Le, Y.; Kainthan. R. K.; Brooks, D. E. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization:effect of macromonomer chain length on brush growth and protein adsorption from blood plasma, Langmuir 2009,25:3794-3801.
    (291)Wu, Z.; Liang, H.; Lu, J. Synthesis of poly(N-isopropylacrylamide)-poly(ethylene glycol) miktoarm star copolymers via RAFT polymerization and aldehyde-aminooxy click reaction and their thermoinduced micellization, Macromolecules 2010,43,5699-5706.
    (292)Roth, P. J.; Jochum, F. D.; Forst, F. R.; Zentel, R.; Theato, P. Influence of end groups on the stimulus-responsive behavior of poly(oligo(ethylene glycol) methacrylate) in water, Macromolecules 2010,43:4638-4645.
    (293)Nguyen, M. K..; Park, D. K.; Lee. D. S. lnjectable poly(amidoamine)-poly(ethylene glycol)-poly(amidoamine) triblock copolymer hydrogel with dual sensitivities; pH and temperature, Biomacromolecules 2009,10:728-731.
    (294)Nagahama, K.:Hashizume. M.:Yamamoto, H.; Ouchi, T.; Ohya, Y. Hydrophobically modified biodegradable poly(ethylene giycol) copolymers that form temperature-responsive nanogels, Langmuir 2009,25:9734-9740.
    (295)Waters, D. J.; Engberg, K.; Parke-Houben, R.; Hartmann, L.; Ta. C. N.; Toney, M. F.; Frank, C. W. Morphology of photopolymerized end-linked poly(ethylene glycol) hydrogels by small-angle X-ray scattering, Macromolecules 2010,43:6861-6870.
    (296)Zustiak, S. P.; Leach, J. B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties, Biomacromolecules 2010,11:1348-1357.
    (297)Gaharwar, A. K.; Dammu, S. A.; Canter, J. M.; Wu, C.-J.; Schmidt. G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles, Biomacromolecules 2011,12:1641-1650.
    (298)Lin, C.; Gitsov, I. Synthesis and physical properties of reactive amphiphilic hydrogels based on poly(p-chloromethylstyrene) and poly(ethylene glycol):effects of composition and molecular architecture, Macromolecules 2010,43:3256-3267.
    (299)Wei, X.; Chen, W.:Chen, X.; Russell, T. R. Disorder-to-order transition of diblock copolymers induced by alkyne/azide click chemistry, Macromolecules 2010,43,6234-6236.
    (300)Le, D.; Montembault, V.; Soutif, J.-C.; Rutnakornpituk, M.; Fontaine, L. Synthesis of well-defined ω-oxanorbornenyl poly(ethylene oxide) macromonomers via click chemistry and their ring-opening metathesis polymerization, Macromolecules 2010,43:5611-5617.
    (301)Hirose, T.; Higashiguchi, K.; Matsuda, K. Self-assembly and aggregate-induced enhanced emission of amphiphilic fluorescence dyes in water and in the solid state, Chem. Asian J.2011.6:1057-1063.
    (302)Rauwald. U.; Del Barrio. J.; Loh. X. J.; Scherman, O. A. "On-demand" control of therm oresponsive properties of poly(N-isopropylacrylamide) with cucurbit[8]uril host-guest complexes, Chem. Commun.2011,47:6000-6002.
    (303)Inomata. H.;Goto. S.;Saito. S. Phase transition of N-substituted acrylamide gels. Macromolecules 1990.23:4887-4888.
    (304)Schild, H. G. Poly(N-isopropylacrylamide):experiment, theory and application, Prog. Polym. Sci. 1992.17:163-249.
    (305)Shiraishi. Y.:Miyamoto. R.:Zhang. X.; Hirai, T. Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range. Org. Lett.2007,9: 3921-3924.
    (306)Tang. L.; Jin, J. K.; Qin, A.; Yuan, W. Z.; Mao. Y.; Mei. J.; Sun, J. Z.; Tang, B. Z. A fluorescent thermometer operating in aggregation-induced emission mechanism:probing thermal transitions of PNIPAM in water, Chem. Commun.2009,4974-4976.
    (307)Zhang, G.; Wu, C. Adv. Polym. Sci.2006,195,101.
    (308)Rzaev, Z. M. O.; Dincer, S.; Piskin, E. Functional copolymers of N-isopropylacrylamide for bioengineering applications, Prog. Polym. Sci.2007,32:534-595.
    (309)Chaterji, S.; Kwon. I. K.;Park, K. Smart polymeric gels:Redefining the limits of biomedical devices, Prog. Polym. Sci.2007,32:1083-1122.
    (310)Lin, H.;Morino, K.; Yashima, E. Synthesis and chiroptical properties of a helical poly(phenylacetylene) bearing optically active pyrene pendants Chirality 2008,20:386-392.
    (311)Liu, L.; Zang, Y.; Hadano, S.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Namikoshi, T. New achiral phenylacetylene monomers having an oligosiloxanyl group most suitable for helix-sense-selective polymerization and for obtaining good optical resolution membrane materials, Macromolecules 2010, 43:9268-9276.
    (312)Maeda. K.; Mochizuki, H.; Osato, K.; Yashima. E. Stimuli-responsive helical poly(phenylacetylene)s bearing cyclodextrin pendants that exhibit enantioselective gelation in response to chirality of a chiral amine and hierarchical super-structured helix formation, Macromolecules 2011,44:3217-3226.
    (313)Peng, H.; Chen, Y.; He, X.; Li, F. Luminescent mesogen jacketed poly(1-alkyne) bearing lateral terphenyl with hexyloxy tail. J. Polym. Sci. Part A:Polym. Chem.2010,48:5679-5692.
    (314)Nakazato. A.; Saeed, I.; Shiotsuki, M.;Sanda, F.; Masuda, T. Polymerization of N-propargylamides with a Rh-vinyl complex:confirmation of the presence of long-lived active species, Macromolecules 2004,37:4044-4047.
    (315)Tabei, J.; Nomura, R.; Sanda, F.:Masuda, T. Design of helical poly(N-propargylamides) that switch the helix sense with thermal stimuli, Macromolecules 2004,37:1175-1179.
    (316)Fujii, T.; Shiotsuki, M.; Inai, Y.:Sanda, F.; Masuda, T. Synthesis of helical poly(N-propargylamides) carrying azobenzene moieties in side chains. reversible arrangement-disarrangement of helical side chain arrays upon photoirradiation keeping helical main chain intact, Macromolecules 2007,40: 7079-7088.
    (317)Ding, L.; Li, Y.; Deng, J.; Yang, W. Preparation of hydrophobic helical poly(N-propargylamide)s in aqueous medium via a monomer/cyclodextrin inclusion complex, Polym. Chem.2011.2:694-701.
    (318)Dong. Y:Lam, J. W. Y.; Peng. H.; Cheuk. K. K. L.;Kwok, H. S.;Tang, B. Z. Syntheses and mesomorphic and luminescent properties of disubstituted polyacetylenes bearing biphenyl pendants. Macromolecules 2004,37:6408-6417.
    (319)Lam. J. W. Y.; Qin, A.; Dong, Y.; Hong, Y.; Jim, C. K. W.; Liu, J.; Dong, Y.; Kwok, H. S.; Tang, B. Z. Synthesis and light-emitting properties of disubstituted polyacetylenes carrying chromophoric naphthylethynylphenyl pendants. J. Phys. Chem. B 2008,112:11227-11235.
    (320)Lam, J. W. Y.;Qin, A.;Jim, C. K. W.; Lu, P.;Yuan, W. Z.; Dong, Y. Q.; Dong, Y. P.; Kwok, H. S.;Tang, B. Z. Sci. China Ser. B:Chem.,2009,52:1691.
    (321)Hua. J.; Li, Z.; Lam, J. W. Y.; Xu, H.; Sun, J. Z.; Dong. Y.; Dong, Y.; Qin, A.; Yuan, W.; Chen, H.; Wang, M.; Tang, B. Z. Induced chain alignment, efficient energy transfer, and enhanced light emission in functional polyacetylene-perovskite hybrids, Macromolecules 2005,38:8127-8130.
    (322)Zhang, X. A.; Chen, M. R.; Zhao, H.; Gao, Y.; Wei, Q.; Zhang, S.; Qin, A.; Sun, J. Z.;Tang, B. Z. A facile synthetic route to functional poly(phenylacetylene)s with tunable structures and properties, Macromolecules 2011,44:6724-6737.
    (323)Law, C. C. W.:Lam, J. W. Y.; Qin, A. J.; Dong, Y. Q.; Kwok. H. S.; Tang, B. Z. Synthesis, thermal stability, light emission, and fluorescent photopatterning of poly(diphenylacetylene)s carrying naphthalene pendant groups, Polymer 2006,47:6642-6651.
    (324)Kakuchi, R.; Nagata, S.; Sakai, R.; Otsuka, I.; Nakade, H.; Satoh, T.; Kakuchi, T. Size-specific, colorimetric detection of counteranions by using helical poly(phenylacetylene) conjugated to L-leucine groups through urea acceptors, Chem. Eur. J.2008,14:10259-10266.
    (325)Kakuchi, R.; Tago, Y.; Sakai, R.; Satoh, T.; kakuchi, T. Effect of the pendant structure on anion signaling property of poly(phenylacetylene)s conjugated to a-amino acids through urea groups, Macromolecules 2009,42:4430-4435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700