GPS精密单点定位算法与大气延迟改正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密单点定位(PPP, Precise Point Positioning)是最近几年发展起来的一项GPS定位新技术。该定位模式仅利用单台接收机即可联合IGS等组织提供的卫星星历和卫星钟差来进行分米级至厘米级精度的单点定位。这在实时精密导航、精密授时、国土资源调查以及航空摄影测量等领域均具有广阔的应用前景。本文围绕精密单点定位数据处理这一中心展开研究,介绍了其数学模型和大气延迟改正方法,最后用参数估计方法进行了静态定位和动态定位解算。
     本文对数据预处理的TurboEdit算法进行了较大改进。改进后宽巷模糊度及其方差的计算考虑了不同弧段、弧段长度、粗差影响等因素;两类组合观测值Melbourne-Wübbena(M-W)和Geometry-Free(G-F)均通过探测连续三个历元的状态来决定当前历元是否为周跳或粗差;设计了一个基于滑动窗口的拟合模型,该模型更符合G-F观测值的平滑时间序列特征;同时对划分的G-F弧段,可进行二次处理,进一步剔除小粗差。实验表明改进的算法可探测并精确修复等周、等距、连续周跳,对连续粗差和表现并不明显的粗差,亦能有效将其剔除。
     在误差改正方面,本文详细介绍了IGS的新版本天线文件igs05.atx及基于此文件将天线相位中心偏差改正到卫星/测站坐标或信号传播距离改正值的方法。另基于IGS及其分析中心发布的15min、30s、5s钟差产品,本文比较了Lagrange、Newton、三次样条等代数插值方法的精度,提出基于傅里叶变换和谱分析的最小二乘拟合法,该方法精度更高,同时适于钟差预报。对于相对论效应,本文推导了四类计算方法并以实验结果得出结论:在精密定位数据后处理中,固然可以利用精度极高的精密星历,但在一般的导航定位或实时精密单点定位中,即使利用导航电文的信息也可以有效消除相对论效应对定位的影响。由于用精密星历计算相对论效应时要求得到精度较高的卫星速度,本文并没有采用简单的中点方法,而是由辛普森积分推导了辛普森数值微分公式,并应用于卫星速度的计算。
     大气延迟是GPS定位的主要误差源。其中电离层延迟一般用双频改正模型,然而该模型只能消除一阶项的影响。本文从理论上探讨了利用地磁场数据消除电离层二阶项影响的途径。对流层延迟改正是GPS数据处理中一个较难解决的问题,一般方法是将其划分为干分量和湿分量,先用映射模型进行初步改正,再设置一个待估计的湿延迟参数。近年来不少学者陆续提出了新的映射函数,其中VMF1是公认精度最高的,也是IGS推荐的算法。本文介绍了GAMIT软件中的对流层模型设置以及GAMIT估计对流层天顶延迟和提取可降水量PW的途径,然后对中国地壳运动观测网络2008年的基准站数据进行了解算,并根据解算结果,多角度比较了三类高精度的对流层延迟映射函数:GMF、NMF和VMF1。在分析实验结果以及近一两年文献的基础上,选择精度最高的VMF1算法用于本文的精密单点定位模块。本文详细介绍了利用VMF1模型消除对流层延迟的数据处理流程。
     本文介绍了序贯最小二乘和扩展的卡尔曼滤波这两类参数估计方法,并应用于精密单点定位模块中。最后的实验结果表明,对于载波相位平滑伪距定位,测站位置误差的X , Y ,Z分量基本在±0.5m内;静态精密单点定位时即使利用15min钟差产品其定位精度也可达到厘米级;仿动态下定位精度为分米级,比静态情况下平滑伪距定位精度稍高些。本文还分析了粗差以及15min、30s、5s等不同采样率钟差产品对定位结果的影响,实验结果显著表明了粗差的剔除和高采样率钟差产品对提高定位精度的积极意义。
GPS Precise Point Positioning (PPP) is a recently developed technique for GPS positioning, which makes use of single GPS receiver with precise ephemeris and satellite clock offset information from IGS, to get site coordinate accuracy of dm-cm level. PPP has proven to be effective and has received widespread acceptance in real-time navigation, precise time transfer, survey of land resource and aerial triangulation etc. This thesis focuses on PPP data processing, introducing its function model and statistic model, carrying out static and kinematic position solution with parameter estimation algorithms after error corrections.
     Three improvements of TurboEdit algorithm in GPS data preparation are presented in this thesis. In the improved algorithm, the calculating of wide-lane ambiguity and its variance takes into account different arc sections, the length of arc section and gross errors. Both combination observations determine whether the current epoch is a gross error or cycle slip by analyzing three successive epochs. A new fitting model based on sliding window is put forward, and the model is more suitable for the fact that Geometry-Free combination observations constitute a smooth time series. The secondary processing of divided Geometry-free arc sections further rejects gross error. Experimental results show that the new algorithm can detect and fix cycle slips of equal-distance, equal-cycle or continuing happened conditions. The new algorithm can also reject successfully successive gross errors and those gross errors with less obvious performance.
     This thesis introduces IGS’s new ANTEX (antenna exchange format) file igs05.atx as well as the algorithm to get correction of both site/satellite coordinates and signal propagation range bases on this file. As for satellite clock offset information of 15min, 30s or 5s interval from IGS, three common used interpolation methods are compared and experimental results show the three methods have similar effects while dealing with IGS precise satellite clock offsets. Considering clock offset variation characteristics, a new least square fitting model based on Fourier transformation and energy spectrum analysis is presented, which overcomes Runge phenomenon of high order polynomial interpolation. Experimental results indicate that this model solves two key problems while traditional algebraic polynomial models can not: first it performs the same accuracy at any time, at any sample rate; then the interpolation results are stable. This thesis presents four algorithms to get relative effect and experimental results show that we can easily get relative effect with GPS broadcast ephemeris. Troposphere delay is a troublesome problem in GPS data processing. The processing procedure of VMF1 model, which is recommended as the most accurate by IGS Workshop 2008, is presented in this thesis.
     For the number of involved equations and parameters waiting estimation is too huge, sometimes we even need kinematic positioning, the general Least Square algorithm is not suitable for PPP. This thesis presents Recursive Least Square and Extended Kalman Filtering, and the developed PPP module based on the two filters. Experimental results show that the accuracies of serial epoch positioning can be better than 50cm in X , Y ,Z component after initialization of about 15 minutes for PPP based on smoothed pseudorange. While the corresponding accuracies for PPP based on un-differenced dual-frequency pseudorange and carrier phase observations are cm level. In kinematic mode, the accuracies locate between the former two.With the developed PPP module, this thesis analyses positioning accuracies affected by gross error and different intervals of satellite clock offset. The results evidently prove the positive significance for PPP from gross error rejection and higher interval of satellite clock offset information.
引文
[1]党亚民,秘金钟,成英燕.全球导航卫星系统原理与应用[M].北京:测绘出版社,2007
    [2]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005
    [3]李征航,张小红.卫星导航定位新技术及高精度数据处理方法[M].武汉:武汉大学出版社,2009
    [4]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1998
    [5]杨元喜.自适应动态导航定位[M].北京:测绘出版社,2006
    [6]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社,2002
    [7]崔希璋、於宗俦、陶本藻、刘大杰等.广义测量平差[M].武汉:武汉测绘科技大学出版社,2001
    [8]刘大杰,陶本藻.实用测量数据处理方法[M].北京:测绘出版社,2000
    [9]刘基余.GPS卫星导航定位原理与方法[M].北京:科学出版社,2002
    [10] International GNSS Service (IGS): http://www.igs.org
    [11] Zumberger J, F. Precise point positioning for the efficient and rpbust analysis of GPS data from large networks [J]. Journal of Geophysical Research, 1997, 102(B3): 5005-5017.
    [12] Héroux P, Kouba. GPS precise point positioning with IGS orbit Products[J]. Phys Chem Earth A , 2001, 26:573–578
    [13] J.Kouba. Implementation and testing of the gridded Vienna Mapping Function1(VMF1) [J]. J Geophys,2008,82(4-5):193-205
    [14] M. N. Deo, K. Zhang, C. Roberts, N. C. Talbot. An Investigation of GPS Precise Point Positioning Methods[R]. The 6th International Symposium on Satellite Navigation Technology Including Mobile Positioning & Location Services, Melbourne, Australia, 2003
    [15] Gao Y, Shen X. A New Method Of Carrier Phase Based Precise Point Positioning[J]. Journal of the Institute of Navigation, 2002, 49(2)
    [16] Gao Y, Chen K, Shen X. Real-Time Kinematic Positioning Based on Un-Differenced Carrier Phase Data Processing [M]. Proceedings of ION National Technical Meeting, Anaheim, California, 2003
    [17] Boonsap Witchayangkoon. Elements of GPS Precise Point Positioning[D]. M.S. University of Maine, 1997
    [18]叶世榕.GPS非差相位精密单点定位理论与实现[D].武汉:武汉大学,2002
    [19]郑作亚,程宗颐,黄珹,卢秀山.对Blewitt周跳探测与修复方法的改进[J].南京:天文学报,2005, 46(2):216-224.
    [20]贾沛璋,吴连大.关于GPS载波相位中的野值周跳与模糊度[J].紫金山天文台刊,2000,19(2)
    [21] Blewitt G. An automatic editing algorithm for GPS data[J]. Geophysical Research Letters, 1990, 17(3): 199-202
    [22]张小红,蔡诗响,李星星等.利用GPS精密单点定位进行时间传递精度分析[J].武汉大学学报(自然科学版),2008,35(3):274-278
    [23]张小红,郭斐,李星星等.GPS/LONASS组合精密单点定位研究[J].武汉大学学报(自然科学版),2008,35(1):9-12
    [24] ANTEX: The Antenna Exchange Format Version 1.3, ftp://igscb.jpl.nasa.gov/igscb/station/general/
    [25] Schmid, R., G. Mader, T. Herring (2005): "From relative to absolute antenna phase center corrections." In: Meindl, M. (ed.) Proceedings of the IGS Workshop and Symposium 2004, Berne.
    [26]张斌,欧吉坤,袁运斌,等.一种小波与谱分析结合的GPS精密卫星钟差拟合方法研究[J].武汉大学学报(自然科学版),2007,32(8):715-718
    [27]黄观文,张勤,许国昌,等.基于频谱分析的IGS精密星历卫星钟差精度分析研究[J].武汉大学学报(自然科学版),2008,33(5):496-499
    [28] H.Bock.CODE’s new high-rate GPS clock product[R].IGS,Analysis Center Workshop 2008,Miami Beach,Florida,USA,2-6 June,2008
    [29]黄丁发,卓健成. GPS相位观测值周跳检测的小波分析法[J].北京:测绘学报,1997, 26(4):352-357.
    [30]伍岳,孟泱,王泽民,等.GPS现代化后电离层折射误差高阶项的三频改正方法[J].武汉大学学报(自然科学版),2005,30(7):601-608
    [31]范胜军.顾及地磁场影响的电离层高阶项改正算法研究[D].武汉:武汉大学,2005
    [32]李征航,陈锴,刘万科等.顾及f 3项的电离层延迟模型[J].武汉大学学报(自然科学版),2007,32(2):139-143
    [33]祁芳.卡尔曼滤波算法在GPS非差相位精密单点定位中的应用研究[D].武汉:武汉大学,2003
    [34]欧吉坤,柴艳菊,袁运斌.自适应选权滤波[J].大地测量与地球动力学进展.2004
    [35]欧吉坤.测量平差中不适定问题解的统一表达与选权拟合法[J].测绘学报,2004,33(4):283-288
    [36]陈义.精密点定位的基本原理和应用[J].同济大学学报(自然科学版),2006,34(7):919-923
    [37]宋迎春.动态定位中的卡尔曼滤波研究[D]:中南大学,2006
    [38]何海波.高精度GPS动态测量及质量控制[D]:解放军信息工程大学,2002
    [39]胡从玮,刘大杰.基于方差分量估计原理的自适应卡尔曼滤波及其应用[J].测绘学院学报,2002,19(1):15-18
    [40]胡从玮,刘大杰,姚连璧.带约束条件的自适应滤波及其在GPS定位中的应用[J].测绘学报,2002,31:39-44
    [41] Yang Gao, Kongzhe Chen. Performance Analysis of Precise Point Positioning Using Rea-Time Orbit and Clock Products[J]. Journal of Global Positioning Systems (2004) Vol. 3, No. 1-2: 95-100
    [42] M. Ge, G. Gendt, M. Rothacher, C. Shi , J. Liu, Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations[J]. J Geod (2008) 82:389–399 DOI 10.1007/s00190-007-0187-4
    [43] S.Bisnath, Y.Gao. Current State of Precise Point Positioning and Future Prospects and Limitations[R]. Proceedings of IUGG 24th General Assembly, 2007
    [44] Cai.C, Y.Gao. Positioning model and accuracy analysis of Precise Point Positioning with GPS and GLONASS[R]. Geoide Annual Meeting, 6-8 June, Halifax, Nova Scotia
    [45] Wubena, G., M.Schmitz and A.Bagg. PPP-RTK: Precise Point Positioning Using State-space Representation in RTK networks[R]. Proceedings of ION GNSS 2005, 13-16 September, Long Beach, California, pp. 2584-2594
    [46] R.F. Leandro, M.C. Santos. An Empirical Stochastic Model for GPS[R]. Dynamic Planet Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools IAG Symposium Cairns, Australia 22–26 August, 2005
    [47] C. Satirapod and M. Luansang. Comparing Stochastic Models Used in GPS Precise Point Positioning Technique[J]. Survey Review, 40: 188-194
    [48] Barnes, J.B. and Cross, P.A. Processing model for very high accuracy GPS positioning[J], 1998, 51:180-193
    [49] Wang, J. Modelling and Quality Control for Precise GPS and GLONASS Satellite Positioning[D]. Perth University, 1999
    [50]葛茂荣,刘经南.GPS定位中对流层折射估计研究[J].测绘学报,1996,25(4):285-291
    [51]曲伟菁,朱文耀,宋淑丽等.三种对流层延迟改正模型精度评估[J].天文学报,2008,49(1):113-122
    [52]杨力.大气对GPS测量影响的理论与研究[D]信息工程大学,2001
    [53] J. Boehm, H. Schuh, R. Weber,et al.Atmospheric delay modeling in GPS analysis using mapping functions based on data from numerical weather models [R].Comet-Advances in GPS Data Processing and Modeling for Geodynamics,London,UK,2005
    [54] Peter Steigenberger, Boehm, Volker Tesmer . Comparison of GMF/GPT withVMF1/ECMWF and Implications for Atmospheric Loading[R].IGS,Analysis Center Workshop 2008,Miami Beach,Florida,USA,2-6 June,2008
    [55] Johannes Boehm, Birgit Werl, and Harald Schuh. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data[J]. JGR-Solid Earth, 2006, 111:2 406-415
    [56] GAMIT Reference Manual Release 10.3, MIT, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700