海水和淡水条件下不同蜕壳时期凡纳滨对虾(Litopenaeus vannamei)生理生态学的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以凡纳滨对虾(Litopenaeus vannamei)稚虾为实验材料,在海水条件和淡水条件下,初步研究比较了蜕壳周期中凡纳滨对虾体组成和血液组成、非特异性免疫、呼吸代谢、消化水平和渗透调节的变化。主要研究结果如下:
     1海水和淡水条件下不同蜕壳时期凡纳滨对虾体组成和血淋巴组成的比较
     本文在实验室条件下研究了不同蜕壳时期凡纳滨对虾(Litopenaeus vannamei)(生物学体长4-5 cm)在海水和淡水养殖环境中体组成份、血淋巴成份的变化。实验结果表明:海水与淡水条件下对虾肌肉中粗蛋白含量A期最低,C期最高,且差异显著;而肌肉中粗脂肪含量无显著变化。与海水条件相比,淡水条件下对虾肌肉中粗蛋白含量整体水平显著下降,脂肪和水分含量显著上升。在海水条件下对虾肝胰脏中粗蛋白含量表现出A期较低,C期较高的变化,粗脂肪含量则C期显著低于其它时期;而淡水条件下肝胰脏中粗蛋白含量则表现为蜕壳后期和间期较低,蜕壳前期显著提高的变化,粗脂肪含量无显著变化。对虾肝胰脏粗蛋白、粗脂肪和水分含量整体水平在两种条件下未表现出显著性差异。海水条件下对虾肌肉中蛋氨酸和丙氨酸在不同蜕壳时期出现显著变化,而淡水条件下对虾肌肉中缬氨酸和丝氨酸在不同蜕壳时期发生了显著变化。与海水条件下相比,淡水条件下对虾肌肉中甘氨酸、丙氨酸、半胱氨酸、缬氨酸、蛋氨酸、络氨酸、苯丙氨酸与组氨酸含量整体水平发现了显著变化。在两种条件下,对虾血淋巴中蛋白浓度在不同蜕壳时期均呈现逐渐上升的趋势,即A期蛋白浓度最低,在D3期蛋白浓度最高;而对虾血糖浓度均呈现先下降再升高的趋势,在A和B期血糖浓度较高,由蜕壳间期至D2期逐渐降低,在D3期出现上升。与海水条件相比,淡水条件下对虾血淋巴蛋白和血糖含量整体水平均显著下降。海水条件下,对虾血淋巴中钙和镁元素含量从蜕壳后期到蜕壳前期都呈现逐渐下降的趋势,蜕壳后期含量最高;钾元素含量变化不大;磷元素含量则呈先降低后升高的趋势,在蜕壳间期含量最低。淡水条件下,对虾血淋巴中钙和镁元素含量A期较低,从B期上升,C期后逐渐下降;钾元素含量的变化趋势与钙、镁元素相似;磷元素含量则先升后降,峰值出现在D0期。与海水条件相比,淡水条件下对虾血淋巴中钾和钙元素含量整体水平显著提高,磷元素含量整体水平显著下降,镁元素含量整体水平无显著变化。
     2海水和淡水条件下不同蜕壳时期凡纳滨对虾非特异性免疫的比较
     本文在实验室条件下研究了海水和淡水两种条件下不同蜕壳时期(A、B、C、Do-D3)凡纳滨对虾(Litopenaeus vannamei)血细胞数量、酚氧化酶、呼吸爆发、一氧化氮合酶和溶菌酶活力的变化。实验结果表明:1、海水和淡水条件下对虾蜕壳后,血细胞数量均呈逐渐增加的趋势,海水条件下D3期血细胞数量(THC)显著高于蜕壳后期(A期)(P<0.05),而淡水条件下各个时期对虾THC无显著差异。与海水条件相比,淡水条件下对虾THC整体水平显著高于海水条件下的水平(P<0.05)。2、海水和淡水条件下对虾酚氧化酶(PO)活力都在蜕壳间期出现峰值,分别为87.5 U/min和45.0 U/min,蜕壳后期和前期PO活力相对较低。淡水条件下对虾PO活力整体水平显著低于海水条件下的活力(P<0.05)。3、海水和淡水条件下对虾呼吸爆发(RB)均表现出与THC相似的变化规律,在蜕壳前期(尤其是D3期)RB最大。淡水条件下对虾RB整体水平显著低于海水条件下的水平(P<0.05)。4、海水和淡水条件下对虾一氧化氮合酶(NOS)活力均表现出在蜕壳前期高,在蜕壳后期和间期相对较低。淡水条件下对虾一氧化氮合酶活力整体水平显著低于海水条件下的活力(P<0.05)。5、海水和淡水条件下对虾溶菌酶活力各个蜕壳时期的变化都不大,均在蜕壳间期稍高,但海水中对虾溶菌酶活力整体水平显著高于淡水条件下的活力(P<0.05)。
     3海水和淡水养殖条件下不同蜕壳时期凡纳滨对虾呼吸代谢的比较
     本文在实验室条件下研究了不同蜕壳时期凡纳滨对虾(Litopenaeus vannamei)(生物学体长4-5 cmm)在海水和淡水养殖环境中耗氧率、排氨率、排尿素率及丙酮酸激酶、乳酸脱氢酶两种代谢酶活力的变化。主要实验结果如下:1、海水养殖条件下,凡纳滨对虾在蜕壳发生前后耗氧率相对上升,D3期和蜕壳后期(A和B期)耗氧率较高,分别为0.667mg·g-1·h-1、0.696mg·g-1·h-1和0.727mg·g-1·h-1, C、D0和D1期对虾耗氧率水平在0.567-0.581mg·g-1·h-1之间,D2期耗氧率最低(0.488mg·g-1·h-1);淡水条件下,对虾耗氧率变化趋势与海水基本相似,在蜕壳前后耗氧率较高,A和B期对虾耗氧率分别为0.651 mg·g-1·h-1和0.650mg·g-1·h-1,其它蜕壳时期对虾耗氧率显著降低(P<0.05)。海水环境中对虾耗氧率的整体水平显著高于淡水环境中对虾耗氧率的整体水平(P<0.05)。2、海水养殖条件下,A和B期对虾的排氨率最高(分别为12.273μg·g-1·h-1和10.644μg·g-1·h-1),显著高于C期的排氨率(4.574μg·g-1·h-1)(P<0.05),在Do-D2期有小幅度的上升,到D3期则降至最低(2.969μg·g-1·h-1);淡水条件下,对虾蜕壳后期的(A和B期分别为40.501μg·g-1·h-1和31.164μg·g-1·h-1)排氨率最高,其它蜕壳时期显著降低(P<0.05),且排氨率整体水平远高于海水条件下的排氨率(P<0.05)。3、海水养殖条件下,对虾排尿素率蜕壳前后较低,D0期较高,且差异显著(P<0.05);淡水条件下则正好相反,蜕壳前后相对较高,C期较低,且差异显著(P<0.05),海水环境中对虾排尿素率整体水平显著高于淡水环境中对虾排尿素率整体水平(P<0.05)。4、海水养殖条件下,A和B期对虾丙酮酸激酶活力分别为150.67 U/gprot和164.50 U/gprot, C期酶活力下降,在D1和D2达到最高(219.19 U/gprot和233.30 U/gprot), D3期酶活力最低;淡水条件下,对虾丙酮酸激酶活力在B期最高(116.77 U/gprot),随后逐渐下降,在蜕壳前期活力较低,与海水环境相比整体水平显著降低(P<0.05)。5、海水养殖条件下,对虾乳酸脱氢酶活力在B期最高(2587.99 U/gprot),随后逐渐下降,至D3期活力达到最低(1851.02 U/gprot);淡水条件下的整体变化趋势与海水相似,最高酶活力出现在D0期(4376.15 U/gprot),至D3期达到最低(1159.55 U/gprot),整体酶活力较海水环境有所提高。海水与淡水环境中对虾乳酸脱氢酶活力整体水平差异不显著(P>0.05)。
     4海水和淡水养殖条件下不同蜕壳时期凡纳滨对虾消化生理的比较
     本文在实验室条件下研究了不同蜕壳时期凡纳滨对虾(Litopenaeus vannamei)在海水和淡水养殖条件下胃蛋白酶活力、类胰蛋白酶活力、脂肪酶活力及淀粉酶活力的变化。主要实验结果如下:1、两种养殖条件下对虾胃蛋白酶活力随蜕壳时期的变化趋势相似,在蜕壳后期酶活力水平较高,蜕壳间期下降,蜕壳前期最低。两种养殖条件下对虾胃蛋白酶活力差异不显著(P>0.05)。2、海水养殖条件下,蜕壳后期(A期)对虾类胰蛋白酶活力最高(4.556 U·mg prot-1),蜕壳间期酶活力也保持较高的水平(4.420 U·mg prot-1),蜕壳前期酶活力在3.462-3.820 U·mg prot-1之间。淡水养殖条件下,蜕壳间期对虾酶活力为1.950U·mgprot-1,显著高于其它时期酶活力(P<0.05)。海水养殖条件下对虾类胰蛋白酶活力整体水平显著高于淡水条件下的活力(P<0.05)。3、海水养殖条件下对虾脂肪酶活力在蜕壳后期(A和B期)最高,分别为6.919 U·mg prot-1和7.531 U·mg prot-1,蜕壳间期略下降,蜕壳前期酶活力有所下降,在4.636-5.258 U·mg prot-1之间。淡水养殖条件下对虾脂肪酶活力在蜕壳后期较高,蜕壳间期最高(8.720 U·mg prot-1),蜕壳前期酶活力下降至3.523-5.813 U·mg prot-1之间。海水与淡水养殖条件下对虾脂肪酶活力整体水平差异不显著(P>0.05)。4、海水养殖条件下,对虾淀粉酶活力在蜕壳后期A和B期分别为1.525 U·mg prot-1和1.398 U·mg prot-1,显著高于其它时期酶活力(P<0.05)。淡水养殖条件下,对虾淀粉酶活力在蜕壳间期最高(2.954 U·mg prot-1),显著高于其它时期酶活力(P<0.05)。海水养殖条件下对虾淀粉酶活力整体水平显著低于淡水条件下的活力(P<0.05)。
     5海水和淡水养殖条件下不同蜕壳时期凡纳滨对虾渗透调节的比较
     本文在实验室条件下研究了不同蜕壳时期凡纳滨对虾(Litopenaeus vannamei)在海水和淡水养殖环境中血浆渗透压、鳃丝离子转运酶活力和血蓝蛋白含量的变化。结果发现:1、两种条件下血浆渗透压的调节规律不同,海水条件下蜕壳前期(D2期和D3期)和蜕壳后期(A期和B期)血浆渗透压处于较高水平,蜕壳间期调节至较低水平;淡水条件下蜕壳后期(A期和B期)对虾血浆渗透压最低,之后逐渐升高。受到两种条件下渗透浓度的影响,海水条件下对虾血浆渗透压整体水平显著高于淡水条件下的水平(P<0.05)。2、海水条件下对虾Na+-K+-ATPase活力在蜕壳前期(D2期和D3期)和蜕壳后期(A期和B期)较低,蜕壳间期较高;淡水条件下对虾Na+-K+-ATPase活力在A期最高,后逐渐下降,至D3期达最低水平。两种条件下对虾Na+-K+-ATPase活力和血浆渗透压在蜕壳周期中的变化趋势相反。3、两种条件下对虾碳酸酐酶活力在蜕壳周期中的变化趋势相似,即蜕壳后期较高,其它时期较低,D3期有小幅度地提高。海水与淡水条件下对虾两种离子转运酶活力整体水平均没有显著性差异(P>0.05)。4、两种条件下对虾血蓝蛋白含量在蜕壳周期中变化也不同,海水条件下血蓝蛋白含量在蜕壳后期最低,随后逐渐增加,至蜕壳前期达到最高水平;淡水条件下血蓝蛋白则变化不大,各时期没有显著性差异(P>0.05)。海水条件下对虾血蓝蛋白含量整体水平显著高于淡水条件下的水平(P<0.05)。
A series of indoor trials were conducted to investigate the comparison of body composition, nonspecific immunity, respiratory metabolism, digestive physiology and osmoregulation in juvenile Litopenaeus vannamei cultured in seawater and freshwater conditions in relation to molt stages. The primary results were listed below.
     1 Comparision of body and hemolymph composition of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages
     This experiment was conducted to investigate the changes of body and hemolymph compsitions of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages. The results showed that the crude protein contents in muscle of test shrimp were the lowest and the highest at A stage and C stage, respectively, under both seawater and freshwater conditions. The crude lipid contents in muscle showed no significant differences in a molt cycle under two conditions. Compared with the seawater conditions, the whole level of crude protein contents in muscle increased significantly under freshwater conditions, meanwhile, the whole level of crude lipid and moisture contents decreased significantly. The crude protein contents in hepatopancreas were lower at A stage and were higher at C stage under seawater conditions. The crude lipid contents in hepatopancreas at C stage were significantly lower than those at other stages. Under freshwater conditions, the crude protein contents in hepatopancreas showed lower level at post- and inter-molt stages and exhibited higher at pre-molt stage, while the crude lipid contents showed no significant differences among all stages. The whole level of crude protein, crude lipid and moisture contents exhibited no significant differences between two conditions. Methionine and alanine contents in muscle showed significant differences among all stages under seawater conditions, while valine and serine contents in muscle exhibited significant differences among all stages under freshwater conditions. Compared with the seawater conditions, the whole level of glycine, alanine, cysteine, valine, methionone, tyrosine, phenylalanine and histidine contents in muscle changed significantly under freshwater conditions. Under both conditions, the protein concentration in hemolymph increased gradually from post-molt stage to pre-molt stage, whereas the glucose concentration in hemolymph showed higher at post-molt stage, decreased at inter-molt stage, and increased at D3 stage. Compared with the seawater conditions, the whole level of protein and glucose concentration in hemolymph decreased significantly under freshwater conditions. The calcium and magnesium contents in hemolymph decreased during molt cycle under seawater conditions. The lowest phosphorus contents in hemolymph occurred at C stage, whereas it exhibited high level at premolt and postmolt stages. Under freshwater conditions, the calcium and magnesium contents in hemolymph showed lower at A stage, increased at B stage and decreased gradually after C stage. Kalium contents in hemolymph showed the same trend as calcium and magnesium. The higher contents of Phosphor exhibited at Do stage. Compared with the seawater conditions, the whole level of kalium and calcium contents in hemolymph increased significantly under freshwater conditions, whereas the whole level of phosphor contents in hemolymph decreased significantly, but no significantly changed was found in magnesium contents.
     2 Comparision of nonspecific immunity of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages
     This experiment was conducted to compare total hemocytes counts (THC), phenol oxidase (PO) activities, respiratory burst (RB), nitric oxide synthase (NOS) activities and Lysozyme (LY) activities of Litopenaeus vannamei under seawater and freshwater conditions in relation to the the molt stages. It was found that:1) THC of experimental shrimp increased from post-molt stage to pre-molt stage in both seawater and freshwater conditions. THC of D3 stage was significantly higher than that of A stage under seawater conditions (P<0.05), whereas no significant differences were found among all stages under freshwater conditions (P>0.05).2) PO activity of experimental shrimp breeding in seawater and freshwater conditions reached peak at inter-molt stage and was 87.5 U/min and 45.0 U/min, respectively, and the lower levels of PO activity occurred at post-molt and pre-molt stages. The whole level of PO activity of experimental shrimp breeding in freshwater conditions was significantly lower than that in seawater conditions (P<0.05).3) The change trend of RB was similar to that of THC under seawater and freshwater conditions, and increased to the peak at pre-molt stage, especially D3 stage. The whole level of RB of experimental shrimp breeding in freshwater conditions was significantly lower than that in seawater conditions (P<0.05).4) NOS activities of experimental shrimp breeding in both seawater and freshwater conditions were higher level at pre-molt stage, whereas lower level occurred at inter-molt and pre-molt stage. The whole level of NOS activity of experimental shrimp breeding in freshwater conditions was significantly lower than that in seawater conditions (P<0.05).5) LY activity of experimental shrimp breeding in seawater and freshwater conditions changed an extent, and the highest levels were found at inter-molt stage. The whole level of LY activity in seawater was significantly higher than in freshwater conditions (P<0.05).
     3 Comparision of respiratory metabolism of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages
     This experiment was conducted to compare the oxygen consumption rates (OCR), ammonia excretion rates (AER), urea excretion rates (UER), pyruvate kinase activities (PK) and lactate dehydrogenase activities (LDH) of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages. It was found that:1) Under seawater condition, the high level of the OCR occurred around the ecdysis. The OCR of D3 stage and post-molt stage (A and B stages) increased and was 0.667 mg·g-1·h-1,0.696 mg·g-1·h-1 and 0.727 mg·g-1·h-1, respectively, the level of OCR of C, Do and D1 stages were between 0.567-0.581 mg·g-1·h-1, and the lowest level of OCR occurred at D2 stage (0.488 mg·g-1·h-1). Under freshwater conditions, the fluctuation trend of OCR was similar to that one under seawater conditions. The OCR of A and B stages was 0.651 mg·g-1·h-1 and 0.650 mg·g-1·h-1, respectively, and significantly higher than those at other stages (P<0.05). The whole level of OCR of shrimp cultured in seawater conditions was higher than that in freshwater conditions (P<0.05).2) Under seawater conditions, AER of shrimp at A and B stages (was 12.273μg·g-1·h-1 and 10.644μg·g-1·h-1, respectively) and these were significantly higher than that at C stage (4.574μg·g-1·h-1) (P<0.05), and AER increased with a certain extent at Do-D2 stages, then decreased to the lowest level at D3 stage (2.969μg·g-1·h-1). Under freshwater conditions, the highest level (40.501μg·g-1·h-1 and 31.164μg·g-1·h-1) of AER was occurred at post-molt stage, and significantly higher than those at other stages (P<0.05). The whole level of AER of shrimp cultured in seawater conditions was lower than that in freshwater conditions (P<0.05).3) Under seawater conditions, the UER of shrimp decreased around the ecdysis, reached the highest level at DO stage, and there were significant differences between them (P<0.05). Oppositely, under freshwater conditions, the UER of shrimp increased at pre- and post-molt stages, decreased at inter-molt stage and significant differences were found between them (P<0.05). The whole level of UER of shrimp cultured in seawater conditions was significantly higher than that in freshwater conditions (P<0.05).4) Under seawater conditions, PK activity of shrimp at A and B stages was 150.67 U/gprot and 164.50 U/gprot, respectively, decreased at C stage, and then reached the higher level at D1 and D2 stages (219.19 U/gprot and 233.30 U/gprot), finally decreased to the lowest level at D3 stage. Under freshwater conditions, PK activity of shrimp was highest at B stage (116.77 U/gprot), then decreased gradually with the passage of time, the lowest level occurred at pre-molt stage. Compared with the seawater conditions, the whole level of PK of shrimp cultured in freshwater conditions decreased significantly (P<0.05).5) Under seawater conditions, LDH activity of shrimp reached the peak at B stage (2587.99 U/gprot) and decreased gradually, while the lowest level occurred at D3 stage (1851.02 U/gprot). The fluctuation trend under freshwater condition was similar to that under seawater conditions. The highest level occurred at DO stage (4376.15 U/gprot), while the lowest level was showed at D3 stage (1159.55 U/gprot). There were no significant differences of the whole level of LDH activities between the two conditions.
     4 Comparision of digestive physiology of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages
     This experiment was conducted to compare pepsin activities, tryptase activities, lipase activities and amylase activities of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages. It was found that:1) the changing tendency of pepsin activities of experimental shrimp cultured in seawater and freshwater conditions was similar in a molt cycle. The higher level of pepsin activities occurred in post-molt stage, and then decreased at inter-molt stage, while the lowest level of that was found at pre-molt stage. There were no significant differences of the whole level of pepsin activities between the two conditions (P>0.05).2) Under seawater conditions, tryptase activity of experimental shrimp was the highest at A stage (4.556 U/mg prot), and tryptase activities were 3.462-3.820 U/mg prot at pre-molt stage. Under freshwater condition, tryptase activity at inter-molt stage was 1.950 U/mg prot and was significantly higher than those at other stages (P<0.05). The whole level of tryptase activity of experimental shrimp cultured in seawater conditions was higher than that in freshwater conditions (P<0.05).3) Under seawater conditions, lipase activities of experimental shrimp kept higher level at post-molt stage (A and B stages) and were 6.919 U/mg prot and 7.531 U/mg prot, respectively, and then decreased at inter-molt stage, and the lower level of lipase activities were found at pre-molt stage which were 4.646-5.258 U/mg prot. Under freshwater conditions, lipase activities of experimental shrimp were higher at post-molt stage, and the highest level was found at inter-molt stage (8.720 U/mg prot), and then decreased to 3.523-5.813 U/mg prot at pre-molt stage. No significant differences of the whole level of lipase activities were found between the two conditions (P>0.05).4) Under seawater conditions, amylase activity of experimental shrimp at A and B stages was 1.525 U/mg prot and 1.398 U/mg prot, respectively,and significantly higher than those at other stages (P<0.05). Under freshwater conditions, lipase activity of experimental shrimp reached the peak at inter-molt stage (2.954 U/mg prot), and was significantly higher than those at other stages (P<0.05). The whole level of amylase activity of experimental shrimp breeding in seawater conditions was 1.124 U/mg prot, and significantly higher than that in freshwater conditions.
     5 Comparision of osmoregulation of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages
     This experiment was conducted to investigate the changes of osmolarity, hemocyanin concentration, Na+-K+-ATPase activity and carbonic anhydrase activity of of Litopenaeus vannamei under seawater and freshwater conditions in relation to the molt stages. The results showed that the changing trends of osmolarity were different under seawater and freshwater conditions. Under seawater conditions, the osmolarity of test shrimp kept higher level at pre-molt stage (D2 and D3 stages) and post-molt stage (A and B stages), whereas lower level occurred at inter-molt stage. Under freshwater conditions, the osmolarity of test shrimp kept lower level at post-molt stage (A and B stages), increased from inter-molt stage. The whole level of osmolarity of L. vannamei cultured in seawater conditions was significantly higher than that in freshwater conditions. There were two different changing trends of hemocyanin concentration of test shrimp under two conditions. Under seawater conditions, the hemocyanin concentration was lower at post-molt stage and increased gradually after that. There were no significant differences of hemocyanin concentration among all molt stages under freshwater conditions. The whole level of hemocyanin concentration of L. vannamei cultured in seawater conditions was also significantly higher than that in freshwater conditions. Under seawater conditions, Na+-K+-ATPase activity in gills kept lower at pre-molt stage (D2 and D3 stages) and post-molt stage (A and B stages), whereas higher level occurred at inter-molt stage. Under freshwater conditions, Na+-K+-ATPase activity in gills was the highest at A stage, and then decreased gradually, and reached the lowest at D3 stage. The trend of Na+-K+-ATPase activity was opposite to the one of osmolarity during the molt cycle under both seawater and freshwater conditions. The changing trends of carbonic anhydrase activity during the molt cycle were similar under two conditions. Carbonic anhydrase activity was higher at post-molt stage, and lower level occurred at other stages and narrowly increased at D3 stage. The whole level of two ion transport enzymes did not show significant differences between seawater and freshwater conditions.
引文
[1]Drach P. Mue et cycle d'intermue chez Crustaces decapodes. Annales de 1'Institut Oceanographique, Pairs,1939,19:103-391
    [2]Travis D F. The molting cycle of the spiny lobster, Panulirus argus Latreille. Ⅲ. Physiological changes which occur in the blood and urine during the normal molting cycle. Biological Bulletin,1955,109:485-503
    [3]Passano L M. Molting and its control. In "The Physiology of Crustacea". Academic Press, New York and London,1960,1:473-536
    [4]Skinner D M. Molting and regeneration. In "The Biology of Crustacea". Academic Press, New York and London,1985,9:43-146
    [5]Carlisle D B, Knowles F G W. "Endocrine control in crustaceans".1959, University Press, Camberdge
    [6]Anger K. Energetics of spider crab Hyas araneus megalopa in relation to temperature and the moult cycle. Marine Ecology Progress Series,1987,36:115-122
    [7]Musgrove R J B, Geddes M C. Tissue accumulation and the moult cycle in juveniles of the Australian freshwater crayfish Cherax destructor. Freshwater Biology,1995,34(3):541-558
    [8]Catacutan M R. Growth and body composition of juvenile mud crab, Scylla serrata, fed different dietary protein and lipid levels and protein to energy ratios. Aquaculture,2002,208:113-123
    [9]Hu Y, Tan B, Mai K, et al. Growth and body composition of juvenile white shrimp, Litopenaeus vannamei, fed different ratios of dietary protein to energy. Aquaculture Nutrition,2008,14(6): 499-506
    [10]Read G H L, Caulton M S. Changes in mass and chemical composition during the moult cycle and ovarian development in immature and mature Penaeus indicus Milne Edwards. Comparative Biochemistry and Physiology,1980,66A:431-437
    [11]Dall W, Smith D M. Changes in protein-bound and free amino acids in the muscles of the tiger prawn Penaeus esculentus during starvation. Marine Biology,1987,95:509-520
    [12]Cesar J R O, Zhao B P, Malecha S, et al. Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle..Aquaculture,2006,261(2): 688-694
    [13]Spees J L, Chang S A, Mykles D L, et al. Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell stress & Chaperones,2003,8:258-264
    [14]Wen X B, Ku Y M, Zhou K Y. Starvation on changes in growth and fatty acid composition of juvenile red swamp crawfish, Procambarus clarkia. Chinese Journal of Oceanology and Limnology,2007,25(1):97-105
    [15]Cuzon G, Cahu C. Aldrin J F, et al. Starvation effect on metabolism of Penaeus japonicus. Proceedings of the World Mariculture Society,1980,11:410-423
    [16]Quetin L B, Ross R M, Uchio K. Metabolic characteristics of midwater zooplankton:Ammonia excretion, O:N ratios, and the effect of starvation. Marine Biology,1980,183:201-209
    [17]Barclay M C, Dall W, Smith D M. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn, Penaeus esculentus Haswell. Journal of Experimental Marine Biology and Ecology,1983,68:229-244
    [18]Teshima S, Kanazawa A, Okamoto H. Variation in lipid classes during the molting cycle of the prawn Penaeus japonicus. Marine Biology,1977,39(2):129-136
    [19]Dall W. Estimation of routine metabolic rate in a penaeid prawn, Penaeus esculentus Haswell. Journal of Experimental Marine Biology and Ecology,1986,96:57-74
    [20]Patrois J, Ceccaldi H J, Ando T, et al. Variation in lipid synthesis from acetate during the molting cycle of prawns. Bulletin of the Japanese Society of Scientific Fisheries,1978,44: 139-141
    [21]Dall W, Hill B J对虾生物学.陈楠生译.青岛:青岛海洋大学出版社,1992,175-185
    [22]蔡生力.甲壳动物内分泌学研究与展望.水产学报,1998,22(2):154-161
    [23]Ding S, Wang F, Sun H, et al. Effects of salinity fluctuation frequency on the growth, molting rate and hemolymph 20-hydroxyecdysone concentration in juvenile Chinese shrimp, Fenneropenaeus chinensis. Journal of Ocean University of China,2009,8(3):259-264
    [24]Claybrook D L. Nitrogen metabolism. In:Mantel L H. The biology of crustacean, Vol.5, Internal anatonmy and physiological regulation. Academic Press, New York,1983, pp.162-213
    [25]Bursey C R, Lane C E. Ionic and protein concentration changes during the molt cycle of Penaeus duorarum. Comparative Biochemistry and Physiology,1971,40A:155-162
    [26]Vazquez-Boucard C G, Moureau C E, Ceccaldi H. Etude preliminaire des variations circadiennes des proteins de Phemolymphe de Penaeus japonicus Bate. Journal of Experimental Marine Biology and Ecology,1985,85:123-133
    [27]Chen J C, Cheng S Y. Studies on haemocyanin and haemolymph protein levels of Penaeus japonicus based on sex, size and moulting cycle. Comparative Biochemistry and Physiology, 1993,106B:293-296
    [28]Balazs G H, Olbrich S E, Tumbleson M E. Serum constituents of the Malaysian prawn (Macrobrachium rosenbergii) and pink shrimp (Penaeus marginatus). Aquaculture,1974,3: 147-157
    [29]Ferraris R P, Parado-Estepa F D, Ladja J M Effect of salinity on the osmotic, chloride, total protein and calcium concentrations in the hemolymph of the prawn Penaeus monodon. Comparative Biochemistry and Physiology,1986,83A:701-708
    [30]Chan S M, Rankin S M, Keeley L L. Characterization of the molt stages in Penaeus vannamei: setogenesis and hemolymph levels of total protein, ecdysteroids, and glucose. Biology Bulletin, 1988,175:185-192
    [31]潘鲁青,金彩霞.甲壳动物血蓝蛋白研究进展.水产学报,2008,32(3):484-491
    [32]Chen J C, Chia P G. Oxyhemocyanin, protein, osmolality and electrolyte levels in the hemolymph of Scylla serrata in relation to size and molt cycle. Journal of Experimental Marine Biology and Ecology,1997,217:93-105
    [33]Cheng W, Liu C H. Yan D F, et al. Hemolymph oxyhemocyanin, protein osmolality and electrolyte levels of whiteleg shrimp Litopenaeus vannamei in relation to size and molt stage. Aquaculture,2002,211:325-339
    [34]Mugnier C, Justou C. Combined effect of external ammonia and molt stage on the blue shrimp Litopenaeus stylirostris physiological response. Journal of Experimental Marine Biology and Ecology, SEP 2004,309(1):35-46
    [35]Depledge M H, Bjerregaard P. Haemolymph protein composition and copper levels in decapod crestaceans. Helgolander Meeresuntersuchungen,1989,43:207-223
    [36]Wilder M N, Ikuta K, Atmomarsono M, et al. Changes in osmotic and ionic concentrations in the hemolymph of Macrobranchium rosenbergii exposed to varying salinities and correlation to ionic and crystalline composition of the cuticle. Comparative Biochemistry and Physiology, 1998,119 (4):941-950
    [37]Greenaway P. Calcium balance and moulting in the crustacean. Biological Reviews,1985,60: 425-454
    [38]Fabritius H, Ziegler A. Analysis of CaCO3 deposit formation and degradation during the molt cycle of the terrestrial isopod Porcellio scaber (Crustacea, Isopoda). Journal of Structural Biology,2003,142:281-291
    [39]Fieber L A, Lutz P L. Magnesium and calcium metabolism during molting in the freshwater prawn Macrobranchium rosenbergii. Canadian Journal of Zoology,1985,63:1120-1124
    [40]Greenaway P, Farrelly Y C. Trans-epidermal transport and storage of calcium in Holthuisana transversa during premoult. Acta Zoologica,1991,72(1):29-40
    [41]王顺昌,魏亦军,申德林.中华绒螯蟹蜕皮过程中肌肉、肝胰脏和甲壳中钙和磷含量的变动.水产学报,2003,27(3):219-224
    [42]王顺昌,于敏.东方对虾蜕皮周期中外表皮对钙、磷、镁和钾的矿化作用.生物学杂志,2002,19(5):28-29
    [43]Greenaway P. Calcium balance at the postmoult stage of the freshwater crayfish Austropotamobius pallipes. Journal of Experimental Biology,1974,61:35-45
    [44]Shechter A, Berman A, Singer A, et al. Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cher ax quadricarinatus. Biology Bulletin, 2008,214:122-134
    [45]Parado-Estepa F D, Ladja J M, de Jesus E G,et al. Effect of salinity on hemolymph calcium concentration during the molt cycle of the prawn Penaeus monodon. Marine Biology,1989,102: 189-193
    [46]Vijayan K K, Diwan A D. Fluctuations in Ca, Mg and P levels in the hemolymph, muscle, midgut gland and exoskeleton during the moult cycle of the Indian white prawn, Penaeus indicus (Decapoda:Penaeidae). Comparative Biochemistry and Physiology,1996,114:91-97
    [47]Hose J E, Martin G G. Defense functions of granulocytes in the ridgeback prawn Sicyonia ingentis. Journal of Invertebrate Pathology,1989,53:335-346
    [48]Raman T, Arumugam M, Mullainadhan P. Agglutinin-mediated phagocytosis-associated generation of superoxide anion and nitric oxide by the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology,2008,24:337-345
    [49]Goldenberg P Z, Huebner E, Greenberg A H. Activation of lobster hemocytes for phagocytosis. Journal of Invertebrate Pathology,1984,43(1):77-88
    [50]李光友,王青.中国明对虾血细胞及其免疫研究.海洋与湖沼,1995,26(6):591-597
    [51]Soderhall K, Smith V J, Johansson M W. Exocytosis and uptake of bacteria by isolated haemocyte populations of two crustaceans:evidence for cellular co-operation in the defense reactions of arthropods. Cell Tissue Research,1986,245:43-49
    [52]陈昌福,陈萱,陈超然.水产甲壳动物的免疫防御机能及其免疫防御研究进展.华中农业大学学报,2003,22(2):]97-203
    [53]于建平.日本对虾血细胞分类、密度及组成.青岛海洋大学学报,1993,23(1):107-114
    [54]Cheng W, Chen J C. The virulence of Enterococcus to freshwater prawn Macrobrachium rosenbergii and its immune resistance under ammonia stress. Fish & Shellfish Immunology, 2002,12(2):97-109
    [55]Mugnier C, Zipper E, Goarant C, et al. Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and physiological response in relation to molt stage. Aquaculture,2008,274:398-407
    [56]Tsing A, Arcier J M, Brehelin M. Haemocytes of penaeids and palaemonid shrimps: morphology, cytochemistry and hemograms. Journal of Invertebrate Pathology,1989,53:64-77
    [57]Le Moullac G, Le Groumellec M, Ansquer D, et al. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in relation with the moult cycle:protection against vibriosis. Fish & Shellfish Immunology,1997,7(4):227-234
    [58]Liu C H, Yeh S T, Cheng S Y, et al. The immune response of the white shrimp Litopenaeus vannamei and its susceptibility to Vibrio infection in relation with the moult cycle. Fish & Shellfish Immunology,2004,16:151-161
    [59]Hose L E, Martin G G, Tiu S, et al. Patterns of hemocytes production and release throughout the molt cycle in the penaeid shrimp sicyonia ingentis. Biological Bulletin,1992,183(2): 185-199
    [60]Bell K L, Smith V J. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas. Developmental & Comparative Immunology,1993,17:211-219
    [61]Song H L, Hsieh Y T. Immunostimulation of tiger shrimp(Penaeus monodon) hemocytes for generation of microbicidal substances:analysis of reactive oxygen specied. Developmental & Comparative Immunology,1994,18(3):201-209
    [62]Marcelo N, Ricardo C, Jenny R, et al. Measurement of reactive oxygen intermediate production in hemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture,2000,191:89-107
    [63]王宝杰,王雷.中国对虾血细胞吞噬活动中超氧阴离子的产生.中国水产科学,2003,10(1):14-18
    [64]Lee M H, Shiau S Y. Increase of dietary vitamin C improves haemocyte respiratory burst response and growth of juvenile grass shrimp, Penaeus monodon, fed with high dietary copper. Fish & Shellfish Immunology,2003,14:305-315
    [65]Cheng W, Chieu H T, Ho M C, et al. Noradrenaline modulates the immunity of white shrimp Litopenaeus vannamei. Fish & shellfish immunology,2006,21(1):11-19
    [66]Chang M, Wang W N, Wang A L, et al. Effects of cadmium on respiratory burst, intracellular Ca2+ and DNA damage in the white shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology,2009,149(4):581-586
    [67]Sritunyalucksana K, Soderhall K. The proPO and clotting system in crustacean. Aquaculture, 2000,191:53-69
    [68]Soderhall K. Phenoloxidase activating system and melanization-a recognition mechanism of arthropods? Developmental & Comparative Immunology,1982,6:601-611
    [69]Ashida M. The prophenoloxidase cascade in insect immunity. Research in Immunology,1990, 141:908-910
    [70]Aspan A, Soderhall K. Purification of prophenoloxidase from crayfish blood cells and activation by an endogenous serine proteinase. Insect Biochemistry,1991,21:363-373
    [71]Gollas G T, Hernandez L J, Vargas A F. Prophenoloxidase from brown shrimp(Penaeus californiensis) hemocytes. Comparative Biology and Physiology,1999,122B:77-82
    [72]Soderhall K, Unestam T. Activation of crayfish serum prophenoloxidase:The specificity of cell wall glucan activation and activation by purified fungal glycoproteins. Canadian Journal of Microbiology,1979,117A:419-425
    [73]Yeh M S, Lai C Y, Liu C H, et al. A second proPO present in white shrimp Litopenaeus vannamei and expression of the propos during a Vibrio alginolyticus injection, molt stage, and oral sodium alginate ingestion. Fish & Shellfish Immunology,2009,26:49-55
    [74]王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼,1995,26(2):179-185
    [75]刘树青,江晓路,牟海津.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(3):278-283
    [76]Villamil L. Tafalla C, Figueras A, et al. Evaluation of immunomodulatory effects of lactic acid bacteria in turbot (Scophthalmus maximus). Clinical and Diagnostic Laboratory Immunology, 2002,9(6):1318-1323
    [77]Garsten G K, Michaela A, Christine L, et al. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages. International Journal for Parasitology,2003,33(8):833-844
    [78]Tania R R, Georgina E, Jorge H L, et al. Effects of Echerichia coli lipopolysaccharides and dissolved ammonia on immune response in southern white shrimp Litopenaeus shcmitti. Aquaculture,2008,274:118-125
    [79]Di Cosmo A, Di Cristo C, Palumbo A, et al. Nitric oxide synthase in the brain of the cephalopod Sepia officinalis. Journal of Comparative Neurology,2000,428(3):411-427
    [80]Saeij J P, Stet R J, Groeneveld A, et al. Molecular and functional characterization of a fish inducible-type nitric oxide synthase. Immunogenetics,2000,51:339-346
    [81]Saeij J P, Van Muiswinkel W B, Groeneveld A, et al. Immune modulation by fish kinetoplastid parasites:a role for nitric oxide. Parasitology,2002,124:77-86
    [82]朱宏友,王广军,余德光,等.盐度变化对凡纳滨对虾—氧化氮合酶水平及病原敏感性的影响.湛江海洋大学学报,2005,25(6):90-94
    [83]朱宏友,王广军,余德光,等.水温骤降后凡纳滨对虾血清中NO、NOS水平及对副溶血弧菌的敏感性.大连水产学院学报,2006,21(1):46-50
    [84]姜国建,于仁诚,王云峰,等.中国明对虾血细胞中一氧化氮合酶的鉴定及其在白斑综合症病毒感染过程中的变化.海洋与湖沼,2004,35(4):342-350
    [85]McMahon B R, Wilkens J L. Ventilation, perfusion, and oxygen uptake. In "The Biology of Crustacea". (Mantel L H, ed.), vol.5, Internal Anatomy and Physiological Regulation. Academic Press, New York and London,1983, pp.289-372
    [86]Carnalho P S M, Phan V N. Oxygen consumption and ammonia excretion of Xiphopenaeus kroyeri Heller (Penaeidae) in relation to mass temperature and experimental procedures. Journal of Expeimental Marine Biology and Ecology,1997,209:143-156
    [87]Emmerson W D. Oxygen consumption in Palaemon pacificus (Stimpson) (Decapoda: Palaemonidae) in relation to temperatre, size and season. Comparative Biochemistry and Physiology,1985,81A:71-78
    [88]Hagerman L. The respiration during the moult cycle of Crangon vulgaris (Fabr.) (Crustacea, Natantia). Ophelia,1976,15:15-21
    [89]Penkoff S J, Therberg F P. Changes in oxygen consumption of the American lobster, Homarus americanus, during the moult cycle. Comparative Biochemistry Physiology,1982,72:621-622
    [90]Stern S, Cohen D. Oxygen consumption and ammonia excretion during the molt cycle of the freshwater prawn Macrobrachium resonbergii (De man). Comparative Biochemisty and Physiology,1982,73:417-419
    [91]Cockroft A C, Wooldridge T. The effects of mass, temperature and molting on the respiration of Macropetasma africanus Balls (Decapoda:Penaeoidea). Comparative Biochemistry and Physiology,1985,81:143-148
    [92]Regnault M. Nitrogen excretion in marine and fresh-water Crustacea. Biological Reviews of the Cambridge Philosophical Society,1987,62:1-24
    [93]Clifford H C, Brick R W. Nutritional physiology of the freshwater shrimp Macrobrachium resenbergii. I. Substrate metabolism in fasting juvenile shrimp. Comparative Biochemistry and Physiology,1983,74(3):651-668
    [94]Gerhardt H V. Nitrogen excretion by the juvenile prawn Penaeus indicus at various temperature. South African Journal of Sciences,1980,76:39-40
    [95]张硕,董双林,王芳.中国对虾生物能量学研究Ⅰ——温度、体重、盐度和摄食状态对耗氧率和排氨率的影响.青岛海洋大学学报,1998a,28(2):223-227
    [96]Chen J C, Lai C Y. Response of oxygen consumption, ammonia-N excretion and urea-N excretion of Penaeus chinensis exposed to ambient at different salinity and pH levels. Aquaculture,1995,136:234-255
    [97]Dall W, Smith D M. Oxygen consumption and ammonia-N excretion in fed and starved tiger prawns, Penaeus esculentus Haswell. Aquaculture,1986,55:23-33
    [98]张硕,王芳,董双林.摄食对中国对虾能量代谢影响的初步研究.海洋科学,1998b,2:49-51
    [99]Regnault M. Ammonia excretion of the sand shrimp Crangon crangon during the moult cycle. Comparative Physiology,1979,133:199-204
    [100]Lazou A, Frosinis A. Kinetic and regulatory properties of pyruvate kinase from Artemia embryos during incubation under aerobic and anoxic conditions. Comparative Biochemistry and Physiology,1994,109:325-332
    [101]Lemos D, Salomon M, Gomes V, et al. Citrate synthase and pyruvate kinase activities during early life stages of the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae): effects of development and temperature. Comparative Biochemistry Physiology,2003,135B: 707-719
    [102]Sanchez-Paz A, Sonanez-Organis J G, Peregrino-Uriatrte A B, et al. Response of the phosphofructokinase and pyruvate kinase genes expressed in the midgut gland of the Pacific white shrimp Litopenaeus vannamei during short-term starvation. Experimental Marine Biology and Ecology,2008,362:79-89
    [103]汪玉松,邹思湘,张玉静.现代动物生物化学.第三版.北京:高等教育出版社,2005,466-490
    [104]郭彪,王芳,侯纯强,等.温度突变对凡纳滨对虾己糖激酶和丙酮酸激酶活力以及热休克蛋白表达的影响.中国水产科学,2008,15(5):885-889
    [105]邓述欢,高玲.血清丙酮酸激酶与血糖关系的探讨.陕西医学检验,2001,16(1):59
    [106]Zietara M S, Gronczewska J, Stachowiak K, et al. Lactate dehydrogenase in abdominal muscle of crayfish Orconectes limosus and shrimp Crangon crangon (Decapoda:Crustacea):properties and evolutionary relationship. Comparative Biochemistry and Physiology,1996,114 (4):395-401
    [107]Diamantino T C, Almeida E, Soares A M V M,et al. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna Straus. Chemosphere,2001,45:553-560
    [108]Thebault M T. Lactate content and lactate dehydrogenase activity in Palaemon serratus abdominal muscle during temperature changes. Journal of Comparative Physiology,1984,154: 85-89.
    [109]Dall W, Moriarty D J W. Nutrition and digesetion. In "The Biology of Crustacea" (Mantle L H, ed.), vol.5, Internal Anatomy and Physiological Regulation, Academic Press, New York and London,1983, pp.215-261
    [110]于书坤,张树荣.虾类及甲壳动物消化酶研究的现状.海洋科学,1986,10(2):60-63
    [111]刘玉梅,朱谨钊.中国对虾幼体和仔虾消化酶活力及氨基酸组成的研究.海洋与湖沼,1991,22(6):571-575
    [112]魏华,赵维信.罗氏沼虾幼体及成虾消化酶活性.水产学报,1996,20(1):61-64
    [113]潘鲁青.四种虾蟹类幼体消化酶活力的比较研究.青岛海洋大学学报,1997,16(4):8-13
    [114]潘鲁青,王伟.日本对虾幼体几种消化酶活力的研究.海洋湖沼通报,1997,2:15-18
    [115]Lovett D L, Felder D L. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus. Biological Bulletin,1990,178:144-159
    [116]van Wormhoudt A, Ceccaldi H J, LeGal Y. Activitie des proteases et amylase chez Penaeus kerathurus:existence d'un rythme circadien. Comptes rendus de l'Academie des Sciences, 1972,274:1200-1211
    [117]Tsai I, Liu H, Chuang K. Properties of two chymotrypsins from the digestive gland of prawn Penaeus monodon. FEBS Letters,203:257-261
    [118]Lee P G, Smith L L, Lawrence A L. Digestive proteases of Penaeus vannamei Boone: relationship between enzyme activity and diet. Aquaculture,1984,42:225-239
    [119]Al-Mohanna S Y, Nott J A. Functional cytology of the hepatopancreas of Penaeus semisulcatus (crustacea:decapoda) during the molting cycle. Marine Biology,1989,101:535-544
    [120]Adriana M A, Fernando L G C. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comparative Biochemistry and Physiology,2002,133:383-394
    [121]Bauchan A G, Mengeot J C. Proteases et amylases de l'hepatopancreas des crabes au cours du cycle de mue et d'intermue. Ann Soc Roy Zool Belg,1965,95:29-37
    [122]Van Wormhoudt, A. Variations of the level of the digestive enzymes during the intermolt cycle of Palaemon serratus:influence of the season and effect of the eyestalk ablation. Comparative Biochemistry and Physiology,1974,49:707-715.
    [123]Fernandez I, Oliva M, Carrillo O, et al. Digestive enzyme activities of Penaeus notialis during reproduction and molting cycle. Comparative Biochemistry and Physiology,1997,118(4): 1267-1271
    [124]Fernandez-Gimenez A V, Garcia-Carreno F L, Navarrete del Toro M A, et al. Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea):partial characterization and relationship with molting. Comparative Biochemistry and Physiology,2001,130:331-338
    [125]Fernandez-Gimenez A V, Garcia-Carreno F L, Navarrete del Toro M A, et al. Digestive proteinases of Artemesia longinaris (Decapoda, Penaeoidea) and relationship with molting. Comparative Biochemistry and Physiology,2002,132:593-598
    [126]Perera E, Moyano F J, Diaz M, et al. Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comparative Biochemistry Physiology, 2008,151:250-256
    [127]Wildder M N, Aida K. Crustacean ecdysteroids and juvenoids:chemistry and physiological role in two species of prawn, Macrobrachium sosembergii and Penaeus japonicus. Aquaculture, 1995,47:129-136
    [128]Luschen W, Willing A, Jaros P P. The role of biogenic amines in the control of glucose level in the decapod crustacean, Carcinus maenas. Comparative Biochemistry and Physiology,105: 291-296
    [129]Sanchez-Paz A, Garcia-Carreno F, Muhlia-Almazan A, et al. Differential expression of trypsin mRNA in the white shrimp(Penaeus vannamei) midgut gland under starvation condition. Journal of Experimental Marine Biology and Ecology,2003,292:1-17
    [130]Berner D L, Hammond E G. Phylgeny of lipase specificity. Lipids,1970,5:558-562
    [131]Jones D A, Kumlu M, Le vay L, et al. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae:a review. Aquaculture,1997,155:285-295
    [132]Le Moullac G, Roy P, van Wormhoudt A. Effects of trophic prophylactic factors on some digestive enzymatic activities of Penaeus vannamei larvae. In:Memorias Primer Congresso Ecuatoriano de Acuicultura (Calderon J, Sandoval V, ed.), San Pedro de Manglaralto, Ecuador, 1992,81-86
    [133]Biesiot P M, Capuzzo G M. Digestive protease, lipase and amylase activities in stage I Larvae of the American lobster, Homarus americanus. Comparative Biochemistry and Physiology, 1990,95(1):47-54
    [134]Johnston D J, Yellowless D. Relationship between dietary preferences and digestive enzyme complement of the slipper lobster Thenus orientalis. Journal of Crustacean Biology,1998,18(4): 656-665
    [135]潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究.水产学报,1997,21(1):26-31
    [136]吴志强,姜国良,李立德.十足目动物消化系统及消化生理研究概况.海洋科学,2004,28(3):50-54
    [137]潘鲁青,马牲,王克行.温度对中国对虾幼体生长发育与消化酶活力的影响.中国水产 科,1997,4(3):17-22
    [138]沈文英,胡洪国,潘雅娟.温度和pH值对南美白对虾消化酶活性的影响.海洋与湖沼,2004,35(6):543-548
    [139]迟淑艳,杨奇慧,周歧存,等.南美白对虾幼体和仔虾淀粉酶和脂肪酶活力的研究.水产科学,2005,24(4):4-6
    [140]Mantel L H, Farmer L L. Osmotic and ionic regulation. In "The Biology of Crustacea" (Mantel L H, ed.), vol.5, Internal Anatomy and Physiological Regulation. Academic Press, New York and London,1983, pp.53-161
    [141]Pequeux A. Osmotic regulation in crustaceans review. Journal of Crustacean Biology,1995, 15(1):1-60
    [142]Charmantier G, Charmantier-Daures M, Bouaricha N, et al. Ontogeny of osmoregulation and salinity tolerance in two decapod crustaceans:Homarus americanus and Penaeus japonicus. Biological Bulletin,1988,175:102-110
    [143]Ferraris R P, Parado-Estepa F D, De Jesus E G, et al. Osmotic and chloride regulation in the hemolymph of the tiger prawn Penaeus monodon during molting in various salinities. Marine Biology,1987,95:377-385
    [144]Robertson J D. Ionic regulation in the crab Carcinus maenas in relation to the moulting cycle. Comparative Biochemistry and Physiology,1960,1:183-212
    [145]Wilder M N, Huong D T T, Jasmani S, et al. Hemolymph osmolarity, ion concentrations and calcium in the structural organization of the cuticle of the giant freshwater prawn Macrobrachium rosenbergii:Changes with the molt cycle. Aquaculture,2009,292:104-110
    [146]Whiteley N M, Taylor W, Elhaj A J. Seasonal and latitudinal adaptation to temperature in crustaceans. Journal of Thermal Biology,1997,22(6):419-427
    [147]章跃陵,卓奕明,朱永飞,等.南美白对虾人工感染细菌后肝胰脏中主要变化蛋白的研究.水产科学,2005,24(6):19-23
    [148]Paul R, Pirow R. The physiological significance of respiratory proteins in invertebrates. Zoology,1998,100:319-327
    [149]Boone W R, Schoffeniels E. Hemocyanin synthesis during hypo-osmotic stress in the shore crab Carcinus maenas. Comparative Biochemistry and Physiology,1979,63:207-214
    [150]DeFur P L, Mangum C P, Reese J E. Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biological Bulletin,1990,178(1):46-54
    [151]Morris S. NeuroEndocrinolcrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. Experimental Biology,2001,204(5):979-989
    [152]房文红,王慧,来琦芳,等.斑节对虾鳃Na+/K+-ATPase的活性.上海水产大学学报,2001,10(2):140-144
    [153]Lucu C, Towle D W. Na+/K+-ATPase in gills of aquatic crustacean. Comparative Biochemistry and Physiology,2003,135:195-214
    [154]潘爱军,来琦芳,王慧,等.盐度突变对凡纳滨对虾组织碳酸苷酶活性的影响.上海水产大学学报,2006,15(1):47-51
    [155]Henry R P, Garrelts E E, McCarty M M, et al. Differential induction for branchial carbonic anhydrase and Na+/K+-ATPase activity in the euryhaline crab, Carcinus maenas, during low salinity acclimation. Journal of Experimental Zoology,2002,292(7):595-603
    [156]Jasmani S, Jayasankar V, Wilder M N. Carbonic anhydrase and Na/K-ATPase activities at different molting stages of the giant freshwater prawn Macrobrachium resenbergii. Fisheries Science,2008,74:488-493
    [157]蒋吉生,杨春舫,薛颖,等.南美白对虾淡水池塘养殖试验.水产科学,2004,23(12):31-32
    [158]张才学,劳赞,廖宝娇,等.珠海地区凡纳滨对虾淡水养殖池浮游植物群落的演替.湛江海洋大学学报,2006,26(4):35-41
    [1]Shiau S Y, Lin K P, Chiou C L. Digestibility of different protein sources by Penaeus monodon raised in brackish water and in sea water. Journal of Applied Aquaculture,1992,1(3):47-53
    [2]Dall W, Hill B J对虾生物学.陈楠生译.1992,pp.175-185.青岛:青岛海洋大学出版社,
    [3]王吉桥,徐锟.对虾对营养物质的需要量.大连水产学院学报,2002,17(3):196-208
    [4]Quetin L B, Ross R M, Uchio K. Metabolic characteristics of midwater zooplankton:Ammonia excretion, O:N ratios, and the effect of starvation. Marine Biology,1980,183:201-209
    [5]Cuzon G, Cahu C, Aldrin J F, et al. Starvation effect on metabolism of Penaeus japonicus. Proceedings of the World Mariculture Society,1980,11:410-423
    [6]马英杰,张志峰,廖承义,等.中国对虾幼体发育阶段氨基酸组成的研究.水产学报,1995,20(4):370-373
    [7]Giri I N A, Teshima S, Kanazawa A, et al. Effects of dietary pyridoxine and protein levels on growth, vitamin B6 content, and free amino acid profile of juvenile Penaeus japonicus. Aquaculture,1997,157:263-275
    [8]Bishop J S, Burton R S. Amino-acid synthesis during hyperosmotic stress in Penaeus aztecus postlarvae. Comparative Biochemistry and Physiology,1993,106 A:49-56
    [9]Soundarapandian P, Kannupandi T, Samuel M J. Effect of starvation on biochemical composition of freshwater prawn juveniles of Macrobrachium malcolmsonii (H. Milne Edwards). Indian Journal of Experimental Biology,1997,35(4):502-505
    [10]吴立新,刘璐,张晓雪,等.饥饿及再投喂对日本囊对虾蛋白质代谢的影响.大连水产学院学报,2006,21(4):301-306
    [11]Gong H, Lawrece A L, Jiang D H, et al. Lipid nutrition of juvenile Litopenaeus vannamei:I. Dieatry cholesterol and de-oiled soy lecithin requirements and their interaction. Aquaculture, 2000,190:305-324
    [12]周遵春,孙建明,吴垠,等.不同饲养条件对中国对虾血清蛋白、血脂、血糖含量变化的初步研究.水产科学,1994,13(5):9-11
    [13]刘璐,吴立新,张伟光,等.饥饿及再投喂对日本囊对虾糖代谢的影响.应用生态学报,2007,18(3):697-700
    [14]Hunter D A, Uglow R F. Moult stage-dependent variability of haemolymph ammonia and total protein levels of Crangon crandon (L.) (Crustacea, Decapoda). Ophelia,1993,37:41-50
    [15]Cheng W, Liu C H, Yan D F, et al. Hemolymph oxyhemocyanin, protein, osmolality and electrolyte levels of whiteleg shrimp Litopenaeus vannamei in relation to size and molt stage. Aquaculture,2002,211:325-339
    [16]Wilder M N, Ikuta K, Atmomarsono M, et al. Changes in osmotic and ionic concentrations in the hemolymph of Macrobranchium rosenbergii exposed to varying salinities and correlation to ionic and crystalline composition of the cuticle. Comparative Biochemistry and Physiology, 1998,119 A (4):941-950
    [17]Greenaway P. Calcium balance and moulting in the crustacean. Biological Reviews,1985,60: 425-454
    [18]Fabritius H, Ziegler A. Analysis of CaCO3 deposit formation and degradation during the molt cycle of the terrestrial isopod Porcellio scaber (Crustacea, Isopoda). Journal of Structural Biology,2003,142:281-291
    [19]Neufeld D S, Cameron J N. Postmoult uptake of calcium by the blue crab (Callinectes sapidus) in water of low salinity. Journal of Experimental Biology,1992,171:283-299
    [20]Hessen D O, Alstad N E W, Skardal L. Calcium limitation in Daphnia magna. Journal of Plankton Research,2000,22(3):553-568
    [21]Ziegler A, Hagedorn M, Ahearn G A, et al. Calcium translocations during the moulting cycle of the semiterrestrial isopod Ligia hawaiiensis (Oniscidea, Crustacea). Journal of Comparative Physiology,2007,177(1):99-109
    [22]Vijayan K K, Diwan A D. Fluctuations in Ca, Mg and P levels in the hemolymph, muscle, midgut gland and exoskeleton during the moult cycle of the Indian white prawn, Penaeus indicus (Decapoda:Penaeidae). Comparative Biochemistry and Physiology,1996,114A(1): 91-97
    [23]蒋吉生,杨春舫,薛颖,等.南美白对虾淡水池塘养殖试验.水产科学,2004,23(12):31-32
    [24]张才学,劳赞,廖宝娇,等.珠海地区凡纳滨对虾淡水养殖池浮游植物群落的演替.湛江海洋大学学报,2006,26(4):35-41
    [25]Cesar J R O, Zhao B P, Malecha S, et al. Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannaei during the molt cycle. Aquaculture,2006,261(2): 688-694
    [26]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin-Phenol reagents. Journal of Biological Chemistry,1951,193:265-275
    [27]Chapelle G, Peck L S, Clarke A. Effect of feeding and starvation on the metabolic rate of the necrophagous Antarctic amphipod Waldeckia obesa. Journal of Experimental Marine Biology and Ecology,1994,183:63-76
    [28]Spees J L, Chang S A, Mykles D L, et al. Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress & Chaperones,2003,8(3):258-264
    [29]Gaxiola G, Cuzon G, Garcia T, et al. Factorial effects of salinity, dietary carbohydrate and moult cycle on digestive carbohydrases and hexokinases in Litopenaeus vannamei (Boone,1931). Comparative Biochemistry and Physiology,2005,140A:29-39
    [30]Dall W. Indices of nutritional state in the western rock lobster, Panulirus longipes (Milne Edwards). I. Blood and tissue constituents and water content. Journal of Experimental Marine Biology and Ecology,1974,16:167-180
    [31]Dall W, Smith D M. Oxygen consumption and ammonia-N excretion in fed and starved tiger prawns, Penaeus esculentus Haswell. Aquaculture,1986,55:23-33
    [32]Barelay M C, Dall W, Smith D M, et al. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn, Penaeus esculentus Haswell. Journal of Experimental Marine Biology and Ecology,1983,68:229-244
    [33]Ding S, Wang F, Sun H, et al. Effects of salinity fluctuation frequency on the growth, molting rate and hemolymph 20-hydroxyecdysone concentration in juvenile Chinese shrimp, Fenneropenaeus chinensis. Journal of Ocean University of China,2009,8(2):177-183
    [34]王士稳,梁萌青,林洪,等.海水和淡水养殖凡纳滨对虾呈味物质的比较分析.海洋水产研究,2006,27(5):79-84
    [35]Dall W, Smith D M. Changes in protein-bound and free amino acids in the muscles of the tiger prawn Penaeus esculentus during starvation. Marine Biology,1987,95:509-520
    [36]陈琴,陈晓汉,谢达祥,等.不同盐度养殖的南美白对虾含肉率及其肌肉营养成分.海洋科学,2001,25(8):16-18
    [37]Allert S, Ernest I, Poliszcak A. Molecular cloning and analysis of two tandemly linked genes for pyruvate kinase of Trypanosoma brucei. European Journal of Biochemistry,1991,200(1): 19-27
    [38]Telford M. The identification and measurement of sugars in the blood of three species of Atlantic crabs. Biological Bulletin,1968,135:574-584
    [39]Chan S M, Rankin S M, Keeley L L. Characterization of the molt stages in Penaeus vannamei: setogenesis and hemolymph levels of total protein, ecdysteriods, and glucose. Biological Bulletin,1998,175:185-192
    [40]Spindler-Barth M. Changes in the chemical composition of the common shore crab, Carcinus maenas. Comparative Physiology,1976,105:197-205
    [41]Hall M R, van Ham E H. The effects of different types of stress on blood glucose in the giant tiger prawn Penaeus monodon. Journal of World Aquaculture Society,1998,29(3):290-299
    [42]Dall W. Estimation of routine metabolic rate in a penaeid prawn Penaeus esculentus Haswell. Journal of Experimental Marine Biology and Ecology,1986,96:57-74
    [43]Lamela R E L, Coffigny R S, Quintana Y C, et al, Phenoloxidase and peroxidase activity in the shrimp Litopenaeus schmitti, Perez-Farfante and Kensley (1997) exposed to low salinity. Aquaculture Research,2005,36:1293-1297
    [44]Oliveira G T, da Silva R S M. Hepatopancreas gluco-neogenesis during hyposmotic stress in crabs Chasmagnathus granulate maintained on high-protein or carbohydrate-rich diets. Comparative Biochemistry and Physiology,2000,127B:375-381
    [45]Chen J C, Cheng S Y. Studies on haemocyanin and haemolymph protein levels of Penaeus japonicus based on sex, size and moulting cycle. Comparative Biochemistry and Physiology, 1993,106B:293-296
    [46]Chen J C, Chia P G. Oxyhemocyanin, protein, osmolality and electrolyte levels in the hemolymph of Scylla serrata in relation to size and molt cycle. Journal of Experimental Marine Biology and Ecology,1997,217:93-105
    [47]Clifford H C, Brick R W. Nutritional physiology of the freshwater shrimp Macrobranchium resenbergii (De Man). I. Substrate metabolism in fasting juvenile shrimp. Comparative Biochemistry and Physiology,1983,74B:561-568
    [48]Joseph A, Philip R. Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture, 2007,272:87-97
    [49]Noga E J. Haemplymph biomarkers of crustacean health. Recent Advances in Marine Biotechnology,2000,5:125-163
    [50]李二超.盐度对凡纳滨对虾的生理影响及其营养调节.[博士论文],华东师范大学,2008
    [51]Geddes M C. Salinity tolerance and osmotic and ionic regulation in Branchinella australiensis and B. compacta (Crustacean:Anostraca). Comparative Biochemistry and Physiology,1973,45: 559-569
    [52]Brand G W, Bayly I A E. A comparative study of osmotic regulation in four species of calanoid copepods. Comparative Biochemistry and Physiology,1971,388:361-371
    [53]Fieber L A, Lutz P L. Magnesium and calcium metabolism during molting in the freshwater prawn Macrobranchium rosenbergii. Canadian Journal of Zoology,1985,63:1120-1124
    [54]Greenaway P, Farrelly Y C. Trans-epidermal transport and storage of calcium in Holthuisana transversa during premoult. Acta Zoologica,1991,72(1):29-40
    [55]Parado-Estepa F D, Ladja J M, de Jesus E G, et al. Effect of salinity on hemolymph calcium concentration during the molt cycle of the prawn Penaeus monodon. Marine Biology,1989,102: 189-193
    [56]Mugnier C, Justou C. Combined effect of external ammonia and molt stage on the blue shrimp Litopenaeus stylirostris physiological response. Journal of Experimental Marine Biology and Ecology, SEP,2004,309(1):35-46
    [57]Price-Sheets W C, Dendinger J E. Calcium deposition into the cuticle of the blue crab, Callinectes sapidus related to external salinity. Comparative Biochemistry and Physiology, 1983,74A:903-907
    [1]杨丛海.中国对虾养殖现状及健康养殖管理的发展.北京:海洋出版社,2002,36-41
    [2]周进,黄捷,宋晓玲.免疫增强剂在水产养殖中的应用.海洋水产研究,2003,24(4):70-79
    [3]Hose J E, Martin G G. Defense functions of granulocytes in the ridgeback prawn Sicyonia ingentis. Journal of Invertebrate Pathology,1989,53:335-346
    [4]Bell K L, Smith V J. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas. Developmental and Comparative Immunology,1993,17:211-219
    [5]Song H L, Hsieh Y T. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances:analysis of reactive oxygen species. Developmental and Comparative Immunology,1994,18(3):201-209
    [6]Nunoz M, Cedeno R, Rodriguez J, et al. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture,2000,191: 89-107
    [7]王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼,1995,26(2):179-185
    [8]戚成震.凡纳滨对虾(Litopenaeus vannamei)、中国明对虾(Fenneropenaeus chinensis)免疫疲劳初探.[博士论文],中国海洋大学,2005
    [9]Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology,1998,10:23-28
    [10]Chakravortty D M, Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes and Infection,2003,5:621-627
    [11]Villamil L, Tafalla C, Figueras A, et al. Evaluation of immunomodulatory effects of lactic acid bacteria in turbot (Scophthalmus maximus). Clinical and Diagnostic Laboratory Immunology, 2002,9(6):1318-1323
    [12]Garsten G K, Michaela A, Christine L, et al. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages. International Journal for Parasitology,2003,33(8):833-844
    [13]王克行.虾蟹类增养殖学.北京:中国农业出版社,1997,27-32
    [14]黄加祺,林琼武.影响日本对虾亲虾蜕壳因素的探讨.海洋科学,2003,27(2):30-31
    [15]王芳,董双林,董少帅,等.光照周期对中国对虾稚虾蜕皮和生长的影响.中国水产科学,2004,11(4):354-359
    [16]Ding S, Wang F, Sun H, et al. Effects of salinity fluctuation frequency on the growth, molting rate and hemolymph 20-hydroxyecdysone concentration in juvenile Chinese shrimp, Fenneropenaeus chinensis. Journal of Ocean University of China,2009,8(3):177-183
    [17]Liu C H, Yeh S T, Cheng S Y, et al. The immune response of the white shrimp Litopenaeus vannamei and its susceptibility to Vrbrio infection in relation with the moult cycle. Fish & Shellfish Immunology,2004,16:151-161
    [18]蒋吉生,杨春舫,薛颖,等.南美白对虾淡水池塘养殖试验.水产科学,2004,23(12):31-32
    [19]Cesar J R O, Zhao B P, Malecha S, et al. Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle. Aquaculture,2006,261(2): 688-694
    [20]Hernandez L J, Gollas G T, Vargas A F. Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comparative Biochemistry and Physiology,1996,113: 61-66
    [21]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin-Phenol reagents. Journal of Biology Chemistry,1951,193:265-275
    [22]Smith V J, Ratcliffe N A. Cellular defense reactions of the shore crab, Carcinus maenas:in vivo hemocytic and histopahological responses to injected bacteria. Journal of Invertebrate Pathology,1980,35:65-74
    [23]Goldenberg P Z, Huebner E, Greenberg A. H. Activition of lobster hemocytes for phagocytosis. Journal of Invertebrate Pathology,1984,43(1):77-88
    [24]徐海圣,徐步进.甲壳动物细胞及体液免疫机理的研究进展.大连水产学院学报,2001,16(1):49-56
    [25]Marrec M. L'organe lymphocytogene des Crustaces decapodes. Son activite cyclique. Bulletin of the Institution of Oceanography,1994,867:4
    [26]Charmantier M. Etude preliminaire de la leucopoiese chez Pachygrapsus marmoratus (Crustace, Decapode) au cours du cycle d'intermue. Comptes Rendus de l'Academie des Sciences Series D,1972,275:683-686
    [27]Tsing A, Arcier J M, Brehelin M. Haemocytes of penaeids and palaemonid shrimps: morphology, cytochemistry and hemograms. Journal of Invertebrate Pathology,1989,53:64-77
    [28]Le Moullac G, Le Groumellec M, Ansquer D, et al. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in relation with the moult cycle:protection against vibriosis. Fish & Shellfish Immunology,1997,7(4):227-234
    [29]Hose L E, Martin G G, Tiu S, et al. Patterns of hemocytes production and release throughout the molt cycle in the penaeid shrimp sicyonia ingentis. Biological Bulletin,1992,183(2): 185-199
    [30]Brock J A. Taura syndrome, a disease important to shrimp farms in the Americas. World Journal of Microbiology and Biotechnology,2004,13(4):415-418
    [31]Corteel M, Dantas-Lima J J, Wille M, et al. Molt stage and cuticle damage influence white spot syndrome virus immersion infection in penaeid shrimp. Veterinary Microbiology,2009,137: 209-216
    [32]Cheng W, Chen J C. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium resenbergii. Fish Shellfish Immunology,2000,10:378-391
    [33]Wang L U, Chen J C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immunology, 2005,18:269-278
    [34]Ashida M, Soderhall K. The prophenoloxidase activating system in crayfish. Comparative Biochemistry and Physiology,1984,77B:21-26
    [35]Soderhall K, Smith V J, Johansson M W. Exocytosis and uptake of bacteria by isolated haemocyte population of two crustaceans:evidence for cellular cooperation in the defence reactions of arthropods. Cell Tissue Research,1986,245:43-49
    [36]Yeh M S, Lai C Y, Liu C H, et al. A second proPO present in white shrimp Litopenaeus vannamei and expression of the propos during a Vibrio alginolyticus injection, molt stage, and oral sodium alginate ingestion. Fish & Shellfish Immunology,2009,26:49-55
    [37]Tsunaki A, Masaaki A. Cuticular pro-phenoloxidase of the silkworm, Bombyx mori. Journal of Biological Chemistry,2001,276(14):11100-11112
    [38]Ashida M, Brey P T. Role of the integument in insect defense:pro-phenol oxidase cascade in the cuticular matrix. The Proceedings of the National Academy of Science USA,1995,92: 10698-10702
    [39]Stevenson J R, Adomako T Y. Diphenol oxidase in the crayfish cuticle:Localization and changes in activity during the molting cycle. Journal of Insect Physiology,1967,13(12): 1803-1811
    [40]Tania R R, Georgina E, Jorge H L, et al. Effects of Echerichia coli lipopolysaccharides and dissolved ammonia on immune response in southern white shrimp Litopenaeus shcmitti. Aquaculture,2008,274:118-125
    [41]朱宏友,王广军,余德光,等.盐度变化对凡纳滨对虾一氧化氮合酶水平及病原敏感性的影响.湛江海洋大学学报,2005,25(6):90-94
    [42]朱宏友,王广军,余德光,等.水温骤降后凡纳滨对虾血清中NO、NOS水平及对副溶血弧菌的敏感性.大连水产学院学报,2006,21(1):46-50
    [43]姜国建,于仁诚,王云峰,等.中国明对虾血细胞中一氧化氮合酶的鉴定及其在白斑综合症病毒感染过程中的变化.海洋与湖沼,2004,35(4):342-350
    [44]刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(3):278-283
    [45]Perazzolo L M, Barracco M A. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Developmental and Comparative Immunology,1997,21(5): 385-395
    [46]沈丽琼,陈政强,陈昌生,等.盐度对凡纳滨对虾生长与免疫功能的影响.集美大学学报,2007,12(2):108-113
    [1]李松青,林小涛,李卓佳,等.摄食对凡纳滨对虾耗氧率和氮、磷排泄率的影响.热带海洋学报,2006,25(2):44-48
    [2]Chen J C, Lai C Y. Response of oxygen consumption, ammonia-N excretion and urea-N excretion of Penaeus chinensis exposed to ambient at different salinity and pH levels. Aquaculture,1995,136:234-255
    [3]张硕,董双林,王芳.中国对虾生物能量学研究Ⅰ——温度、体重、盐度和摄食状态对耗氧率和排氨率的影响.青岛海洋大学学报,1998,28(2):223-227
    [4]Ding S, Wang F, Sun H, et al. Effects of salinity fluctuation frequency on the growth, molting rate and hemolymph 20-hydroxyecdysone concentration in juvenile Chinese shrimp, Fenneropenaeus chinensis. Journal of Ocean University of China,2009,8(3):259-264
    [5]Skinner D M. Moulting and regeneration. In:Bliss, D. E., Mantel, L. H. (eds). The biology of crustacean, Vol.9. Integuments, pigments and hormonal processes. New York:Academic Press, 1985,44-146
    [6]Dall W, Hill B J.对虾生物学.陈楠生译.青岛:青岛海洋大学出版社,1992,175-185
    [7]Carnalho P S M, Phan V N. Oxygen consumption and ammonia excretion of Xiphopenaeus kroyeri Heller (Penaeidae) in relation to mass temperature and experimental procedures. Journal of Experimental Marine Biology and Ecology,1997,209:143-156
    [8]Penkoff S J, Therberg F P. Changes in oxygen consumption of the American lobster, Homarus americanus, during the moult cycle. Comparative Biochemistry and Physiology,1982,72A: 621-622
    [9]Stern S, Cohen D. Oxygen consumption and ammonia excretion during the molt cycle of the freshwater prawn Macrobrachium resonbergii (De man). Comparative Biochemistry and Physiology,1982,73A:417-419
    [10]Cockroft A C, Wooldridge T. The effects of mass, temperature and molting on the respiration of Macropetasma africanus Balls (Decapoda:Penaeoidea). Comparative Biochemistry and Physiology,1985,81A:143-148
    [11]Lazou A, Frosinis A. Kinetic and regulatory properties of pyruvate kinase from Artemia embryos during incubation under aerobic and anoxic conditions. Comparative Biochemistry and Physiology,1994,109B:325-332
    [12]Lemos D, Salomon M, Gomes V, et al. Citrate synthase and pyruvate kinase activities during early life stages of the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae): effects of development and temperature. Comparative Biochemistry and Physiology,2003, 135B:707-719
    [13]Sanchez-Paz A, Sonanez-Organis J G, Peregrino-Uriatrte A B, et al. Response of the phosphofructokinase and pyruvate kinase genes expressed in the midgut gland of the Pacific white shrimp Litopenaeus vannamei during short-term starvation. Experimental Marine Biology and Ecology,2008,362:79-89
    [14]汪玉松,邹思湘,张玉静.现代动物生物化学.第三版.北京:高等教育出版社.2005,466-490
    [15]郭彪,王芳,侯纯强,等.温度突变对凡纳滨对虾己糖激酶和丙酮酸激酶活力以及热休克蛋白表达的影响.中国水产科学,2008,15(5):885-889
    [16]邓述欢,高玲.血清丙酮酸激酶与血糖关系的探讨.陕西医学检验,2001,16(1):59
    [17]Zietara M S, Gronczewska J, Stachowiak K, et al. Lactate dehydrogenase in abdominal muscle of crayfish Orconectes limosus and shrimp Crangon crangon (Decapoda:Crustacea):properties and evolutionary relationship. Comparative Biochemistry and Physiology,1996,114 (4):395-401
    [18]Diamantino T C, Almeida E, Soares A M V M, et al. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna Straus. Chemosphere,2001,45:553-560
    [19]查广才,麦雄伟,周昌清,等.凡纳滨对虾淡化高产虾池水生态特征.海洋科学,2006,30(9):58-62
    [20]Cesar J R O, Zhao B P, Malecha S, et al. Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle. Aquaculture,2006,261(2): 688-694
    [21]雷衍之.养殖水环境化学实验.北京:中国农业出版社.2006,26-29
    [22]Koroleff F. Direct determination of ammonia in natural waters as indophenol blue. Cons. Int. Expor. Mer., Information on techniques and methods for sea water analysis, an interlaboratory report, No.3.1970
    [23]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin-Phenol reagents. Journal of Biology Chemistry,1951,193:265-275
    [24]董双林,堵南山,赖伟.日本沼虾生理生态学研究Ⅰ.温度和体重对其代谢的影响.海洋与湖沼,1994,25(3):233-237
    [25]Emmerson W D. Oxygen consumption in Palaemon pacificus (Stimpson) (Decapoda: Palaemonidae) in relation to temperatre, size and season. Comparative Biochemistry and Physiology,1985,81 A:71-78
    [26]Hagerman L. The respiration during the moult cycle of Crangon vulgaris (Fabr.) (Crustacea, Natantia.). Ophelia,1976,15:15-21
    [27]Dalla V. Salinity response in brick is water populations of the freshwater shrimp Palaemonetes antennarius. Ⅰ. Oxygen consumption. Comparative Biochemistry and Physiology,1987,87(2): 471-478
    [28]Shaw J. Sodium balance in Eriocheir sinensis (M. EDW.). The adapation of the crustacean to fresh water. Experimental Biology,1961,38:153-162
    [29]Schubart C D, Diesel R. Osmoregulation and the transition fom marine to freshwater and terrestrial life:a comparative study of Jamaican crabs of the genus Sesarma. Archiv fur Hydrobiologie,1999,145(3):331-347
    [30]Potts W T W. The energetic of osmotic regulation in brachkish- and fresh- water animals. Journal of Experimental Biology,1954,31:618-630
    [31]Regnault M. Ammonia excretion of the sand shrimp Crangon crangon during the moult cycle. Comparative Physiology,1979,133:199-204
    [32]Deaton L E. Hypoosmotic volume regulation in Bivalves:protein kinase C and amino acid release. Journal of Experimental Zoology,1994,268:145-150
    [33]刘泓宇.生物胺对凡纳滨对虾渗透生理调控机制的研究.[博士论文].中国海洋大学,2008
    [34]Clifford H C, Brick R W. Nutritional physiology of the freshwater shrimp Macrobrachium resenbergii. I. Substrate metabolism in fasting juvenile shrimp. Comparative Biochemistry and Physiology,1983,74 (3):651-668
    [35]Mayzaud P, Conover R J. O:N atomic ratio as a tool to describe zooplankton metabolism. Marine Ecology Progress Series,1988,45:289-302
    [36]Claybrook D L. Nitrogen metabolism. In:Mantel, L. H. (Ed.), The Biology of Crustacean, Internal Anatomy and Physiological Regulation, vol.5. Academic Press, New York,1983, 163-213
    [1]叶素兰,2004.影响南美白对虾淡水养殖成活率的因素分析.中国水产,2004,5:41-42
    [2]于书坤,张树荣.虾类及甲壳动物消化酶研究的现状.海洋科学,1986,10(2):60-63
    [3]潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究.水产学报,1997,21(1):26-31
    [4]杨奇慧,周岐存,马丽莎,等.凡纳滨对虾幼体胃蛋白酶和类胰蛋白酶活力的研究.海洋科学,2005,29(5):6-9
    [5]吴垠,孙建明,周遵春.温度对中国对虾、日本对虾主要消化酶活性的影响.大连水产学院学报,1997,12(2):15-22
    [6]沈文英,胡洪国,潘雅娟.温度和pH值对南美白对虾(Penaeus vannamei)消化酶活性的影响.海洋与湖沼,2004,35(6):543-548
    [7]吴志强,姜国良,李立德.十足目动物消化系统及消化生理研究概况.海洋科学,2004,28(3):50-54
    [8]Skinner D M. Molting and regeneration. In "The biology of crustacean" (Bliss, D. E. and Mantel, L. H., eds), Vol.9, Integument, Pigments and Hormonal Processes, London:Academic Press, 1985, pp.43-146
    [9]Dall W, Hill B J, Rothlisberg P C, et al. The biology of the Penaeidae. San Diego:Academic Press,1990, pp.229-237
    [10]Perera E, Moyano F J, Diaz M, et al. Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comparative Biochemistry and Physiology, 2008,151B:250-256
    [11]Fernandez-Gimenez A V, Garcia-Carreno F L, Navarrete del Toro M A, et al. Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea):partial characterization and relationship with molting. Comparative Biochemistry and Physiology,2001,130B: 331-338
    [12]Fernandez I, Oliva M, Carrillo O, et al. Digestive enzyme activities of Penaeus notialis during reproduction and molting cycle. Comparative Biochemistry and Physiology,1997,118A(4): 1267-1271
    [13]van Wormhoudt A. Variations of the level of the digestive enzymes during the intermolt cycle of Palaemon serratus:influence of the season and effect of the eyestalk ablation. Comparative Biochemistry and Physiology,1974,49A:707-715
    [14]Fernandez-Gimenez A V, Garcia-Carreno F L, Navarrete del Toro M A, et al. Digestive proteinases of Artemesia longinaris (Decapoda, Penaeoidea) and relationship with molting. Comparative Biochemistry and Physiology,2002,132B:593-598
    [15]Cesar J R O, Zhao B P, Malecha S, et al. Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle. Aquaculture,2006,261(2): 688-694
    [16]李少菁,汤鸿,王桂忠.锯缘青蟹幼体消化酶活力昼夜节律的实验研究.厦门大学学报,2000,39(6):831-836
    [17]刘玉梅,朱谨钊,吴厚余,等.中国对虾幼体和仔虾消化酶活力及氨基酸组成的研究.海洋与湖沼,1991,22(6):571-575
    [18]桂远明.水产动物机能学实验.北京:中国农业出版社.2004,pp.119-121
    [19]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin-Phenol reagents. Journal of Biology Chemistry,1951,193:265-275
    [20]Le Moullac G, van Wormhoudt A. Adaptation of digestive enzymes to dietary protein, carbohydrate and fibre levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (crustacean, decapoda). Aquatic Living Resource,1994,7:203-210
    [21]Gaxiola G, Cuzon G, Garcia T, et al. Factorial effects of salinity, dietary carbohydrate and moult cycle on digestive carbohydrases and hexokinases in Litopenaeus vannamei (Boone,1931). Comparative Biochemistry and Physiology,2005,140A:29-39
    [22]Al-Mohanna S Y, Nott J A. Functional cytology of the hepatopancreas of Penaeus semisulcatus (crustacea:decapoda) during the molting cycle. Marine Biology,1989,101:535-544
    [23]魏华,赵维信.罗氏沼虾幼体及成虾消化酶活性.水产学报,1996,20(1):61-64
    [24]Lovett D L, Felder D L. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacean Decapoda, Penaeidea). Biological Bulletin,1990,178(2):144-159
    [25]Omondi J G. Digestive endo-proteases from midgut glands of the Indian white shrimp, Penaeus indicus (Decapoda:Penaeidae) from Kenya. Western'Indian Ocean Journal of Marine Science, 2005,4(1):109-121
    [26]王维娜,孙儒泳,王安利,等.环境因子对日本沼虾消化酶和碱性磷酸酶的影响.应用生态学报,2002,13(9):1153-1156
    [27]Rosas C, Cuzon G, Gaxiola G, et al. Influence of dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris. Journal of Experimental Marine Biology and Ecology,2000, 249:181-198
    [28]Rosas C, Cuzon G, Gaxiola G, et al. Metabolism and growth of juveniles of Litopenaeus vannamei:effect of salinity and dietary carbohydrates level. Journal of Experimental Marine Biology and Ecology,2001,259:1-22
    [29]Deshimaru O, Shigeno K. Introduction to the artificial diet for prawn, Penaeus indicus. Aquaculture,1972,1:115-133
    [30]Cherif S, Fendri A, Miled N, et al. Crab digestive lipase acting at high temperature:Purification and biochemical characterization. Biochimie,2007,89:1012-1018
    [31]Huberman A. Shrimp endocrinology:A review. Aquaculture,2000,191:191-208
    [32]Ding S, Wang F, Sun H, et al. Effects of salinity fluctuation frequency on the growth, molting rate and hemolymph 20-hydroxyecdysone concentration in juvenile Chinese shrimp, Fenneropenaeus chinensis. Journal of Ocean University of China,2009,8(3):177-183
    [33]Travi D F. The molting cycle of the spiny lobster Panulirus argus Latreille. II. Preecdysial histological and histochemical changes in hepatopancreas and integumental tissue. Biological Bulletin,1955,108:88-112
    [34]Hinsch G W, Spaziani E, Vensel W H. Ultrastructure of the Y-organs of Cancer antennarias innormal and de-eyestalked crabs. Journal of Morphology,1980,163:167-174
    [35]Biesiot P M, Capuzzo G M. Digestive protease, lipase and amylase activities in stage I Larvae of the American lobster, Homarus americanus. Comparative Biochemistry and Physiology, 1990,95A(1):47-54
    [36]Jones D A, Kumlu M, Le Vay L, et al. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae:a review. Aquaculture,1997,155:285-295
    [37]姚俊杰,赵云龙,胡先成.罗氏沼虾个体发育之初——受精卵特性的研究.重庆师范大学学报,2006,23(3):1-6
    [1]Dall W,Hill B J.对虾生物学.陈楠生译.1992,pp.175-185.青岛:青岛海洋大学出版社
    [2]Dall W, Smith D M. Ionic regulation of four species of penaeid prawn. Journal of Experimental Marine Biology and Ecology,1981,55:219-232
    [3]Mantel L H, Farmer L L. Osmotic and ionic regulation. In "The Biology of Crustacea" (Mantel L H, ed.), vol.5, Internal Anatomy and Physiological Regulation,1983, pp.53-161. Academic Press, New York and London
    [4]Parado-Estepa F D, Ferraris R P, Ladja J M, et al. Responses of intermolt Penaeus indicus to large fluctuations in environmental salinity. Aquaculture,1987,64:175-184
    [5]Cheng J, Liao I. The effect of salinity on the osmotic and ionic concentrations in the hemolymph of Penaeus monodon and P. penicillatus. In "The First Asian Fisheries Forum" (Maclean, J. L., Dizon,L. B.,Hosillos, L. V., ed.),1986, pp.633-636. Asian fisheries Society, Manila, Philippines
    [6]Dall W. Osmoregulatory ability and juvenile habitat preference in some penaeid prawns. Journal of Experimental Marine Biology and Ecology,1981,54:55-64
    [7]Charmantier G, Charmantier-Daures M, Bouaricha N, et al. Ontogeny of osmoregulation and salinity tolerance in two decapod crustaceans:Homarus americanus and Penaeus japonicus. Biological Bulletin,1988,175:102-110
    [8]Bursey C R, Lane C E. Ionic and protein concentration changes during the molt cycle of. Penaeus duorarum. Comparative Biochemistry and Physiology,1971,40:155-162
    [9]Ferraris R P, Parado-Estepa F D, Ladja J M, et al. Effect of salinity on the osmotic, chloride, total protein and calcium concentrations in the hemolymph of the prawn Penaeus monodon (Fabricius). Comparative Biochemistry and Physiology,1986,83(4):701-708
    [10]Ferraris R P, Parado-Estepa F D, De Jesus E G, et al. Osmotic and chloride regulation in the hemolymph of the tiger prawn Penaeus monodon during molting in various salinities. Marine Biology,1987,95:377-385
    [11]Morris S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. Journal of Experimental Biology,2001,204(5):979-989
    [12]Furriela R P M, McNamarab J C, Leone F A. Characterization of Na+-K+-ATPase in gill microsomes of the freshwater shrimp Macrobrachium ofersii. Comparative Biochemistry and Physiology,2000,26:303-315
    [13]Schleich C E, Goldemberg L A, Lopez M A A. Salinity dependent Na+-K+-ATPase activity in gills of the euryhaline crab Chasmagnathus granulate. General Physiology and Biophysics, 2001,20:255-266
    [14]Neufeld G J, Holliday C W, Pritchard J B. Salinity adaption of gill Na+/K+-ATPase in the blue crab Callinectes sapidus. Journal of Experimental Zoology,1980,211:215-224
    [15]潘爱军,来琦芳,王慧,等.盐度突变对凡纳滨对虾组织碳酸苷酶活性的影响.上海水产大学学报,2006,15(1):47-51
    [16]Henry R P, Garrelts E E, McCarty M M, et al. Differential induction for branchial carbonic anhydrase and Na+/K+-ATPase activity in the euryhaline crab, Carcinus maenas, during low salinity acclimation. Journal of Experimental Zoology,2002,292(7):595-603
    [17]Whiteley N M, Taylor W, Elhaj A J. Seasonal and latitudinal adaptation to temperature in crustaceans. Journal of Thermal Biology,1997,22(6):419-427
    [18]章跃陵,卓奕明,朱永飞,等.南美白对虾人工感染细菌后肝胰脏中主要变化蛋白的研究.水产科学,2005,24(6):19-23
    [19]Paul R, Pirow R. The physiological significance of respiratory proteins in invertebrates. Zoology,1998,100:319-327
    [20]Boone W R, Schoffeniels E. Hemocyanin synthesis during hypo-osmotic stress in the shore crab Carcinus maenas. Comparative Biochemistry and Physiology,1979,63:207-214
    [21]DeFur P L, Mangum C P, Reese J E. Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biological Bulletin,1990,178(1):46-54
    [22]Hagerman L. Haemocyanin concentration of juvenile lobster(Homarus gammarus) in relation to moulting cycle and feeding conditions. Marine Biology,1983,77:11-17
    [23]Chen J C, Cheng S Y. Studies on haemocyanin and haemolymph protein levels of Penaeus japonicus based on sex, size and moulting cycle. Comparative Biochemistry and Physiology, 1993a,106:293-296
    [24]Chen J C, Chia P G. Oxyhemocyanin, protein, osmolality and electrolyte levels in the hemolymph of Scylla serrata in relation to size and molt cycle. Journal of Experimental Marine Biology and Ecology,1997,217:93-105
    [25]Cesar J R O, Zhao B P, Malecha S, et al. Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannaei during the molt cycle. Aquaculture,2006,261(2): 688-694
    [26]Chen J C, Cheng S Y. Hemolymph PCO2, hemocyanin, protein level and urea excretions of Penaeus monodon exposed to ambient ammonia. Aquatic Toxicology,1993b,27:281-292
    [27]Henry R P. Techniques for measuring carbonic anhydrase activity in vitro:The electrometric delta pH method and the pH stat method. In The Carbonic Anhydrases:Cellular Physiology and Molecular Genetics (Dodgson S J, Tashian R E, Gros G, et al. ed.).1991, pp.119-125. New York:Plenum
    [28]潘爱军.凡纳滨对虾碳酸酐酶活性分布及影响因子的研究.[硕士论文],上海水产大学,2005
    [29]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin-Phenol reagents. Journal of Biology Chemistry,1951,193:265-275
    [30]Sang H M, Fotedar R. Growth, survival, haemolymph osmolarity and organosomatic indices of the wertern king prawn(Penaeus latisulcatus Kishinouye,1896) reared at different salinities. Aquaculture,2004,234:601-614
    [31]Tantulo U, Fotedar R. Osmo and ionic regulation of black tiger prawn(Penaeus monodon Fabricius 1798) juveniles exposed to K+ deficient inland saline water at different salinities. Comparative Biochemistry and Physiology,2007,146(2):208-214
    [32]Mykles D L. The mechanism of fluid absorption at ecdysis in lobster, Homarus americanus, and Dungeness crab, Cancer magister. Journal of Experimental Biology,1980,84:89-101
    [33]Wheatly M G. Free amino acid and inorganic ion regulation in the whole muscle and hemolymph of the blue crab Callinectes sapidus Rathbun in relation to the molting cycle. Journal of Crustacean Biology,1985,5:223-233
    [34]Robertson J D. Ionic regulation in the crab Carcinus maenas in relation to the moulting cycle. Comparative Biochemistry and Physiology,1960,1:183-212
    [35]Jasmani S, Jayasankar V, Wilder M N. Carbonic anhydrase and Na/K-ATPase activities at different molting stages of the giant freshwater prawn Macrobrachium resenbergii. Fisheries Science,2008,74:488-493
    [36]Wilder M N, Huong D T T, Jasmani S, et al. Hemolymph osmolarity, ion concentrations and calcium in the structural organization of the cuticle of the giant freshwater prawn Macrobrachium rosenbergii:Changes with the molt cycle. Aquaculture,2009,292:104-110
    [37]Shaw J. Sodium balance in Eriocheir sinensis. The adapation of the crustacean to fresh water. Journal of Experimental Biology,1961,38:153-162
    [38]Schubart C D, Diesel R. Osmoregulation and the transition fom marine to freshwater and terrestrial life:a comparative study of Jamaican crabs of the genus Sesarma. Archives of Hydrobiology,1999,145(3):331-347
    [39]Chen J C, Lin J N. Osmotic concentration and tissue water of Penaeus chinensis juveniles reared at different salinity and temperature levels. Aquaculture,1998,164:173-181
    [40]Charmantier G, Bouaricha N, Charmantier-Daures M, et al. Salinity tolerance and osmoregulatory capacity as indicators of the physiological state of peneid shrimps. European Aquaculture Society Special Publicaion,1989,10:65-66
    [41]Lignot J H, Spanings-Pierrot C, Charmantier G. Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture, 2000,191:209-245
    [42]Lignot J H, Cochard J C, Sovez C, et al. Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirstris. Aquaculture,1999,170:79-92
    [43]Charmantier G, Soyez C, Aquacop. Effect of molt stage and hypoxia on osmoregulatory capacity in the penaeid shrimp Penaeus vannamei. Journal of Experimental Marine Biology and Ecology,1994,178:233-246
    [44]房文红,王慧,来琦芳,等.斑节对虾鳃Na+/K+-ATPase的活性.上海水产大学学报,2001,10(2):140-144
    [45]Spaargaren D H. The effect of environmental ammonia concentrations on the ion-exchange of shore crabs, Carcinus maenas. Comparative Biochemistry and Physiology,97:87-91
    [46]Lin H P, Thuet P, Trilles J P, et al. Effects of ammonia on survival and osmoregulation at various developmental stages of the shrimp Penaeus japonicus. Marine Biology,1993,117: 591-598
    [47]Henry R P. Multiple functions of carbonic anhydrase in the crustacean gill. Journal of Experimental Zoology,1988,248:19-24
    [48]Bottcher K, Siebers D. Biochemistry, localization and physiology of carbonic anhydrase in the gills of euryhaline crabs. Journal of Experimental Zoology,1993,265:397-409
    [49]Greenaway P. Freshwater invertebrate. In:Malioy G M O, (ed.).Comparative Physiology of Osmoregulation in Animals.1979, pp.117-173. Academic Press. London
    [50]潘鲁青,刘志,姜令绪.盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响.中国海洋大学学报,2004,34(5):787-790
    [51]Lucu C, Devescovi M, Skaramuca B, et al. Gill Na+/K+-ATPase in the spiny lobster Palinurus elephas and other marine osrnoconformers adaptiveness of enzymes from osmoconformity to hyperregulation. Journal of Experimental Marine Biology and Ecology,2000,246:163-178
    [52]Hurtado M A, Racotta I S, Civera R, et al. Effect of hypo- and hypersaline conditions on osmolality and Na+/K+-ATPase activity in juvenile shrimp (Litopenaeus vannamei) fed low-and high-HUFA diets. Comparative Biochemistry and Physiology,2007,147(3):703-710
    [53]Henry R P, Gehnrich S, Weihrauch D, et al. Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas. Comparative Biochemistry and Physiology,2003,136:243-258
    [54]Djangmah J S. The effects of feeding and starvation on copper in the blood and hepatopancreas, and on blood proteins of Crangon vulgaris (Fabricius). Comparative Biochemistry and Physiology,1970,32:709-731
    [55]Clifford H C, Brick R W. Nutritional physiology of the freshwater shrimp Macrobranchium resenbergii (De Man). Ⅰ. Substrate metabolism in fasting juvenile shrimp. Comparative Biochemistry and Physiology,1983,74:561-568
    [56]李二超.盐度对凡纳滨对虾的生理影响及其营养调节.[博士论文],华东师范大学,2008
    [57]Geddes M C. Salinity tolerance and osmotic and ionic regulation in Branchinella australiensis and B. compacta (Crustacean:Anostraca). Comparative Biochemistry and Physiology,1973,45: 559-569
    [58]Brand G W, Bayly I A E. A comparative study of osmotic regulation in four species of calanoid copepods. Comparative Biochemistry and Physiology,1971,388:361-371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700