分子标记在中国近海浮游桡足类研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桡足类是海洋浮游动物中生物量最大的类群,堪称海洋中的昆虫。作为海洋生态系统次级生产力的主要组成部分,浮游桡足类处于海洋食物网的枢纽环节,在海洋物质能量通路中起到调节作用。其庞大的数量决定了桡足类在全球碳循环中的支撑作用。然而浮游桡足类的形态具有高度进化保守性,许多种类形态差别细微,因此基于形态学桡足类的种类鉴定、系统发育研究困难重重。分子标记具有直接反应生物自身遗传特征的优点,不同变异速率的分子标记可以解决种群结构划分、种类鉴定、高阶分类单元系统发育关系等各个水平的遗传分化的问题。为了更好的了解中国近海的浮游动物特别是浮游桡足类,我们使用线粒体细胞色素氧化酶第一亚基(COX1),核核糖体RNA小亚基(18S rRNA)以及线粒体基因组研究桡足类不同尺度的遗传分化。本文主要分为四个部分,其主要内容如下:
     1.中华哲水蚤(Calanus sinicus)的线粒体基因组及桡足类的系统发育
     由于缺少合适的分子标记,桡足类的分子遗传研究尚处于起步阶段,从种群到高阶系统发育存在一系列问题亟待解决。线粒体基因组信息量大,除包含大量的序列变异外,还涵盖了包括基因排布、密码子使用等基因组层面的信息。中华哲水蚤是西北太平洋的陆架海区的关键种,处于该海域生态系统物质能量通路的枢纽环节。因此我们测定了中华哲水蚤的线粒体基因组并由此探讨了桡足类在节肢动物门中的系统发育位置及其内部各目之间的关系。
     中华哲水蚤线粒体基因组存在大量长片段的非编码序列,是已测甲壳生物线粒体中最长的,无处不在的基因重排使得中华哲水蚤线粒体基因组的基因排列组织结构完全不同于其他节肢动物线粒体基因组。线粒体的重组、非编码序列的产生及其相互作用可能是导致桡足类线粒体基因重排的主要原因。此外,中华哲水蚤线粒体基因组中还包括以下一系列特征,例如:偏低的AT含量,不同编码链间相似的核苷酸组成,以及相对其他桡足类较长的ATP酶编码基因。基于线粒体基因组蛋白氨基酸序列的系统发育结果显示,桡足类是单系发生的,哲水蚤目和Podoplea总目在桡足亚纲的基部分化。本研究构建的进化树中剑水蚤目和鞘口水蚤目聚在一起,显示了较近的亲缘关系;我们的结果支持Boxhall将剑水蚤目和鞘口水蚤目合并的建议。颚足纲则是多系发生的,可以分成三大类群。桡足类线粒体基因组结构独特,广泛使用的La PCR技术用于桡足类线粒体测序时却往往困难重重。本研究借助La PCR对中华哲水蚤线粒体测序时曾获得部分序列缺失的闭合环状DNA分子,后证实该序列为线粒体基因组内的嵌合序列。该现象与Lunt(1997)提出的线粒体重组的模型一致,提示该种线粒体可能发生重组,有待进一步研究。该结果警示使用La PCR进行线粒体测序要十分小心,需进一步验证所获序列的完整性。
     2.哲水蚤目桡足类的分子系统发育及分化时间估算
     哲水蚤目桡足类占海洋浮游动物生物总量的25%-80%,广泛分布于海洋生态系统的各类生境中。它们是浮游动物从洋底进入大洋水体,并成功占领大洋生态系统的最成功范例。哲水蚤目桡足类从底栖到大洋浮游生活方式的每一次变迁都在该类群进化过程中留下了深刻的印记。本研究首次通过分子手段构建哲水蚤目及其内部各主要类群间的系统发育关系,根据分子钟初步估算各主要类群的分化时间,进而探讨哲水蚤进化过程中推动该类群改变栖息环境和生活方式的可能因素,从分子遗传学的角度验证Bradford(2002)提出的若干假说。
     哲水蚤目18S rRNA二级结构相当保守,仅纺锤水蚤属43螺旋(Helix 43)的环部长度大幅延伸,折叠成稳定的茎环结构:Helix E43_1和Helix_E43_2。基于18S rRNA的系统发育结果中,哲水蚤目、管口虱目和怪水蚤目的单系性得到了很好的重现。鞘口水蚤目和剑水蚤目互为并系发生,共同组成一个单系群。本结果支持Boxhall将鞘口水蚤目并入剑水蚤目的建议。怪水蚤目落入猛水蚤内部,破坏了猛水蚤目的单系性。与18S rRNA贝叶斯树的结果一致,基于18S rRNA和COX1序列的系统发育分析中Eucalanoidea,Clausocalanoidea,Diaptomoidea和Arietelloidea总科的单系性得到了很好重现;虽然Calanoidea总科所在分支节点支持度不高,但约束Calanoidea为单系的系统树的似然概率最高,支持该总科的单系性。哲水蚤目总科间的系统发育关系为: ((Epacteriscioidea, Pseudocyclpoidea), (Arietelloidea, (Diaptomoidea, (Calanoidea, (Eucalanoidea,Clausocalanoidea)))))。
     哲水蚤目起源于400.0百万年前(Mya)的泥盆纪的早期,营浮游生活的哲水蚤起源于398 Mya,此时大洋的高浊度促使了浮游类群的诞生,该时间节点与Bradford假设中的时间一致。Calanoidea-Clausocalanoidea以及Diaptomoidea所在分支起源于343百万年前的石炭纪早期,泥盆纪晚期的灭绝事件促使了桡足类的进一步分化以更好适应大洋水域的浮游生活。具髓鞘包被神经的高级类群起源于三叠纪早期(246.0Mya),大洋浊度的下降、头足类的繁盛以及二叠纪三叠纪的大灭绝事件驱动了该类群的起源。
     3.中国近海浮游桡足类DNA Barcode分析
     桡足类在海洋生态系统中具有重要作用,其种类的准确鉴定是海洋生态系统的基础。由于桡足类形态进化中的保守性,隐存种在海洋浮游动物特别是桡足类中非常普遍。即便某些成体分类特征明确的种类,其幼体阶段依然难以甄别。因此有必要建立一套快速、准确、易于标准化的整合多种信息的中国近海浮游桡足类鉴定平台。DNA Barcode的兴起为桡足类种群鉴定提供了新的方法。
     本研究获得共90种浮游动物222条COX1序列。其中AT含量为61.1%,T和G出现的频率较高,转颠比为1.1。由于COX1序列尤其是摆动密码子具有显著的突变饱和,因此该序列不适于高阶系统发育分析。然而该标记可以准确区分近缘种,是种类鉴定的有效工具。基于COX1基因构建的进化树中,224种(149种来自GenBank)哲水蚤目桡足类大都聚成独自的单系群。种内遗传差异从0到26.8%不等,均值为1.9%;同属种间差异从0.3%到36.1%不等,均值为23.62%,两者差异显著(t=18.57,p<<0.01)。但部分哲水蚤目桡足类种内、种间遗传差异发生重叠,可能是由隐存种的分化以及形近种的鉴定错误所致,故该类群的多样性水平存在一定程度的低估。以上结果表明mtCOX1是哲水蚤目种类鉴定的有效工具。基于DNA Barcode,我们对中国近海的浮游哲水蚤组成有了进一步的了解,许多形近种得以区分。
     4.中国近海中华哲水蚤的种群遗传结构研究
     中华哲水蚤是西北太平洋陆架海域的关键种,弄清其种群遗传结构的组成对于理解该种的种群动力学演化及其同洋流、锋面等物理因素的关系有着重要意义。由于环境可塑性,传统的形态学方法很难筛选出鉴定种群的有效信息。分子标记则直接反映样品本身的内在差异,分辨率高,包括线粒体基因组调控序列在内的多种分子标记已广泛应用于种群的研究中。
     使用1060 bp的COX1序列和核ITS1-5.8S-ITS2序列,本文分析了采自东黄海鸭绿江口、黄海冷水团、长江口以及南海共计50只中华哲水蚤个体的遗传多样性,结果显示ITS序列在种内高度保守,没有发现任何变异位点。COX1基因变异位点十分有限,1060个碱基中可变位点仅15个,包含14个单倍型。各站位中华哲水蚤单倍型多态性水平中等(0.6132),核苷酸多态性水平降低(0.000626)。不同站位均拥有多个特有单倍型,各海区存在一定程度的自我补充。H1单倍型以最高频率共享于所有站位中,不同站位间中华哲水蚤未发现显著遗传差异。使用最小生成网格和BEAST最大置信树分析不同单倍型的系统发育关系,所有单倍型分成两大分支,但未发现明显的地理分布格局。基于COX1序列的AMOVA分析表明中华哲水蚤没有显著的遗传结构分化,不同站位种群遗传差异不显著(FST=0.01389)。
     为了获得适合种群研究的高变分子标记,本研究筛选了来自鸭绿江口、长江口、黄海冷水团以及韩国北部沿海的11只中华哲水蚤分析其线粒体基因组序列,共发现401个可变位点,其中插入缺失突变全部出现于非编码区。整个基因组包含3个高变区,其中碱基11216到12260间的区域最为高变,包含两个微卫星位点,平均不到5个碱基就有发生一次变异。基于线粒体基因组序列,所有个体都拥有自己的单倍型,线粒体基因组表现出很强的基因型筛选能力。相对COX1基因,线粒体基因组特别是非编码区高变序列更适合该种的种群遗传学研究。
In terms of their size, diversity and abundance, copepods can be regarded as the insects of the seas. Marine copepods are the most abundant and conspicuous component of a plankton sample. They are by far the most important primary consumers in the marine ecosystem and play a vital role by linking primary production to higher trophic levels. Furthermore, copepods are abundant and thus represent an ecologically important source of carbon flux. However, researches on copepods are usually hampered by the difficulties in species identification based on morphology in isolate owning to the subtle differences between species. The conservative trends of morphological evolution in copepods also confuse the phylogenetic researches in copepods. Molecular markers can offer us alternative tools for phylogenetic analysis at broad range of levels from population to inter-order relationships. Here we investigate copepods at different phylogenetic levels via separate molecular markers including COX1, 18S rRNA and complete mitochondrial genome. The thesis paper was divided into 4 independent issues:
     1. The mitochondrial genome of C. sinicus with multiple long noncoding regions and reshuffled gene order, useful molecular markers for phylogenetic analysis.
     With greatest diversity and richest abundance, copepods exhibit extensive ecological radiation in the marine ecosystem. Calanus sinicus dominates continental shelf waters in the Northwest Pacific Ocean and plays an important role in local ecosystem by linking primary production to higher trophic levels. Lacking effective molecular markers, several phylogenetic issues on copepods are still elusive from population to higher levels such as their phylogenetic position within pancrustacea. Being genome-level informative, mitochondrial DNA sequences are used as markers not only for population genetic studies but also for phylogenetic studies. Concurrence of multiple noncoding regions and reshuffled gene arrangement makes the mitochondrial genome of C. sinicus remarkably distinctive from other arthropods, including copepods. Furthermore, there are another suit of particularities found in mitogenome of C. sinicus, such as low AT content and symmetrical nucleotide composition between strands, abbreviated stop codons for some PCGs, as well as extended length of ATP6 and ATP8 relative to other copepods. Monophyly of copepods and basal split between Calanoida and Podoplea were well resolved while Maxillopoda were resolved polyphyletic. The closest affinity between Cyclopoida and Poecilostomatoida supports Boxshall in reassigning the latter subordinate to the former. The occurrence of mosaic sub-genomic fragments (mosaic cycler sequence) during laboratory work calls attention to the application of LA PCR to mitogenome sequencing in copepods, and may give an additional evidence of mitochondrial recombination. The accelerated mutational rates within copepods as well as interaction of non-coding regions with recombination in C. sinicus mitogenome give rise to present highly rearranged mitochondrial genome.
     2. Molecular phylogeny and divergence estimation of calanoid copepods based on 18S rRNA and mtCOX1 genes.
     Calanoid copepods, which are major component in all plankton samples, exhibit extensive radiation in the marine ecosystem. They are by far the most successful colonizers of pelagic realm. Their successful colonization is closely, if not completely, associated with the evolutionary history they have encountered. Here we tested the hypothesis regarding phylogenetic relationships of Calanoid copepods with molecular evidences.
     Secondary structures for 18S rRNA of calanoid copepods were constructed based on their consensus sequences. Owing to functional constraints, the structures are almost unchangeable among calanoid copepods with some exceptions in the genus of Acartia. Acartia species expanded loop regions in the helix 43, which was refolded into new helixes, being Helix E43_1 and Helix E43_2. The structure has been proved useful to assist in aligning 18S rRNAs and in giving more reasonalbe evolutionary models. Our phylogenetic analysis based on 18S rRNAs confirmed monophyly of Calanoida, Misophrioida and Siphonostomatoida. Cyclopoida and Poecilostomatoida which were resolved reciprocal paraphyletic coalescent into a monophyletic clade, supporting Boxhall in subordinating Poecilostomatoida to Cyclopoida. Misophrioida penetrated into Harpacticoida and destroyed the monophyly of the latter. In accordance with the results from 18S rRNA dataset, monophyly of Eucalanoidea, Clausocalanoidea, Diaptomoidea and Arietelloidea were well resolved by the combined dataset of both 18S rRNA and mtCOX1 gene. Though ambiguously resolved with low node confidence support, monophyly of the superfamily Calanoidea was confirmed by the best likelihood score for the Calanoidea-monophyletic constraint tree during the hypothesis testing. Based on 18S rRNA, divergence time for the order Calanoida was estimated at 400 Mya while the pelagic forms originated 398 Mya, which is in congruent with Bradford’s hypothesis. The high turbidity during early Devonian may trigger the explosion of pelagic animals, as supported by fossil evidence from ostracods. About 343 million years before, the clade comprising of Calanoidea-Clausocalanoidea and Diaptomoidea diversified. Extinction event at late Denovian should have accelerated this divergence which gave rise to the lineage that fits the pelagic realms better. Divergence dating of advanced groups (calanoids from species in Clanoidea-Clausoclanoidea with Myelin-like sheath covered nerve fibers) was estimated at 246 Mya, when the turbidity decrease to a minimum level and the abundance of predator retained a high level. The extinction event at the boundary of Permian and Triassic should have driven the divergence process.
     3. DNA barcoding the calanoid copepods in the Chinese coastal regions
     Copepods play an important role in the marine ecosystem. Accurate copepod species identification is thus necessary for understanding the conditions of local marine ecosystem. However, even the most skillful experts may get confused since the copepods resemble each other with subtle morphological differences. Even fewer clues are available for larval identifications. DNA barcodes provide an alternative approach for species identification.
     222 sequences covering 90 zooplanktons were identified in our study, AT content of which is 61.1%. Notable substitution saturation is apparent in all codons and particularly in the wobble ones, which preclude their utility in higher-level phylogenetic studies. Intraspecific variation of 224 calanoid copepods ranged from 0 to 26.8% with the means of 1.9% while congeneric intraspecific variation ranged from 0.3% to 36.1% with the means of 23.62%. Significant barcode gap was observed (t=18.574, p<<0.01). Most individuals belonging to the lineages whose intra- and inter-specific variation overlapped have been proved to encounter cryptic speciations. The majority of morphological species were clustered together in a monophyletic clade. These findings suggest that mtCOX1 is an appropriate barcoding tool for calanoid copepods and the diversity of calanoid copepods have been overlooked based on morphology. Using this molecular approach, several marine copepods in China were revised here.
     4. Population genetics of Calanus sinicus in the Chinese coastal regions Calanus sinicus dominates continental shelf waters in the Northwest Pacific Ocean and plays an important role in local ecosystem by linking primary production to higher trophic levels. Lacking effective molecular markers, phylogenetic relationships among populations of the species are still elusive.
     For the preliminary study, COX1 genes of 1060 bp in length and complete ribosomal internal transcriptional spacers (ITS1-5.8S-ITS2) were adopted for population genetic analysis in 50 individuals of C. sinicus sampled from Yalujiang estuary, Changjiang estuary, the South China sea and the Cold Water Mass in the Yellow Sea. ITS sequences were revealed highly conservative with no variable sites in all sequences analyzed. Though more variable, only 15 variable sites were detected in COX1 genes, representing 14 haplotypes. Specific haplotypes can be found in separate sampling stations, indicating that self-recruitment may exist in local areas. However, H1 haplotype was shared by all stations with high frequencies, which illustrate the homological status between populations. As was confirmed by AMOVA analysis, no genetic structure could be resolved in C. sinicus with available markers, suggesting that high dispersal potential may lead to a strong gene flow among different regions. However, consensus is far away from being reached. Since more variable markers are needed.
     11 nearly complete C. sinicus mitochondrial genomes from Yalujiang estuary, Changjiang estuary, Cold Water Mass and Korea nearshore were screened for hyper-variable markers for population studies. Within the 16,670 bp alignment, there are a total of 401 variable sites. Indel variations all present in non-coding regions and transitions dominate the SNPs. Three“hot-spots”, especially the hyper-variable microsatellite locus in LNRs provide rich polymorphism for population studies. By the means of 3 hyper-variable regions, all individuals could be assigned to a unique haplotype. Compared to the COX1 gene, more information could be obtained from mitochondrial genome for the population studies.
引文
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution[J]. Bioinformatics, 2005 (9): 2104-2105.
    Adamowicz S J, Menu-Marque S, Halse S A, Topan J C, Zemlak T S, Hebert P D, Witt J D. The evolutionary diversification of the Centropagidae (Crustacea, Calanoida): A history of habitat shifts[J]. Mol Phylogenet Evol, 2009.
    Adamowicz S J, Menu-Marque S, Hebert P D N, Purvis A. Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda : Calanoida) of Argentina[J]. Biological Journal of the Linnean Society, 2007 (2): 279-292.
    Algeo T J, Scheckler S E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 1998 (1365): 113-128.
    Andronov V. Taxonomic status of Mecynocera clausi (Copepoda, Calanoida)[J]. Zool. Zh. 52 (11): 1719-1721.[In, 1973.
    Andronov V. Phylogenetic relations of large taxa within the suborder Calanoida (Crustacea, Copepoda)[J]. Zoologischeskii Zhurnal, 1974: 1002-1012.
    Andronov V N. New genus and species of copepods (Crustacea, Calanoida) from the central-eastern atlantic and problems of classification of the superfamilies Pseudocyclopoidea and Epacteriscoidea[J]. Zoologichesky Zhurnal, 2007 (6): 671-683.
    Armstrong M R, Blok V C, Phillips M S. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida[J]. Genetics, 2000 (1): 181-192.
    Ballard J W O, Whitlock M C. The incomplete natural history of mitochondria[J]. Molecular Ecology, 2004 (4): 729-744.
    Belinky F, Rot C, Ilan M, Huchon D. The complete mitochondrial genome of the demosponge Negombata magnifica (Poecilosclerida)[J]. Molecular Phylogenetics and Evolution, 2008 (3): 1238-1243.
    Bensasson D, Zhang D X, Hartl D L, Hewitt G M. Mitochondrial pseudogenes: evolution's misplaced witnesses[J]. Trends in Ecology & Evolution, 2001 (6): 314-321.
    Bernard M. R¨|vision des Calocalanus (Cop¨|podes Calanoida) avec description d?ˉun genre nouveau et deux esp¨¨ces nouvelles[J]. Bull. Soc. zool. Fr, 1958: 1-15.
    Beuzen N D, Stear M J, Chang K C. Molecular markers and their use in animal breeding[J]. Veterinary Journal, 2000 (1): 42-52.
    Bhadury P, Austen M C, Bilton D T, Lambshead P J D, Rogers A D, Smerdon G R.
    Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes[J]. Marine Ecology-Progress Series, 2006: 1-9.
    Bj rnberg T. Developmental stages of some tropical and subtropical planktonic marine copepods[J]. Studies on the fauna of Curacao and other Caribbean Islands,1972: 1¨C185.
    Boltovskoy D, Correa N, Boltovskoy A. Marine zooplanktonic diversity: a view from the South Atlantic[J]. Oceanologica Acta, 2002 (5): 271-278.
    Boore J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999 (8): 1767-1780.
    Boore J L, Fuerstenberg S I. Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic reconstruction[J]. Philos Trans R Soc Lond B Biol Sci, 2008 (1496): 1445-51.
    Boore J L, Lavrov D V, Brown W M. Gene translocation links insects and crustaceans[J]. Nature, 1998 (6677): 667-668.
    Boore J L, Medina M, Rosenberg L A. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea and the bivalve Mytilus edulis[J]. Molecular Biology and Evolution, 2004 (8): 1492-1503.
    Bowman T, Abele L. Classification of the recent Crustacea[J]. The biology of Crustacea, 1982: 1-27.
    Boxshall G, Halsey S. An introduction to copepod diversity. Ray Soc.
    Boxshall G, Halsey S. An introduction to copepod diversity. Ray Soc., 2004.
    Boxshall G A, Huys R. The ontogeny and phylogeny of copepod antennules[J].
    Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1998 (1369): 765-786.
    Boxshall G A, Jaume D. Making waves: The repeated colonization of fresh water by copepod crustaceans[J]. Advances in Ecological Research, Vol 31, 2000: 61-79.
    Boyce T M, Zwick M E, Aquadro C F. Mitochondrial-DNA in the Bark Weevils - Size, Structure and Heteroplasmy[J]. Genetics, 1989 (4): 825-836.
    Bradford-Grieve J. Deep-sea benthopelagic calanoid copepods and their colonization of the near-bottom environment[J]. Zoological Studies, 2004 (2): 276-291.
    Bradford-Grieve J M. Colonization of the pelagic realm by calanoid copepods[J]. Hydrobiologia, 2002 (1-3): 223-244.
    Bradford-Grieve J M. Mecynocera clausi IC Thompson, 1888 (Copepoda : Calanoida) is a paracalanid[J]. Zootaxa, 2008 (1852): 59-64.
    Braga E, Zardoya R, Meyer A, Yen J. Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida)[J]. Marine Biology, 1999 (1): 79-90.
    Bromham L D, Hendy M D. Can fast early rates reconcile molecular dates with the Cambrian explosion?[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2000 (1447): 1041-1047.
    Brown W, George M, Wilson A. Rapid evolution of mitochondrial DNA[J]. Proceed- ings of the National Academy of Sciences, USA, 1979: 1967-1971.
    Bucklin A, Astthorsson O S, Gislason A, Allen L D, Smolenack S B, Wiebe P H. Population genetic variation of Calanus finmarchicus in Icelandic waters: preliminary evidence of genetic differences between Atlantic and Arctic
    populations[J]. Ices Journal of Marine Science, 2000 (6): 1592-1604.
    Bucklin A, Frost B W. Morphological and Molecular Phylogenetic Analysis of Evolutionary Lineages within Clausocalanus (Copepoda: Calanoida)[J]. Journal of Crustacean Biology, 2009 (1): 111-120.
    Bucklin A, Frost B W, Bradford-Grieve J, Allen L D, Copley N J. Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae[J]. Marine Biology, 2003 (2): 333-343.
    Bucklin A, Hopcroft R R, Kosobokova K N, Nigro L M, Ortman B D, Jennings R M, Sweetman C J. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition[J]. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 2010 (1-2): 40-48.
    Bucklin A, Wiebe P H, Smolenack S B, Copley N J, Beaudet J G, Bonner K G, Farber-Lorda J, Pierson J J. DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea)[J]. Journal of Plankton Research, 2007 (6): 483-493.
    Burger G, Lavrov D V, Forget L, Lang B F. Sequencing complete mitochondrial and plastid genomes[J]. Nature Protocols, 2007 (3): 603-614.
    Burton R S, Byrne R J, Rawson P D. Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus[J]. Gene, 2007 (1-2): 53-59.
    Busse I, Preisfeld A. Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: Molecular evolution and phylogenetic inference[J]. Journal of Molecular Evolution, 2002 (6): 757-767.
    Cameron S L, Miller K B, D'Haese C A, Whiting M F, Barker S C. Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda)[J]. Cladistics, 2004 (6): 534-557.
    Carapelli A, Lio P, Nardi F, van der Wath E, Frati F. Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea[J]. Bmc Evolutionary Biology, 2007: -.
    Caterino M S, Cho S, Sperling F A H. The current state of insect molecular systematics: A thriving Tower of Babel[J]. Annual Review of Entomology, 2000: 1-54.
    Caudill C C, Bucklin A. Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the Northwest Atlantic coast[J]. Hydrobiologia, 2004 (1): 91-102.
    Chen C A, Yu J K. Universal primers for amplification of mitochondrial small subunit ribosomal RNA-encoding gene in scleractinian corals[J]. Marine Biotechnology, 2000 (2): 146-153.
    Chen G, Hare M P. Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa[J]. Molecular Ecology, 2008 (6): 1451-1468.
    Clayton D A. Transcription and replication of mitochondrial DNA[J]. Hum Reprod, 2000: 11-7.
    Costa F O, deWaard J R, Boutillier J, Ratnasingham S, Dooh R T, Hajibabaei M, Hebert P D N. Biological identifications through DNA barcodes: the case of the Crustacea[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2007 (2): 272-295.
    Crandall K. Workshps Report and Recommendations, DNA barcoding of Marine Biodiversity. MarBOL. 2009.
    Crease T J, Colbourne J K. The unusually long small-subunit ribosomal RNA of the crustacean, Daphnia pulex: Sequence and predicted secondary structure[J]. Journal of Molecular Evolution, 1998 (3): 307-313.
    Cruzan M B. Genetic markers in plant evolutionary ecology[J]. Ecology, 1998 (2): 400-412.
    Dahms H U. Postembryonic apomorphies proving the monophyletic status of the Copepoda[J]. Zoological Studies, 2004 (2): 446-453.
    de Bruin A, Ibelings B W, Van Donk E. Molecular techniques in phytoplankton research: from allozyme electrophoresis to genomics[J]. Hydrobiologia, 2003 (1-3): 47-63.
    De Rijk P, Wuyts J, De Wachter R. RnaViz 2: an improved representation of RNA secondary structure[J]. Bioinformatics, 2003 (2): 299-300.
    Derijk P, Dewachter R. Dcse, an Interactive Tool for Sequence Alignment and Secondary Structure Research[J]. Computer Applications in the Biosciences, 1993 (6): 735-740.
    Dermauw W, Van Leeuwen T, Vanholme B, Tirry L. The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods[J]. Bmc Genomics, 2009: -.
    DeSalle R, Giribet G, Wheeler W. Techniques in molecular systematics and evolution[M]. Birkhauser, 2002.
    Dick C W, Roubik D W, Gruber K F, Bermingham E. Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae : Euglossini) revealed by comparative mitochondrial DNA phylogeography[J]. Molecular Ecology, 2004 (12): 3775-3785.
    Domes K, Maraun M, Scheu S, Cameron S L. The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs[J]. Bmc Genomics, 2008: -.
    Dowton M, Castro L R, Campbell S L, Bargon S D, Austin A D. Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction[J]. Journal of Molecular Evolution, 2003 (5): 517-526.
    Drummond A J, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees[J]. Bmc Evolutionary Biology, 2007: -.
    Dupont S, Wilson K, Obst M, Skold H, Nakano H, Thorndyke M C. Marine ecological genomics: when genomics meets marine ecology[J]. Marine Ecology-Progress Series, 2007: 257-273.
    Dussart B. A propos du r¨|pertoire mondial des Calano des des eaux continentales[J]. Crustaceana. Supplement, 1984: 25-31.
    Edgar R C. MUSCLE: Multiple sequence alignment with improved accuracy and speed[J]. 2004 Ieee Computational Systems Bioinformatics Conference, Proceedings, 2004: 728-729 756.
    Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities[J]. Genome Research, 1998 (3): 186-194.
    Ewing B, Hillier L, Wendl M C, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment[J]. Genome Research, 1998 (3): 175-185.
    Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics, 2005: 47-50.
    Fenn J D, Song H, Cameron S L, Whiting M F. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data[J]. Molecular Phylogenetics and Evolution, 2008 (1): 59-68.
    Feral J P. How useful are the genetic markers in attempts to understand and manage marine biodiversity?[J]. Journal of Experimental Marine Biology and Ecology, 2002 (2): 121-145.
    Fleminger A. Pattern, number, variability, and taxonomic significance of integumental organs (sensilla and glandular pores) in the genus Eucalanus (Copepoda, Calanoida)[J]. Fish. Bull, 1973 (4): 965-1010.
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 1994 (5): 294.
    Foltz D W. Invertebrate species with nonpelagic larvae have elevated levels of nonsynonymous substitutions and reduced nucleotide diversities[J]. Journal of Molecular Evolution, 2003 (6): 607-612. Foltz D W, Hrincevich A W, Rocha-Olivares A. Apparent selection intensity for the cytochrome oxidase subunit I gene varies with mode of reproduction in echinoderms[J]. Genetica, 2004 (2): 115-125.
    Frezal L, Leblois R. Four years of DNA barcoding: Current advances and prospects[J]. Infection Genetics and Evolution, 2008 (5): 727-736.
    Garesse R, Kaguni L S. A Drosophila model of mitochondrial DNA replication: Proteins, genes and regulation[J]. Iubmb Life, 2005 (8): 555-561.
    Gibson T, Blok V C, Phillips M S, Hong G, Kumarasinghe D, Riley I T, Dowton M. The mitochondrial subgenomes of the nematode Globodera pallida are mosaics: Evidence of recombination in an animal mitochondrial genome[J]. Journal of Molecular Evolution, 2007 (4): 463-471.
    Giribet G, Edgecombe G D, Wheeler W C. Arthropod phylogeny based on eight molecular loci and morphology[J]. Nature, 2001 (6852): 157-161.
    Goetze E. Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2003 (1531): 2321-2331.
    Goetze E. Elongation factor 1-alpha in marine copepods (Calanoida : Eucalanidae): Phylogenetic utility and unique intron structure[J]. Molecular Phylogenetics and Evolution, 2006 (3): 880-886.
    Goetze E. Species discovery in marine planktonic invertebrates through global molecular screening[J]. Molecular Ecology, 2010 (5): 952-967.
    Gordon D, Abajian C, Green P. Consed: A graphical tool for sequence finishing[J]. Genome Research, 1998 (3): 195-202.
    Grabowski M, Grater W D, Stuck K C. A novel polymorphic mtDNA marker for population studies of the pink shrimp, Farfantepenaeus duorarum (Crustacea, Penaeidae)[J]. Oceanologia, 2004 (1): 147-151.
    Guindon S, Dufayard J F, Hordijk W, Lefort V, Gascuel O. PhyML: Fast and Accurate Phylogeny Reconstruction by Maximum Likelihood[J]. Infection Genetics and Evolution, 2009 (3): 384-385.
    Gupta P K, Rustgi S, Mir R R. Array-based high-throughput DNA markers for crop improvement[J]. Heredity, 2008 (1): 5-18.
    Gutell R R. Collection of Small-Subunit (16s- and 16s-Like) Ribosomal-Rna Structures - 1994[J]. Nucleic Acids Research, 1994 (17): 3502-3507.
    Harris R, Wiebe P, Lenz J, Skjoldal H, Huntley M. ICES zooplankton methodology manual[M]. Academic Press, San Diego. US, 2000.
    Hartline D K, Lenz P H, Herren C M. Physiological and behavioral studies of escape responses in calanoid copepods[J]. Marine and Freshwater Behaviour and Physiology, 1996 (2-3): 199-212.
    Hassanin A. Phylogeny of Arthropoda inferred from mitochondrial sequences: Strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution[J]. Molecular Phylogenetics and Evolution, 2006 (1): 100-116.
    Hassanin A, Leger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences[J]. Syst Biol, 2005 (2): 277-98.
    Hays G C, Warner A J, Tranter P. Why do the two most abundant copepods in the North Atlantic differ so markedly in their diel vertical migration behaviour?[J]. Journal of Sea Research, 1997 (1-2): 85-92.
    Hebert P D N, Cywinska A, Ball S L, DeWaard J R. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2003a (1512): 313-321.
    Hebert P D N, Ratnasingham S, deWaard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2003b: S96-S99.
    Hebert P D N, Stoeckle M Y, Zemlak T S, Francis C M. Identification of birds through DNA barcodes[J]. Plos Biology, 2004 (10): 1657-1663.
    Held C, Leese F. The utility of fast evolving molecular markers for studyingspeciation in the Antarctic benthos[J]. Polar Biology, 2007 (4): 513-521.
    Hillis D M, Dixon M T. Ribosomal DNA - Molecular Evolution and Phylogenetic Inference[J]. Quarterly Review of Biology, 1991 (4): 411-453.
    Hilu K W, Borsch T, Muller K, Soltis D E, Soltis P S, Savolainen V, Chase M W, Powell M P, Alice L A, Evans R, Sauquet H, Neinhuis C, Slotta T A B, Rohwer J G, Campbell C S, Chatrou L W. Angiosperm phylogeny based on matK sequence information[J]. American Journal of Botany, 2003 (12): 1758-1776.
    Hipp A L, Hall J C, Sytsma K J. Congruence versus phylogenetic accuracy: Revisiting the incongruence length difference test[J]. Systematic Biology, 2004 (1): 81-89.
    Ho J S. Copepod Phylogeny - a Reconsideration of Huys-and-Boxhall Parsimony Versus Homology[J]. Hydrobiologia, 1994: 31-39.
    Ho J S, Dojiri M, Hendler G, Deets G B. A new species of Copepoda (Thaumatopsyllidae) symbiotic with a brittle star from California, USA, and designation of a new order Thaumatopsylloida[J]. Journal of Crustacean Biology, 2003 (3): 582-594.
    Horne D J. Ocean circulation modes of the Phanerozoic: Implications for the antiquity of deep-sea benthonic invertebrates[J]. Crustaceana, 1999: 999-1018.
    Huang D W, Meier R, Todd P A, Chou L M. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding[J]. Journal of Molecular Evolution, 2008 (2): 167-174.
    Hubby JL L R. A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura.[J]. Genetics., 1966 (2): 577-594.
    Humes A. How many copepods?[J]. Hydrobiologia, 1994a (1): 1-7.
    Humes A G. How Many Copepods[J]. Hydrobiologia, 1994b: 1-7.
    Huys R, Llewellyn-Hughes J. What can 18S rDNA do for copepod phylogeny and classification?[J]. Integrative and Comparative Biology, 2009: E82-E82.
    Huys R, Llewellyn-Hughes J, Conroy-Dalton S, Olson P D, Spinks J N, Johnston D A.
    Extraordinary host switching in siphonostomatoid copepods and the demise of the Monstrilloida: Integrating molecular data, ontogeny and antennulary morphology[J]. Molecular Phylogenetics and Evolution, 2007 (2): 368-378.
    Huys R, Llewellyn-Hughes J, Olson P D, Nagasawa K. Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida)[J]. Biological Journal of the Linnean Society, 2006 (3): 403-425.
    Huys R, Mackenzie-Dodds J, Llewellyn-Hughes J. Cancrincolidae (Copepoda,
    Harpacticoida) associated with land crabs: A semiterrestrial leaf of the ameirid tree[J]. Molecular Phylogenetics and Evolution, 2009 (2): 143-156.
    Hwang J S, Wong C K. The China Coastal Current as a driving force for transporting Calanus sinicus (Copepoda : Calanoida) from its population centers to watersoff Taiwan and Hong Kong during the winter northeast monsoon period[J].
    Journal of Plankton Research, 2005 (2): 205-210. Ito A, Wada H, Aoki M N. Phylogenetic analysis of caprellid and corophioid amphipods (Crustacea) based on the 18S rRNA gene, with special emphasis on the phylogenetic position of Phtisicidae[J]. Biological Bulletin, 2008 (2): 174-181.
    Jenner R A. Higher-level crustacean phylogeny: Consensus and conflicting hypotheses[J]. Arthropod Struct Dev, 2009.
    Jenner R A, Dhubhghaill C N, Ferla M P, Wills M A. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects[J]. Bmc Evolutionary Biology, 2009: -.
    Jeyaprakash A, Hoy M A. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny[J]. Experimental and Applied Acarology, 2009 (1): 1-18.
    Jones N, Ougham H, Thomas H, Pasakinskiene I. Markers and mapping revisited: finding your gene[J]. New Phytologist, 2009a (4): 935-66.
    Jones N, Ougham H, Thomas H, Pasakinskiene I. Markers and mapping revisited: finding your gene[J]. New Phytologist, 2009b (4): 935-966.
    Jung S O, Lee Y M, Park T J, Park H G, Hagiwara A, Leung K M Y, Dahms H U, Lee W, Lee J S. The complete mitochondrial genome of the intertidal copepod Tigriopus sp (Copepoda, Harpactidae) from Korea and phylogenetic considerations[J]. Journal of Experimental Marine Biology and Ecology, 2006 (2): 251-262.
    Jurado-Rivera J A, Vogler A P, Reid C A M, Petitpierre E, Gomez-Zurita J. DNA barcoding insect-host plant associations[J]. Proceedings of the Royal Society B-Biological Sciences, 2009 (1657): 639-648.
    Kabata Z. Parasitic Copepoda of Australian Fishes .12. Family Lernanthropidae[J]. Crustaceana, 1979 (Sep): 198-213.
    Ki J S, Park H G, Lee J S. The complete mitochondrial genome of the cyclopoid copepod Paracyclopina nana: A highly divergent genome with novel gene order and atypical gene numbers[J]. Gene, 2009 (1-2): 13-22.
    Kiesling T L, Wilkinson E, Rabalais J, Ortner P B, McCabe M M, Fell J W. Rapid identification of adult and naupliar stages of copepods using DNA hybridization methodology[J]. Marine Biotechnology, 2002 (1): 30-39.
    Kiesling. T L. Species analysis of copepod nauplii in Florida Bay using molecular techniques[D]. Includes bibliographical references, Miami: University of Miami, 2004.
    Kilpert F, Podsiadlowski L. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features[J]. Bmc Genomics, 2006: -.
    Kirby R R, Lindley J A. Molecular analysis of Continuous Plankton Recorder samples, an examination of echinoderm larvae in the North Sea[J]. Journal of the Marine Biological Association of the United Kingdom, 2005 (3): 451-459.
    Knowlton N. Sibling Species in the Sea[J]. Annual Review of Ecology and Systematics, 1993: 189-216.
    Knowlton N. Molecular genetic analyses of species boundaries in the sea[J]. Hydrobiologia, 2000: 73-90.
    Koenemann S, Jenner R A, Hoenemann M, Stemme T, von Reumont B M. Arthropod phylogeny revisited, with a focus on crustacean relationships[J]. Arthropod Struct Dev, 2009.
    Kurabayashi A, Ueshima R. Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa: systematic implication of the genome organization[J]. Mol Biol Evol, 2000 (2): 266-77.
    Kvist L, Martens J, Nazarenko A A, Orell M. Paternal leakage of mitochondrial DNA in the great tit (Parus major)[J]. Molecular Biology and Evolution, 2003 (2): 243-247.
    Ladoukakis E D, Zouros E. Recombination in animal mitochondrial DNA: Evidence from published sequences[J]. Molecular Biology and Evolution, 2001 (11): 2127-2131.
    Landegren U, Nilsson M, Kwok P Y. Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis[J]. Genome Research, 1998 (8): 769-776.
    Lang B F, Burger G. Purification of mitochondrial and plastid DNA[J]. Nature Protocols, 2007 (3): 652-660.
    Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and clustal X version 2.0[J]. Bioinformatics, 2007 (21): 2947-2948.
    Laslett D, Canback B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences[J]. Bioinformatics, 2008 (2): 172-175. Lau Y H. Principles of population genetics, 4th edition[J]. Economic Botany, 2008 (2): 200-201.
    Lavrov D V, Boore J L, Brown W M. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus[J]. Molecular Biology and Evolution, 2000a (5): 813-824.
    Lavrov D V, Boore J L, Brown W M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss[J]. Molecular Biology and Evolution, 2002 (2): 163-169.
    Lavrov D V, Brown W M, Boore J L. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000b (25): 13738-13742.
    Lavrov D V, Brown W M, Boore J L. Phylogenetic position of the Pentastomida and (pan)crustacean relationships[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2004 (1538): 537-544.
    Lee C E, Frost B W. Morphological stasis in the Eurytemora affinis species complex(Copepoda : Temoridae)[J]. Hydrobiologia, 2002 (1-3): 111-128.
    Lefebure T, Douady C J, Gouy M, Gibert J. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation[J]. Molecular Phylogenetics and Evolution, 2006 (2): 435-447.
    Lenz P H, Hartline D K, Davis A D. The need for speed. I. Fast reactions and myelinated axons in copepods[J]. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, 2000 (4): 337-345.
    Lim J T, Hwang U W. The complete mitochondrial genome of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia): Non-monophylies of Maxillopoda and Crustacea[J]. Molecules and Cells, 2006 (3): 314-322.
    Lindgren A R, Daly M. The impact of length-variable data and alignment criterion on the phylogeny of Decapodiformes (Mollusca : Cephalopoda)[J]. Cladistics, 2007 (5): 464-476.
    Litt M, Luty J A. A Hypervariable Microsatellite Revealed by Invitro Amplification of a Dinucleotide Repeat within the Cardiac-Muscle Actin Gene[J]. American Journal of Human Genetics, 1989 (3): 397-401.
    Little D P, Stevenson D W, Cullman L B, Cullman D. A comparison of algorithms for identification of specimens using DNA barcodes: examples from gymnosperms.[J]. Cladistics, 2008 (1): 97-97.
    Liu J X, Gao T X, Wu S F, Zhang Y P. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845)[J]. Molecular Ecology, 2007 (2): 275-88.
    Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics[J]. Aquaculture, 2004 (1-4): 1-37.
    Lowe T M, Eddy S R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997 (5): 955-964.
    Loxdale H D, Lushai G. Molecular markers in entomology[J]. Bulletin of Entomological Research, 1998 (6): 577-600.
    Lunt D H, Hyman B C. Animal mitochondrial DNA recombination[J]. Nature, 1997 (6630): 247-247.
    Macdonald C, Loxdale H D. Molecular markers to study population structure and dynamics in beneficial insects (predators and parasitoids)[J]. International Journal of Pest Management, 2004 (3): 215-224.
    Machida R J, Hashiguchi Y, Nishida M, Nishida S. Zooplankton diversity analysis through single-gene sequencing of a community sample[J]. Bmc Genomics, 2009: -. Machida R J, Miya M U, Nishida M, Nishida S. Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea : Copepoda)[J]. Marine Biotechnology, 2002 (4): 406-417.
    Machida R J, Miya M U, Nishida M, Nishida S. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes[J]. Gene, 2004: 71-78.
    Machida R J, Miya M U, Nishida M, Nishida S. Molecular phylogeny and evolution of the pelagic copepod genus Neocalanus (Crustacea : Copepoda)[J]. Marine Biology, 2006 (5): 1071-1079.
    Machida R J, Tsuda A. Dissimilarity of species and forms of planktonic Neocalanus copepods using mitochondrial COI, 12S, nuclear ITS, and 28S gene sequences[J]. Plos One, 2010 (4): e10278.
    Macintyre R J. Molecular evolutionary genetics[M]. Plenum Press, 1985.
    Maggio T, Lo Brutto S, Cannas R, Deiana A M, Arculeo M. Environmental features of deep-sea habitats linked to the genetic population structure of a crustacean species in the Mediterranean Sea[J]. Marine Ecology-an Evolutionary Perspective, 2009 (3): 354-365.
    Makino W, Knox M A, Duggan I C. Invasion, genetic variation and species identity of the calanoid copepod Sinodiaptomus valkanovi[J]. Freshwater Biology, 2010 (2): 375-386.
    Mallatt J M, Garey J R, Shultz J W. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin[J]. Molecular Phylogenetics and Evolution, 2004 (1): 178-191.
    Marcotte B M. Turbidity, arthropods and the evolution of perception: toward a new paradigm of marine phanerozoic diversity[J]. Marine Ecology-Progress Series, 1999: 267-288.
    Marsden J E, Spidle A P, May B. Review of genetic studies of Dreissena spp.[J]. American Zoologist, 1996 (3): 259-270.
    Martin J W, Davis G E. An updated classification of the recent Crustacea.[J]. History Museum of Los Angeles County: Los Angeles, CA (USA). VII,, 2001: 123.
    Mauchline J. Taxonomic Value of Pore Pattern in the Integument of Calanoid Copepods (Crustacea)[J]. Journal of Zoology, 1988: 697-749.
    Mauchline J. The biology of calanoid copepods[M]. Academic Press, 1998a.
    Mauchline J: The Biology of Calanoid Copepods. : Academic Press, London. , 1998b: 710.
    Mcmanus G B, Katz L A. Molecular and morphological methods for identifying plankton: what makes a successful marriage?[J]. Journal of Plankton Research, 2009 (10): 1119-1129.
    Meier R, Shiyang K, Vaidya G, Ng P K L. DNA barcoding and taxonomy in diptera: A tale of high intraspecific variability and low identification success[J]. Systematic Biology, 2006 (5): 715-728.
    Merritt T J S, Shi L, Chase M C, Rex M A, Etter R J, Quattro J M. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa[J].
    Molecular Marine Biology and Biotechnology, 1998 (1): 7-11.
    Meyer C P, Paulay G. DNA barcoding: Error rates based on comprehensive sampling[J]. Plos Biology, 2005 (12): 2229-2238.
    Mikkelsen N T, Schander C, Willassen E. Local scale DNA barcoding of bivalves (Mollusca): A case study[J]. Zoologica Scripta, 2007 (5): 455-463.
    Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A. A hexapod nuclear SSU rRNA secondary-structure model and catalog of taxon-specific structural variation[J]. J Exp Zool B Mol Dev Evol, 2006 (1): 70-88.
    Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A. Towards an 18S phylogeny of hexapods: Accounting for group-specific character covariance in optimized mixed nucleotide/doublet models[J]. Zoology, 2007 (5): 409-429.
    Moritz C, Brown W M. Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA[J]. Science, 1986 (4771): 1425-7.
    Mueller R L. Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis[J]. Systematic Biology, 2006 (2): 289-300.
    Muller J. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types[J]. Molecular Phylogenetics and Evolution, 2000 (2): 260-268.
    Mwinyi A, Meyer A, Bleidorn C, Lieb B, Bartolomaeus T, Podsiadlowski L.
    Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida[J]. Bmc Genomics, 2009: -.
    Nakamura Y, Leppert M, Oconnell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R. Variable Number of Tandem Repeat (Vntr) Markers for Human-Gene Mapping[J]. Science, 1987 (4796): 1616-1622.
    Navajas M, Fenton B. The application of molecular markers in the study of diversity in acarology: A review[J]. Experimental and Applied Acarology, 2000 (10-11): 751-774.
    Neefs J M, Dewachter R. A Proposal for the Secondary Structure of a Variable Area of Eukaryotic Small Ribosomal-Subunit Rna Involving the Existence of a Pseudoknot[J]. Nucleic Acids Research, 1990 (19): 5695-5704.
    Nei M, Kumar S,吕宝忠,钟扬,高莉萍.分子进化与系统发育.北京:高等教育出版社, 2002.
    Nelson R J, Carmack E C, McLaughlin F A, Cooper G A. Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics[J]. Marine Ecology-Progress Series, 2009: 129-138.
    Nikulina E A. Taxonomy and ribosomal DNA-based phylogeny of the Electra crustulenta species group (Bryozoa: Cheilostomata) with revision of Borg's varieties and description of Electra moskvikvendi sp nov from the Western Baltic Sea[J]. Organisms Diversity & Evolution, 2008 (3): 215-229.
    Nonomura T, Machida R J, Nishida S. Stage-V copepodites of Calanus sinicus and Calanus jashnovi (Copepoda : Calanoida) in mesopelagic zone of Sagami Bayas identified with genetic markers, with special reference to their vertical distribution[J]. Progress in Oceanography, 2008 (1): 45-55.
    Norris R D. Pelagic species diversity, biogeography, and evolution[J]. Paleobiology, 2000 (4): 236-258.
    Nuwer M, Frost B, Armbrust E V. Population structure of the planktonic copepod Calanus pacificus in the North Pacific Ocean[J]. Marine Biology, 2008 (2): 107-115.
    Ogoh K, Ohmiya Y. Complete mitochondrial DNA sequence of the sea-firefly, Vargula hilgendorfii (Crustacea, Ostracoda) with duplicate control regions[J]. Gene, 2004 (1): 131-139.
    Ohtsuka S, Huys R. Sexual dimorphism in calanoid copepods: morphology and function[J]. Hydrobiologia, 2001 (1-3): 441-466.
    Ortman B. DNA barcoding the Medusozoa and Ctenophora. 2008.
    Osborn K. Phylogenetics and ecology of pelagic munnopsid isopods (Crustacea, Asellota)[D]. UNIVERSITY OF CALIFORNIA, BERKELEY, 2007.
    OTSUKA S. Evolution of zooplankters with special reference to pelagic copepods[J]. Bulletin of Plankton Society of Japan, 2004 (2): 125-131.
    Ouvrard D, Campbell B C, Bourgoin T, Chan K L. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, Hemiptera)[J]. Molecular Phylogenetics and Evolution, 2000 (3): 403-417.
    Paabo S, Irwin D M, Wilson A C. DNA Damage Promotes Jumping between Templates during Enzymatic Amplification[J]. Journal of Biological Chemistry, 1990 (8): 4718-4721.
    Pagel M, Meade A. A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data[J]. Systematic Biology, 2004 (4): 571-581.
    Palero F, Crandall K A, Abello P, Macpherson E, Pascual M. Phylogenetic relationships between spiny, slipper and coral lobsters (Crustacea, Decapoda, Achelata)[J]. Molecular Phylogenetics and Evolution, 2009 (1): 152-162.
    Palumbi S R. Genetic-Divergence, Reproductive Isolation, and Marine Speciation[J]. Annual Review of Ecology and Systematics, 1994: 547-572.
    Pamilo P, Viljakainen L, Vihavainen A. Exceptionally high density of NUMTs in the honeybee genome[J]. Molecular Biology and Evolution, 2007 (6): 1340-1346.
    Papadopoulos L N, Peijnenburg K T C A, Luttikhuizen P C. Phylogeography of the calanoid copepods Calanus helgolandicus and C-euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations[J]. Marine Biology, 2005 (6): 1353-1365.
    Park J K, Choe B L, Eom K S. Two mitochondrial lineages in Korean freshwater Corbicula (Corbiculidae : Bivalvia)[J]. Molecules and Cells, 2004 (3): 410-414.
    Park T. Phylogeny of calanoid copepods[J]. Syllogeus, 1986: 191-196.
    Parker P G, Snow A A, Schug M D, Booton G C, Fuerst P A. What molecules can tell us about populations: Choosing and using a molecular marker[J]. Ecology,1998 (2): 361-382.
    Parson W, Pegoraro K, Niederstatter H, Foger M, Steinlechner M. Species identification by means of the cytochrome b gene[J]. International Journal of Legal Medicine, 2000 (1-2): 23-28.
    Passmore A J, Jarman S N, Swadling K M, Kawaguchi S, McMinn A, Nicol S. DNA as a dietary biomarker in antarctic krill, Euphausia superba[J]. Marine Biotechnology, 2006 (6): 686-696.
    Peijnenburg K T C A, Pierrot-Bults A C. Quantitative morphological variation in Sagitta setosa Muller, 1847 (Chaetognatha) and two closely related taxa[J]. Contributions to Zoology, 2004 (4): 305-315.
    Perez-Portela R, Bishop J D D, Davis A R, Turon X. Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences[J]. Molecular Phylogenetics and Evolution, 2009 (3): 560-570.
    Pfenninger M, Posada D. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact[J]. Evolution, 2002 (9): 1776-1788.
    Piganeau G, Gardner M, Eyre-Walker A. A broad survey of recombination in animal mitochondria[J]. Molecular Biology and Evolution, 2004 (12): 2319-2325.
    Pisani D, Poling L L, Lyons-Weiler M, Hedges S B. The colonization of land by animals: molecular phylogeny and divergence times among arthropods[J]. BMC Biol, 2004: 1.
    Place A R, Feng X J, Steven C R, Fourcade H M, Boore J L. Genetic markers in blue crabs (Callinectes sapidus) II. Complete mitochondrial genome sequence and characterization of genetic variation[J]. Journal of Experimental Marine Biology and Ecology, 2005 (1-2): 15-27.
    Podsiadlowski L, Braband A, Struck T H, von Dohren J, Bartolomaeus T. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea[J]. Bmc Genomics, 2009: -.
    Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution[J]. Bioinformatics, 1998 (9): 817-818.
    Pradeep A R, Chatterjee S N, Nair C V. Genetic differentiation induced by selection in an inbred population of the silkworm Bombyx mori, revealed by RAPD and ISSR marker systems[J]. J Appl Genet, 2005 (3): 291-8.
    Provan J, Beatty G E, Keating S L, Maggs C A, Savidge G. High dispersal potential has maintained long-term population stability in the North Atlantic copepod Calanus finmarchicus[J]. Proc Biol Sci, 2009 (1655): 301-7.
    Pu X M, Sun S, Yang B, Zhang G T, Zhang F. Life history strategies of Calanus sinicus in the southern Yellow Sea in summer[J]. Journal of Plankton Research, 2004 (9): 1059-1068.
    Radulovici A E, Archambault P, Dufresne F. DNA barcodes for marine biodiversity: Moving Fast Forward?[J]. diversity, 2010: 450-472.
    Razouls C, de Bov¨|e F, Kouwenberg J, Desreumaux N. Diversity and GeographicDistribution of Marine Planktonic Copepods. 2005-2009.
    Regier J C, Shultz J W, Ganley A R D, Hussey A, Shi D, Ball B, Zwick A, Stajich J E, Cummings M P, Martin J W, Cunningham C W. Resolving Arthropod Phylogeny: Exploring Phylogenetic Signal within 41 kb of Protein-Coding Nuclear Gene Sequence[J]. Systematic Biology, 2008 (6): 920-938.
    Regier J C, Shultz J W, Kambic R E. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic[J]. Proc Biol Sci, 2005 (1561): 395-401.
    Renoult J P, Kjellberg F, Grout C, Santoni S, Khadari B. Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations[J]. Bmc Evolutionary Biology, 2009: -.
    Richly E, Leister D. NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs[J]. Molecular Biology and Evolution, 2004 (10): 1972-1980.
    Rokas A, Carroll S B. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy[J]. Molecular Biology and Evolution, 2005 (5): 1337-1344.
    Rony Huys, Boxshall G A. Copepod evolution[M]. 159, Ray Society, 1991: 468. Roshan U, Livesay D R. Probalign: multiple sequence alignment using partition function posterior probabilities[J]. Bioinformatics, 2006 (22): 2715-2721.
    Rozas J, Sanchez-DelBarrio J C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003 (18): 2496-2497.
    Runge J. Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability[J]. Hydrobiologia, 1988 (1): 61-71.
    Saito S, Tamura K, Aotsuka T. Replication origin of mitochondrial DNA in insects[J]. Genetics, 2005 (4): 1695-1705.
    SANDERS K, LEE M. Arthropod molecular divergence times and the Cambrian origin of pentastomids[J]. Systematics and Biodiversity, 2010 (1): 63-74.
    Savelkoul P H M, Aarts H J M, de Haas J, Dijkshoorn L, Duim B, Otsen M, Rademaker J L W, Schouls L, Lenstra J A. Amplified-fragment length polymorphism analysis: the state of an art[J]. Journal of Clinical Microbiology, 1999 (10): 3083-3091.
    Scanlan D J, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess W R, Post A F, Hagemann M, Paulsen I, Partensky F. Ecological Genomics of Marine Picocyanobacteria[J]. Microbiology and Molecular Biology Reviews, 2009 (2): 249-+.
    Scheihing R, Cardenas L, Nespolo R F, Krall P, Walz K, Kohshima S, Labarca P. Morphological and molecular analysis of centropagids from the high Andean plateau (Copepoda: Calanoidea)[J]. Hydrobiologia, 2010 (1): 45-52.
    Segawa R D, Aotsuka T. The mitochondrial genome of the Japanese freshwater crab, Geothelphusa dehaani (Crustacea : Brachyura): Evidence for its evolution viagene duplication[J]. Gene, 2005: 28-39.
    Shao R, Mitani H, Barker S C, Takahashi M, Fukunaga M. Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum[J]. J Mol Evol, 2005 (6): 764-73.
    Shao R F, Barker S C. The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta : thysanoptera): Convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes[J]. Molecular Biology and Evolution, 2003 (3): 362-370.
    Shao R F, Barker S C, Mitani H, Takahashi M, Fukunaga M. Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari : Acariformes)[J]. Journal of Molecular Evolution, 2006 (2): 251-261.
    Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection[J]. Bioinformatics, 2001 (12): 1246-1247.
    Simon C, Buckley T R, Frati F, Stewart J B, Beckenbach A T. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J]. Annual Review of Ecology Evolution and Systematics, 2006: 545-579.
    Smith J M, Smith N H. Recombination in animal mitochondrial DNA[J]. Molecular Biology and Evolution, 2002 (12): 2330-2332.
    Spears T, Abele L G. Branchiopod monophyly and interordinal phylogeny inferred from 18S ribosomal DNA[J]. Journal of Crustacean Biology, 2000 (1): 1-24.
    Spears T, Abele L G, Kim W. The Monophyly of Brachyuran Crabs - a Phylogenetic Study Based on 18s-Ribosomal-Rna[J]. Systematic Biology, 1992 (4): 446-461.
    Spivak E D, Schubart C D. Species status in question: A morphometric and molecular comparison of Cyrtograpsus affinis and C. altimanus (Decapoda, Brachyura, Varunidae)[J]. Journal of Crustacean Biology, 2003 (1): 212-222.
    Stocsits R R, Letsch H, Hertel J, Misof B, Stadler P F. Accurate and efficient reconstruction of deep phylogenies from structured RNAs[J]. Nucleic Acids Research, 2009 (18): 6184-6193.
    Stoeckle M. Taxonomy, DNA, and the bar code of life[J]. Bioscience, 2003 (9): 796-797.
    Strausfeld N J. Brain organization and the origin of insects: an assessment[J]. Proceedings of the Royal Society B-Biological Sciences, 2009 (1664): 1929-1937.
    Taanman J W. The mitochondrial genome: structure, transcription, translation and replication[J]. Biochimica Et Biophysica Acta-Bioenergetics, 1999 (2): 103-123.
    Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007 (8): 1596-1599.
    Taniguchi M, Kanehisa T, Sawabe T, Christen R, Ikeda T. Molecular phylogeny of Neocalanus copepods in the subarctic Pacific Ocean, with notes on non-geographical genetic variations for Neocalanus cristatus[J]. Journal of Plankton Research, 2004 (10): 1249-1255.
    Telford M J, Wise M J, Gowri-Shankar V. Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: Examples from the bilateria[J]. Molecular Biology and Evolution, 2005 (4): 1129-1136.
    Thum R A, Derry A M. Taxonomic implications for diaptomid copepods based on contrasting patterns of mitochondrial DNA sequence divergences in four morphospecies[J]. Hydrobiologia, 2008 (1): 197-207.
    Thum R A, Harrison R G. Deep genetic divergences among morphologically similar and parapatric Skistodiaptomus (Copepoda: Calanoida: Diaptomidae) challenge the hypothesis of Pleistocene speciation[J]. Biological Journal of the Linnean Society, 2009 (1): 150-165.
    Timmermans M J, Roelofs D, Marien J, van Straalen N M. Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers[J]. BMC Evol Biol, 2008: 83.
    Tinn O, Oakley T H. Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea)[J]. Molecular Phylogenetics and Evolution, 2008 (1): 157-167.
    Tjensvoll K, Hodneland K, Nilsen F, Nylund A. Genetic characterization of the mitochondrial DNA from Lepeophtheirus salmonis (Crustacea : Copepoda). A new gene organization revealed[J]. Gene, 2005 (2): 218-230.
    Tobe K, Meyer B, Fuentes V. Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach[J]. Polar Biology, 2010 (3): 407-414.
    Tsagkogeorga G, Turon X, Hopcroft R R, Tilak M K, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery E J P, Delsuc F. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models[J]. Bmc Evolutionary Biology, 2009: -.
    Tsyganov-Bodounov A, Hayward P J, Porter J S, Skibinski D O F. Bayesian phylogenetics of Bryozoa[J]. Molecular Phylogenetics and Evolution, 2009 (3): 904-910.
    Turner P C, Mclennan A G, Bates A D, White M R H. Molecular Biology (second edition)[M]. BIOS Scientific, 2003.
    Ueda H, Bucklin A C. Acartia (Odontacartia) ohtsukai, a new brackish-water calanoid copepod from Ariake Bay, Japan, with a redescription of the closely related A-Pacifica from the Seto Inland Sea[J]. Hydrobiologia, 2006: 77-91.
    Unal E, Frost B W, Armbrust V, Kideys A E. Phylogeography of Calanus helgolandicus and the Black Sea copepod Calanus euxinus, with notes on Pseudocalanus elongatus (Copepoda, Calanoida)[J]. Deep-Sea Research PartIi-Topical Studies in Oceanography, 2006 (17-19): 1961-1975.
    Uye S. Why does Calanus sinicus prosper in the shelf ecosystem of the Northwest Pacific Ocean?[J]. Ices Journal of Marine Science, 2000 (6): 1850-1855.
    Uye S, Aoto I, Onbe T. Seasonal population dynamics and production of Microsetella norvegica, a widely distributed but little-studied marine planktonic harpacticoid copepod[J]. Journal of Plankton Research, 2002 (2): 143-153.
    Van de Peer Y, Baldauf S L, Doolittle W F, Meyer A. An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances[J]. Journal of Molecular Evolution, 2000 (6): 565-576.
    
    Vences M, Freyhof J, Sonnenberg R, Kosuch J, Veith M. Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar[J]. Journal of Biogeography, 2001 (9): 1091-1099.
    Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. Aflp - a New Technique for DNA-Fingerprinting[J]. Nucleic Acids Research, 1995 (21): 4407-4414.
    Wang R, Zuo T, Wang K. The Yellow Sea cold bottom water - an oversummering site for Calanus sinicus (Copepoda, Crustacea)[J]. Journal of Plankton Research, 2003 (2): 169-183.
    Wang S W, Li C L, Sun S, Ning X R, Zhang W C. Spring and autumn reproduction of Calanus sinicus in the Yellow Sea[J]. Marine Ecology-Progress Series, 2009: 123-133.
    Wang Y J, Wu S Q, Lin W H, Yang Z H, Wu H M, Shi C B, Pan H J. [Relationships among planktons DNA sequence diversity, water quality and fish diseases in Siniperca chuatsi ponds][J]. Ying Yong Sheng Tai Xue Bao, 2007 (1): 163-8.
    Ward R D. DNA barcode divergence among species and genera of birds and fishes[J]. Molecular Ecology Resources, 2009 (4): 1077-1085.
    Weising K, Gardner R C. A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms[J]. Genome, 1999 (1): 9-19.
    William J, Ballard O, Kreitman M. Is Mitochondrial-DNA a Strictly Neutral Marker[J]. Trends in Ecology & Evolution, 1995 (12): 485-488.
    Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic-Markers[J]. Nucleic Acids Research, 1990 (22): 6531-6535.
    Wilson D N, Nierhaus K H. The ribosome through the looking glass[J]. Angewandte Chemie-International Edition, 2003 (30): 3464-3486.
    Wolstenholme D R. Animal Mitochondrial-DNA - Structure and Evolution[J]. International Review of Cytology-a Survey of Cell Biology, 1992: 173-216.
    Xia X H, Xie Z, Kjer K M. 18S ribosomal RNA and tetrapod phylogeny[J]. Systematic Biology, 2003 (3): 283-295.
    Xie Q, Tian X X, Qin Y, Bu W J. Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment[J]. Molecular Phylogeneticsand Evolution, 2009 (2): 310-316.
    Xu W, Jameson D, Tang B, Higgs P G. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes[J]. Journal of Molecular Evolution, 2006 (3): 375-392.
    Yang Z H. On the best evolutionary rate for phylogenetic analysis[J]. Systematic Biology, 1998 (1): 125-133.
    Yang Z H. PAML 4: Phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 2007 (8): 1586-1591.
    Yu Z N, Wei Z P, Kong X Y, Shi W. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of "Tandem duplication-random loss" for genome rearrangement in Crassostrea?[J]. Bmc Genomics, 2008: -.
    Zeller M, Reusch T B, Lampert W. Small effective population sizes in two planktonic freshwater copepod species (Eudiaptomus) with apparently large census sizes[J]. J Evol Biol, 2008 (6): 1755-62.
    Zhang D X, Hewitt G M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies[J]. Biochemical Systematics and Ecology, 1997 (2): 99-120.
    Zhang W C, Tang D L, Yang B, Gao S W, Sun J, Tao Z C, Sun S, Ning X R. Onshore-offshore variations of copepod community in northern South China Sea[J]. Hydrobiologia, 2009 (1): 257-269.
    Zhou J Z, Davey M E, Figueras J B, Rivkina E, Gilichinsky D, Tiedje J M. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA[J]. Microbiology-Uk, 1997: 3913-3919.
    白晶,张月学,杨冬鹤,徐香玲,李集临.几种重要的分子标记原理及Rapd应用[J].哈尔滨师范大学自然科学学报, 2004 (5): 89-91.
    毕洪生,孙松,高尚武,张光涛.渤海浮游动物群落生态特点Ⅱ.桡足类数量分布及变动[J].生态学报, 2001 (002): 177-185.
    曹文清,林元烧,杨青,李少菁.我国中华哲水蚤生物学研究进展[J].厦门大学学报:自然科学版, 2006 (A02): 54-61.
    曹文清,杨明,谭树华,林元烧,郭东晖.中华哲水蚤不同地理种群苹果酸脱氢酶(MDH)的比较[J].海洋科学, 2002 (008): 18-20.
    陈清潮.中国海洋生物多样性的现状和展望[J].生物多样性, 1997 (002): 142-146. 陈清潮,章淑珍.黄海和东海的浮游桡足类I.哲水蚤目[J].海洋科学集刊,科学出版社, 1965: 20—131.
    陈晓峰.我国近海精致真刺水蚤(Euchaeta concinna)和中华哲水蚤(Calanus sinicus)遗传多样性的研究[D].中国海洋大学, 2008.
    崔建丽.黄,东海几种桡足类的遗传多样性研究[D].中国海洋大学, 2007.
    黄加祺,李少菁,陈钢.台湾海峡及其邻近海域中华哲水蚤的分布和繁殖[J].海洋科学集刊, 2002.
    李少菁,许振祖,黄加祺,曹文清,陈钢,柯才焕,陈丽华.海洋浮游动物学研究[J].厦门大学学报(自然科学版), 2001 (2).
    林元烧.中华哲水蚤种群遗传学研究[D].厦门:厦门大学, 2005: 128.
    林元烧,方旅平,曹文清,李少菁.中华哲水蚤线粒体DNA COI基因序列分析[J].厦门大学学报:自然科学版, 2005 (001): 90-93.
    刘迟迟.中国东南沿海两种常见纺锤水蚤的分子系统学研究[D].厦门大学, 2007.
    刘迟迟,林元烧,曹文清,方旅平.厦门港两种纺锤水蚤mtCOl序列比较研究[J]. Journal of Xiamen University (Natural Science), 2008 (3).
    刘光兴,林坚.遗传标记技术在海洋桡足类生物多样性和系统发生研究中的应用[J].中国海洋大学学报(自然科学版), 2007 (1).
    刘瑞玉.中国海洋生物名录[M].北京:科学出版社, 2008.
    龙华,郑英,陈建武,张燕,余其兴.生命科学研究中的标记技术[J].包头医学院学报, 2006 (1): 102-109.
    彭国祥.鲢,鳙鳃部寄生鲢中华鳋线粒体基因组研究[D].华中农业大学, 2008. 苏纪兰,袁业立.中国近海水文[M].海洋出版社, 2005.
    孙松,唐启升.海洋生态学研究现状与发展趋势[J].海洋与湖沼, 2002 (5): 1-9. 谭树华,曹文清,林元烧,王桂忠,李少菁.海洋浮游甲壳类分子系统学研究进展[J].海洋通报, 2003 (05): 71-77.
    谭树华,林元烧.黄,东海中华哲水蚤种群遗传的初步研究Ⅰ:等位酶分析[J]. 厦门大学学报:自然科学版, 2003 (001): 87-91.
    唐启升,苏纪兰,孙松,张经,黄大吉,金显仕,全龄.中国近海生态系统动力学研究进展[J].地球科学进展, 2005 (12): 1288-1299.
    张芳,孙松.中华哲水蚤生态学研究进展[J].海洋科学, 2001 (011): 16-19.
    张太平.分子标记及其在生态学中的应用[J].生态科学, 2000 (1): 51-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700