指状许水蚤与赤潮微藻相互作用的实验生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游动物作为浮游植物和渔业生产的中间连接环节在海洋生态系统中扮演着重要的角色。海洋浮游动物对于赤微潮藻具有一定的潜在调控作用,浮游动物的摄食和数量变化将直接影响到浮游植物的种类、生长和数量,对有害赤潮的发生、发展过程有着重要的影响作用;反过来,有害赤潮微藻又会影响浮游动物的存活、生殖、生长和摄食等生理过程,从而对浮游动物的种群数量和发展产生不利作用。研究浮游植物和浮游动物的相互作用对揭示海洋生态系统的物质循环和能量流动过程有着重要意义。本文以海洋桡足类生物指状许水蚤(Schmackeria inopinus Burckhardt,1913)以及四种海洋赤潮微藻--塔玛亚历山大藻(Alexandrium tamarense)、东海原甲藻(Prorocentrum donghaiense Lu)、赤潮异弯藻(Heterosigma akashiwo)和中肋骨条藻(Skeletonema costatum)为实验生物,在实验生态条件下系统的研究了二者之间的相互作用,并对可能的作用机理进行了探讨,结果发现:
     1.指状许水蚤对四种赤潮微藻的摄食作用
     指状许水蚤对四种赤潮微藻:塔玛亚历山大藻、东海原甲藻、赤潮异弯藻和中肋骨条藻的摄食率呈现出一定的差异性:指状许水蚤对中肋骨条藻的摄食率相对较大,对塔玛亚历山大藻和东海原甲藻具有一定的摄食潜力,对赤潮异弯藻基本不摄食。按摄食率的高低排序依次为:中肋骨条藻>塔玛亚历山大藻>东海原甲藻>赤潮异弯藻。
     指状许水蚤雌体和雄体对四种赤潮微藻摄食率同样体现出一定差异性:雌体对塔玛亚历山大藻、东海原甲藻和中肋骨条藻的摄食率明显高于雄体,但二者对于赤潮异弯藻的摄食率差异不明显。
     2.指状许水蚤对四种赤潮微藻种群动态的影响
     指状许水蚤的加入能明显改变共培养体系中东海原甲藻、塔玛亚历山大藻和中肋骨条藻的种群增长规律:与对照组相比,三种微藻种群进入指数生长期和稳定期的时间延迟,种群最大细胞密度降低(P<0.05),这种影响随着指状许水蚤数量的增加而愈加明显;指状许水蚤对赤潮异弯藻种群动态没有明显的影响,与对照组相比,赤潮异弯藻种群密度变化较小(P>0.05),种群增长规律也基本类似。
     3.赤潮微藻对指状许水蚤生殖、生长和发育的影响
     四种赤潮微藻:赤潮异弯藻、东海原甲藻、塔玛亚历山大藻和中肋骨条藻均能够延迟指状许水蚤的抱卵时间和降低抱卵率,延长其卵囊发育所需要的时间和抱卵间隔(P<0.05)。与对照组相比,四种赤潮微藻对指状许水蚤的生长没有明显的影响(P>0.05),但是明显抑制了指状许水蚤发育的进程,延长了指状许水蚤从NⅡ期到成体所需的整个发育时间和每个发育阶段所需的时间(P<0.01)。四种赤潮微藻相比,赤潮异弯藻对指状许水蚤生殖和发育的抑制作用最明显,其次是东海原甲藻和塔玛亚历山大藻,中肋骨条藻相对不明显。
     赤潮异弯藻的四种组分:藻细胞破碎液、藻细胞过滤液、藻细胞再悬液和藻细胞液不但能够延迟指状许水蚤的抱卵时间,还能抑制其抱卵率,与对照组相比差异显著(P<0.05);藻细胞过滤液、藻细胞再悬液和藻细胞液能显著延长指状许水蚤卵囊发育所需时间和抱卵间隔时间(P<0.05),但藻细胞破碎液的作用并不明显(P>0.05)。四种组分对指状许水蚤生长的影响作用不明显(P>0.05),但对指状许水蚤的发育影响显著(P<0.05):一方面抑制了指状许水蚤发育的进程;另一方面延长了从一个时期发育到下一个时期所需的时间,其中藻细胞液对生殖和发育的抑制作用最明显,其次是藻细胞再悬液和藻细胞过滤液,藻细胞破碎液的影响相对较小。
     4.赤潮微藻对指状许水蚤种群数量的影响
     单养条件下,塔玛亚历山大藻和东海原甲藻能够抑制与其共培养的指状许水蚤的种群增长,与对照组相比种群数量增加缓慢,藻密度越高,抑制作用越明显,呈现出较明显的密度依赖性;中肋骨条藻对指状许水蚤种群数量的增长有一定的抑制作用,在2x104 cells mL-1--20x104 cells mL-1密度范围内,随着中肋骨条藻密度的增加,抑制作用减弱,当密度达到30x104 cells mL-1时,抑制作用明显增强。与上述三种微藻不同,在不同藻密度的赤潮异弯藻作用下,指状许水蚤种群数量不但没有增加,反而出现了降低的现象,并且随着藻密度的提高,种群数量降低越明显,显示赤潮异弯藻对指状许水蚤有较明显的致死效应。
     在塔玛亚历山大藻和东海原甲藻的混养体系中,二者起始密度比例的不同(8:5、1:1和5:8)并没有引起指状许水蚤种群数量的变化;随着培养时间的延长,三个起始密度比例下指状许水蚤种群数量均持续增加,但不同密度比例组之间种群数量的差异不显著(paired r-test, P> 0.05)。在中肋骨条藻和赤潮异弯藻的混养体系中,二者的起始接种密度比例对指状许水蚤实验种群数量的影响具有明显的差异,体系中中肋骨条藻所占的比例越高,对指状许水蚤种群的增长越有利。
     5.赤潮异弯藻对指状许水蚤抗氧化活性的影响
     赤潮异弯藻可使共培养体系中指状许水蚤的超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)和谷胱甘肽过氧化物酶(Gpx)的活性降低,而且,随着藻密度的提高,其活性下降愈加明显,与对照组比较差异显著(P<0.05);赤潮异弯藻还能够导致指状许水蚤的二种抗氧化因子类胡萝卜素(CAR)和谷胱甘肽(GSH)含量的下降(P<0.05),总抗氧化活性(Total antioxidant, TA)与对照组相比也有显著的降低(P<0.05)。同期对活性氧(ROS)的检测结果表明,赤潮异弯藻作用能导致指状许水蚤体内ROS含量的增高并贯穿于整个实验过程中;随着起始微藻密度的提高,指状许水蚤体内的ROS明显提高,并且膜脂过氧化程度(MDA含量)也有相应的升高,与对照组比较差异显著(P<0.05),说明在此条件下指状许水蚤体内产生了氧化胁迫(oxidative stress)。
     6.赤潮异弯藻对指状许水蚤生殖、发育和种群数量影响的机制分析
     综合分析本文的研究结果,我们推测赤潮异弯藻对指状许水蚤的生殖、发育和种群数量影响的机制可能为,在培养体系中,赤潮异弯藻分泌了某种有毒物质(他感物质),有毒物质一方面直接对蚤体产生毒害作用,另一方面,在有毒物质的胁迫作用下,指状许水蚤的抗氧化系统的活性下降,引起指状许水蚤ROS清除能力的降低,打破了其体内活性氧产生和清除之间的动态平衡,使得ROS在指状许水蚤体内大量积累;大量积累的ROS引起了膜脂过氧化作用加强,进一步对生物体的各项生理功能产生伤害。这种直接和间接伤害作用共同导致了指状许水蚤生理机能的异常,最终表现为生殖、发育和种群发展的抑制。
Zooplankton plays an important role in marine ecosystems as a key loop between phytoplankton and fish. Marine zooplankton has a potentially regulatory effect on bloom-forming microalgae. Its feeding activity and population fluctuation directly affect the microalgal species, growth and population size, and then remarkably influence the occurrence and development of harmful algal blooms (HABs). One the other hand, bloom-forming microalgae will affect the zooplankton's survival, reproduction, growth and feeding activity, and thus exert adverse effect on its population size and development. Therefore, a research on the interaction between phytoplankton and zooplankton is of important meaning to illuminate the processes of matter cycle and energy flow of marine ecosystem. In present study, the interactions among Schmackeria inopinus (Burckhardt,1913) and four species of bloom-forming microalgae (Alexandrium tamarense, Prorocentrum donghaiense, Heterosigma akashiwo and Skeletonema costatum) were investigated under controlled laboratory conditions, and the possible effective mechanism was discussed. Results showed that:
     1. Feeding activities of S. inopinus on four species of bloom-forming microalgae
     Feeding rates of S. inopinus differed significantly when fed on A tamarense, P. donghaiense, H. akashiwo and S. costatum in co-culture. S. inopinus was preferred to S. costatum, while presented a certain feeding rates on A. tamarense and P. donghaiense, but almost not fed on H. akashiwo. The feeding selectivity was:S. costatum> A. tamarense> P. donghaiense> H. akashiwo.
     Feeding rates of male and female S. inopinus were different: The feeding rates of female ones were higher than those of male when fed on A. tamarense, P. donghaiense and S. costatum, but no difference was observed between male and female when fed on H. akashiwo.
     2. Influences of S. inopinus on population dynamics of bloom-forming microalgae in co-culture
     S. inopinus showed significantly influences on population dynamics of P. donghaiense, A. tamarense and S. costatum in co-cultures. The addition of S. inopinus not only regulated the population growth, but also decreased the microalgal population density (P< 0.05):The time at which microalgal population achieving exponential growth phase and platform phase delayed, and the maximum cell density obviously decreased (P< 0.05) in the co-culture as compared with that in the control growing in the mono-culture. The changes became more remarkable with the increaseed amount of S. inopinus. In contrast, S. inopinus had no obvious effect on the growth and cell density of H. akashiwo in the co-culture and almost no significance was observed as compared with the control group (P> 0.05). This result further demonstrated that S. inopinus almost didn't feed on H. akashiwo.
     3. Influences of bloom-forming microalgae on reproduction, growth and development of S. inopinus in co-culture
     All the four bloom-forming microalgae (A. tamarense, P. donghaiense, H. akashiwo and S. costatum) delayed the egg-carrying time, decrease the egg mass rate, and prolonged the duration of egg mass development and the interval of egg carrying of S. inopinus as compared to the control (P< 0.05). However, the tested microalgae had no obvious influence on the growth of S. inopinus (P> 0.05) while significantly restrained the development of S. inopinus and prolonged the duration from N II stage to adult and the duration time of each larval stage as compared to the control which cultured in normal conditions (P< 0.01). Among the microalgae, H. akashiwo showed the strongest inhibitory effect on reproduction and development of S. inopinus followed by P. donghaiense and A. tamarense. S. costatum showed little inhibition as compared to the other three.
     Four components of H. akashiwo (water extracts, culture medium filtrate, re-suspended cells and microalgal culture medium) not only delayed the egg-carrying time, but also led to restrain of egg carrying (P< 0.05). The cell-free water extracts had no obvious effects on prolonging the duration time of egg mass development and the interval of reproduction (P> 0.05); however, the culture medium filtrate, re-suspended cells and algal medium significantly prolonged the duration time of egg mass development and the interval of reproduction as compared to the control (P< 0.05). These four components had little effect on the growth of S. inopinus (P> 0.05), but significantly affected the development of S. inopinus (P< 0.05). On one hand, the four components presented inhibitory effects on developmental process of S. inopinus, and prolonged duration time of each developmental stage, among which microalgal culture medium showed the strongest inhibitory effects on reproduction and development, re-suspended cells and culture medium filtrate had stronger one than that of extracts from disrupted cells.
     4. Influences of bloom-forming microalgae on the population quantity of S. inopinus
     Under controlled laboratory conditions, A. tamarense and P. donghaiense inhibited the growth of S. inopinus resulting in a decreased growth rate and the inhibitory effect, and the inhibition increased accordingly with the initial microalgal density increasing. The population quantity of S. inopinus decreased significantly with the increase of H. akashiwo density in the co-culture, and the decrease was density-dependent, inferring that H. akashiwo present a lethal effect on S. inopinus in the co-culture. S. costatum had inhibitory effect on population growth of S. inopinus. The inhibitory effect decreased with the increase when cell density of S. costatum was set at the range from 2×104 cells ml-1 to 20x10 cells ml-1, but the inhibition was obviously increased when the density was set at 30x104 cells ml-1.
     In microalgal co-culture systems, the population fluctuation of S. inopinus did not depend on the density ratio of A. tamarense to P. donghaiense. Along with culture time, the population quantity of S. inopinus constantly increased at three density ratios (8:5,1:1 and 5:8), but no obvious difference of population density was observed among the three density ratios (P> 0.05). Under co-culture systems of H. akashiwo and S. costatum, the population fluctuation of S. inopinus remarkably depended on the microalgal density ratio, and the growth rate of population quantity of S. inopinus increased with the increase in the ratio of S. costatum/ H. akashiwo.
     5. Influence of H. akashiwo on the antioxidant system of S. inopinus
     H. akashiwo decreased the activities of superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (Gpx), the enzymatic activities decreased with the increase of microalgae density (P< 0.05). Likewise, H. akashiwo decreased the contents of two antioxidant metabolites (CAR and GSH) (P< 0.05), and the total antioxidant activity was greatly inhibited as compared to the control (P< 0.05).
     The effect of H. akashiwo led to a significant accumulation of reactive oxygen species (ROS), and the generation of ROS was observed throughout the whole culture process. ROS content elevated with the increase in microalgal density, and was significantly higher than that in control groups (P< 0.05). simutaneous analysis on the malonaldehyde (MDA) showed that S. inopinus were subjected to a serious peroxidative stress of membrane lipid.
     6. The possible mechanism of H. akashiwo on reproduction, development and population dynamics of S. inopinus
     When considered the results as a whole, we conjectured the possible mechanism of H. akashiwo on reproduction, development and population quantity of S. inopinus. In co-culture system, H. akashiwo secreted toxic substance (allelopathy) which caused direct injuries on S. inopinus. On the other hand, the activities of antioxidant enzymes and the antioxidant metabolites contents decreased when exposed to these toxic substances, resulting in a decrease in total antioxidant activity. Furthermore, the decease led to the over-production of ROS, and the overwhelming ROS could break the ROS homeostasis in S. inopinus and initiate the membrane lipid peroxidation which could be characterized by the increase of MDA. It decreased the antioxidant system activities thereafter, which further aggravated the oxidative stress. ROS-mediated oxidative stress might be the possible mechanisms that damage the growth and reproduction of S. inopinus in the co-culture, and the allelochemicals secreted by the bloom-forming microalga was the original reason.
引文
董云伟,牛翠娟,杜丽.饲料蛋白水平对罗氏沼虾(Macrobrachium rosenbergii)生长和消化酶活性的影响.北京师范大学学报(自然科学版),2001,37(1):96-99.
    范德朋,潘鲁青,肖国强等.温度、pH对缢蛏(Sinonovacula constricta)消化酶活力的影响.海洋湖沼通报,2003,4:69-73.
    付新华,孙谧,孙世春.大菱鲆消化酶的活力.中国水产科学,2005,12(1):26-32.
    高亚辉,林波.几种因素对太平洋纺锤水蚤室内培养的研究.厦门大学学报(自然科学版),1999,38(5):751-757.
    李超伦,王克.植食性浮游桡足类摄食生态学研究进展.生态学报,2002,22(4):593-596.
    李少菁,汤 鸿,王桂忠.锯缘青蟹幼体消化酶活力昼夜节律的实验研究.厦门大学学报(自然科学版),2000,39(6):831-836.
    潘鲁青,刘泓宇,肖国强.甲壳动物幼体消化酶研究进展.中国水产科学,2006,13(3):492-501.
    孙军,刘东艳,王宗灵,朱明远.浮游动物摄食在赤潮生消过程中的作用.生态学报2004,24(7):1514-1522.
    唐启升,苏纪兰.中国海洋生态系统动力学研究.1.关键科学问题与研究发展战略.北京:科学出版社,2000,75-109.
    汤鸿,李少菁.桡足类消化酶活力的影响因子.生态学杂志,1994,13(1):45-50.
    王荣,孙松.卤虫摄食的实验研究Ⅰ.对食物粒度的选择性清滤率和摄食率.实验海洋生物学开放实验室学术年报,1991第1期,青岛海洋大学出版社,88-97.
    王宏田,张培军.牙鲆体内消化酶活性的研究.海洋与湖沼,2002,33(5):472-476.
    王丽平.有害赤潮藻对海湾扇贝(Argopecten irradians)早期发育和褶皱臂尾轮虫(Brachionus plicatilis)种群数量的影响.中国科学院海洋研究所博士论文,2004:5-8.
    王丽平,颜天,谭志军等.塔玛亚历山大藻和东海原甲藻对褶皱臂尾轮虫种群数量的影响.应用生态学报,2003,14(7):1151-1155.
    王 岩,张鸿雁.海水实验围隔中桡足类对海洋原甲藻摄食的研究.应用生态学报,1999,10(4):189-191.
    吴众望,潘鲁青,董双林.9种金属离子对缢蛏消化酶活力的影响.中国水产科学,2003,10(4):297-300.
    邢小丽,高亚辉,林荣澄.赤潮藻对桡足类摄食、产卵及孵化影响的研究进展.台湾海峡,2003,22(3):369-376.
    颜天,周名江,傅萌等.赤潮异湾藻毒性及毒性来源的初步研究.海洋与湖沼,2003,34(1):50-55.
    张武昌.浮游动物现场摄食压力的研究方法.海洋科学1998,19(2):17-19.
    赵文,董双林.盐碱池塘细巧哲水蚤对浮游植物的摄食生态研究.生态学报,2002,22(5):682-687.
    郑小衍,郑重.桡足类大颚齿缘与摄食机制关系研究.海洋与湖沼,1989,20:308-313.
    Adams J A, Seaton D D, Buchanan J B, et al. Biological observations associated with the toxic phytoplankton bloom of the East Coast.Nature,1968,220:24-25.
    Alstyne K L. Effects of phytoplankton taste and smell on feeding behavior of the copepod Centropages hamatus. Marine Ecology-Progress Series,1986,34:187-190.
    Bagoien E, Miranda A, Reguera B, et al. Effects of two paralytic shellfish toxin producing dinoflagellates on the pelagic harpacticoid copepod Euterpina acutifrons. Marine Biology,1996, 126:361-369.
    Ban S, Burns C, Castel J, et al. The paradox of diatom-copepod interactions. Marine Ecology-Progress Series,1997,157:287-293.
    Bond R M. Digestive enzymes of the pelagic copepod Calanus finmarchicus. Biological Bulletin, 1934,67:461-465.
    Boyer G L, Sullivan J J, Andersen R J, et al. The assimilation of PSP toxins by the copepod Tigriopus californicus from dietary Protogonyaulax catenella. In: White D M, Baden AW, Gentien D G. (Eds.), Toxic Dinoflagellates. Elsevier, New York,1985, pp.407-412.
    Campbell RG, Runge JA, Durbin EG. Evidence for food limitation of Calanus finmarchicus production rates on the southern flank of Georges Bank during April 1997. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,2001,48:531-549.
    Chaudron Y, Poulet S A, Laabir M, Ianora A, Miralto A. Is hatching success of copepod eggs diatom-density dependent? Marine Ecology-Progress Series,1996,144,185-193.
    Colin S P, Dam H G. Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rate. Marine Ecology-Progress Series,2003,248:55-65.
    Conover R J. Feeding interactions in the pelagic zone. Rapp. P.-v Reun. Cons. Perm. Int. Explor. Mer.1978,173:66-76.
    Costa RM, Fernandez F. Feeding and survival rates of the copepods Euterpina acutifrons Dana and Acartia grani Sars on the dinoflagellates Alexandrium ninutum balech and Gyrodinium corsicum Paulmier and the Chryptophyta Rhaodomonas baltica Karsten. Journal of Experimental Marine Biology and Ecology,2002,273(2):131-142.
    Cox J L. Laminarinase induction in marine zooplankton and its variability in zooplankton samples. Journal of plankton Research,1981,3:345-356.
    Cox J L, Willason S W. Laminarinase induction in Calanus pacificus. Marine Biology Letter, 1981,2:307-311.
    Delgado M, Alcaraz M. Interations between red tide microalgae and herbivorous zooplankton:the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). Journal of Plankton Research,1999,21:2361-2371.
    Durbin E D, Teegarden G, Campbell R, Cembella A, Baumgartner M F, Mate B R. North Atlantic right whales, Eubalaena glacialis, exposed to paralytic shellfish poisoning (PSP) toxins via a zooplankton vector, Calanus finmarchicus. Harmful algae,2002,1:243-251.
    Dutz J. Repression of fecundity in the meritic copepod Acartia clausi exposed to the toxic dinoflagellate Alexandrium lusitanicum:relationship between feeding and egg production. Marine Ecology-Progress Series,1998,175:97-107.
    Fiedler P C. Zooplankt on avoidance and reduces grazing responses to Gymnodinium splendens (Dinophyceae). Limnology and oceanography,1982,27:961-965.
    Frost B W. Effects of size and concentration on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography,1972,17:805-815.
    Frost B W. Feeding processes at lower trophic levels in pelagic communities. In: The biology of the oceanic Pacific, Ed. By C.B. Miller. Oregon:State University Press.1974, pp59-77.
    Fryer G. The food of some freshwater cyclopoid copepods and its ecological significance. Journal of Animal Ecology,1957,26:263-286.
    Gill C W, Harris R P. Behavioural responses of the copepods Calanus helgolandicus and Temora longicornis to dinoflagellate diets. Journal of Marine Biology Associate of U K,1987, 67:785-801.
    Haney JF, Trout MA. Relationships between fecal pellet production and feeding in the calanoid copepod Boeckella. Journal of Plankton Research,1990,12:701-716.
    Hansen P J. Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodium aureolum in monoculture and in mixture with a non-toxic alga. Marine Ecology-Progress Series,1995,121:65-72.
    Harris R P. Effect of algal diet on digestive enzyme activity in Calanus helgolandicus. Marine Ecology-Progress Series,1986,11(3):281-290.
    Harris R P. Zooplankton grazing on the coccolithophorid Emiliania huxleyi and its role in inorganic carbon flux. Mar. Biol.,1994,119:431-439.
    Hasler A D. The physiology of digestion in plankton crustacean. I. Further studies on the Digestive enzymes of (A). Daphnia and polyphemus, (B). Diaptomus and calanus. Biological Bulletin,1937,72:290-298.
    Hasset R P, Landry M R. Effects of food-level acclimation on digestive enzyme activities and feeding behavior of Calanus pacificus. Marine Biology,1983,75:47-55.
    Hasset R P, Landry M R. Effect of diet and starvation on digestive enzyme activity and feeding behavior of marine copepod Calanus pacificus. Journal of Plankton Research,1990,12(5): 991-1010.
    Head EH, Wang R and Conover RJ. Comparison of diurnal feeding rhythms in Temora longicornis and Centropages hamatus with digestive enzyme activity. J. Plankton Res.,1984,6(4):543-551.
    Hessen DO, de Lange HJ & van Donk E. UV induced changes in phytoplankton cells and its effects on grazers. Freshwat. Biol.,1997,37:513-524.
    Huntley M, Sykes P, Rohan S, et al. Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance. Marine Ecology-Progress Series,1986,28:105-120.
    Huntley M E. Yellow water in La Jolla Bay, Califormia, July 1980 II. suppression of zooplankton grazing. Journal of Experimental Marine Biology Ecology,1982,63:81-91.
    Huntley M E. Nonselective, nonsaturated feeding by three calanid copepod species in the Labrador Sea. Limnology,1981,26:831-842.
    Huntley M E & Lopez M G D. Temperature dependent production of marine copepods:a global synthesis. Amer. Nat.,1992 140:202-242.
    Huntley M E. Feeding biology of Calanus: a new perspective. Hydrobiologia,1988,167/168: 83-99.
    Ianora A, Poulet S A. The diatom Thalassiosi retotula affects reproductive success in the copepod Acartia clause. Marine Biology,1993,125:279-286.
    Ianora A, Poulet S A, Miralto A. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology,1995,121,533-539.
    Ianora A, Poulet S A, Miralto A, Grottoli R. The diatom Thalassiosira rotula affects reproductive success in the copepod Acartia clausi. Marine Biology,1996,125,279-286.
    Ives J D. The relationship between Gonyaulax tamarensis cell toxin levels and copepod ingestion rates. Anderson D M, White A W, Baden D G. Toxic Dinoflagellates. New York:Elsevier,1985, 413-418.
    Ives J D. Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. Journal of Experimental Marine Biology Ecology,1987,112:131-145.
    Kam W T, Hans G D. Phytoplankton inhibition of copepod egg hatching: test of an exudate hypothesis. Marine Ecology-Progress Series,2001,209,197-202.
    Karentz D, Bothwell ML, Coffin RB, Hanson A, Herndl GJ, Kilham SS, Lesser MP, Lindell M, Moeller RE, Morris DP, Neale PJ, Sanders RW, Weiler CS & Wetzel RG. Impact of UV-B radiation on pelagic freshwater ecosystems:report of working group on bacteria and phytoplankton. Arch. Hydrobiol. Beih.,199443:31-69.
    Kim D, Sato Y, Oda T, et al. Specific toxic effect of dinoflagellate Heterocapsa circularisquama on the rotifer Brachionus plicatilis. Bioscience Biotechology Biochemistry,2000, 64(12):2719-2722.
    Laabir M, Buttino I, Ianora A, et al. Effect of specific dinoflagellate and diatom diets on gamete ultrastructure and fatty acid profiles of the copepod Temora stylifera. Marine Biology,2001, 138:1241-1250.
    Laabir M, Poulet S A, Ianora A, Miralto A, Cueff A. Reproductive response of Calanus helgolandicus. Ⅱ. In situ inhibition of embryonic development. Marine Ecology-Progress Series, 1995,129,97-105.
    Landry MR, Hasset RP. Estimating the grazing impact of marine micro-zooplankton. Marine Biology,1982,67:283-288.
    Liu S, Wang W. Feeding and reproductive reponses of marine copepods in South China Sea to toxic and nontoxic phytoplankton.Marine Biology,2002,40:595-603.
    Marshall SM, Orr AP. On the biology of Calanus finmarchicus. Ⅶ. Factors affecting egg production. Journal of marine biology Associate of U.K.,1952,30:527-548.
    Mayzaud P, Mayzaud O. The influence of food limitation on nutritional adaptation of marine zooplankton. Archiv fur hydrobiology:Beihefte:Erge bnisseder Limnologie,1985,21:223-233.
    Mayzaud P, Conover R J. Influence of potential food supply on the activity of digestive enzymes of neritic zooplankton. Proc.10th Eur. mar. Biol. Symp.1976,2:415-427. (Ed. By G. Persoone and E. Jaspers. Wetteren, Belgium:Universa Press)
    Mayzaud P, Poulet S A. The importance of the time factor in the response of zooplankton to varying concentrations of naturally occurring particulate matter. Limnology and oceanography, 1978,23:1144-1154.
    McClatchie S. Functional response of the euphausid Thysanoessa raschii grazing on small diatoms and toxic dinoflagellates. Journal of Marine Research,1988,46:631-646.
    Mclaren I A. Generation lengths of some temperate marine copepods:estimation prediction and implications. Journal of fishery Res Bd Can,1978,35:1330-1342.
    Mejanelle Laurence, Sanchez-Gargallo Angels, Bentaleb Ilhem et al. Long chain n-alkyl diols, hydroxy ketones and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and in Brachionus plicatilis feeding on the algae. Organic Geochemistry.2003,34(4):527-538.
    Miralto A, Romano G, Romano G, et al. The insidious effect of diatoms on copepod reproduction. Nature,1999,402:173-176.
    Morales CE, Harris RP, Head RN, Tranter PRG. Copepod grazing in the oceanic north-east Atlantic during a six week drifting station:the contribution of size calsses and vertical migrants. J. Plankton Res.,1993,15:185-211.
    Mullin MM, Brooks ER. Some consequences of distributional heterogeneity of phytoplankton and zooplankton. Limnol. Oceanogr.,1976,21:784-796.
    Nejstgaard J C, Gismervik I, Solberg P T. Feeding and reproduction by Calanus finmarchicus and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecology-Progress Series,1997,147:197-217.
    Ochs CA, Eddy LP. Effects of UV-A (320-399 nanometers) on grazing pressure of a marine heterotrophic nanoflagellate on strains of the unicellular cyanobacteria Synechococcus spp. Appl. Envir. Microbiol.,1998,64:287-293.
    Paffenhofer GA. Some characteristics of abundant subtropical copepods in estuarine, Shelf and ocean waters.-Proceedings of the Fourth International conference on Copepoda:Bull. Plankton Soc. Jap. Spec.,1991, p.201-216.
    Poulet S A, Laabir M, Ianora A, et al. Reproductive response of Calanus helgolandicus Ⅰ. abnormal embryonic and naupliar development. Marine Ecology-Progress Series,1995,129: 85-95.
    Poulet S A, Ianora A, Maralt o A, et al. Do diatoms arrest embryonic development in copepods. Marine Ecology-Progress Series,1994,111:79-86.
    Poulet S A. Seasonal grazing of Pseudocalanus minutus on particles. Marine Biology,1974,25: 109-123.
    Reitan Kjell I., Rainuzzo Jose R., Oie Gunvor et al. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture.1993,118(3-4): 257-275.
    Rioboo C., Prado R., Herrero C. et al. Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquatic Toxicology.2007,83(4):247-253.
    Schmid-Araya J. The effect of food concentration on the life histories of Brachionus plicatilis (O. F. M.) and Encentrum linnhei Scott. Archiv Fur Hydrobiologie,1991,121:87-102.
    Schmidt Kahler P, Bodungen B. Copepod egg production rates in the Pomeranian Bay (southern Baltic Sea) as a function of phytoplankton abundance and taxonomic composition. Marine Ecology-Progress Series,1998,174:183-195.
    Simonson S, Moller B L, Larsen J, et al. Haemolytic activity of Alexandrium tamarense cells. In: Lassus P, Arzul G, Erardle-Denn E, Gentien P, Marcailou-le Baut C (eds) Harmful marine algal blooms, Lavoisier, Paris,1995,513-517.
    Sykes P F, Huntley M E. Acute physiological reactions of Calanus pacificus to selected dinoflagellates:direct observations. Marine Biology,1987,94:19-24.
    Teegarden G J, Cembella A D. Grazing of toxic dinoflagellates, Alexandrium sp. by adult copepods of coastal Maine:implications for the fate of paralytic shellfish toxins in marine food webs. Journal of Experimental Marine Biology Ecology,1996,196:145-176.
    Teegarden G J. Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Marine Ecology-Progress Series,1999,181:163-176.
    Tobiesen A. Growth rates of Heterophrys marina (Heliozoa)on Chrysochromulina polylepis (Prymnesiophyceae). Ophelia,1991,3(3):205-212.
    Tomas C R, Deason E E. The influence of grazing by two Acartia species on Olisthodiscus luteus Carter. P.S.Z.N.I:Marine Ecology,1981,2:215-223.
    Turner JT., Tester P A. Zooplankton feeding ecology:bacterivory by metazoan microzooplankton. Journal of Experimental Marine Biology and Ecology.1992,160(2):149-167.
    Turner J T, Tester P A. Toxic marine phytoplankton, zooplankton grazers and pelagic food webs. Limnology and oceanography,1997,42:1203-1214.
    Turner J T, Tester P A, Hansen P J. Interactions between toxic marine phytoplankton and metazoan and protistan grazers. In: Anderson D M, Cembella A D, Hallegraeff GM ed. Physiological Ecology of Harmful Algal Blooms. Springer-Verlag Berlin Heidelberg, Germany, 1998,453-474.
    Turriff N, Runge J A, Cembella A D. Toxin accumulation and feeding behaviour of the planktonic copepod Calanus finmarchicus exposed to the red-tide dinoflagellate Alexandrium excavatum. Marine Biology,1995,123:55-64.
    Uye S. Impact of copepod grazing on the red-tide flagellate Chattonella antiqua. Marine Biology, 1986,123:55-64.
    Uye S. Induction of reproductive failure in the planktonic copepod Calanus pacificus by diatoms. Marine Ecology-Progress Series,1996,133:89-97.
    Uye S, Takamatsu K. Feeding interactions between planktonic copepods and red-tide flagellates from Japanese coastal waters. Marine Ecology-Progress Series,1990,59:97-107.
    van Donk, E. Defenses in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals. Aquat. Ecol.,1997,31:53-58.
    Verity PG. Grazing experiments and model simulations of the role of zooplankton in phaeocystis food webs. Journal of Sea Research,2000,43:317-413.
    Wang R, Li C, Wang K, et al. Feeding activities of zooplankton in Bohai Sea. Fish Oceanogr, 1998,7(3/4):265-271.
    Watras C J, Garcon V C, Olson R J, et al. The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis. Journal of Plankton Research,1985,6: 891-908.
    Yan T, Gerdts G, Elbrachter M, et al. Toxicity study of Alexandrium and Prorocentrum species on Artemia salina. Abstracts of Ⅷ International Conference on Harmful Algae, June, Vigo Spain, 1997,216.
    Yan Tian, Zhou Mingjiang, Fu Meng et al. Inhibition of egg hatching success and larvae survival of the scallop, Chlamys farreri, associated with exposure to cells and cell fragments of the dinoflagellate Alexandrium tamarense. Toxicon.2001,39(8):1239-1244.
    高亚辉,李松.种因素对真刺唇角水蚤摄食率的影响.厦门大学学报(自然科学版),1988,27(6):684-688.
    高亚辉,李松.瘦尾胸刺水蚤摄食率的观察实验.热带海洋,1990,9(3):59-65.
    江天久,杞 桑.广东深圳大鹏湾的桡足类腹刺纺锤水蚤对链状亚历山大藻摄食的研究.暨南大学学报(自然科学版),1994,15(3):99-105.
    王丽平.有害赤潮藻对海湾扇贝(Argopecten irradians)早期发育和褶皱臂尾轮虫(Brachionus plicatilis)种群数量的影响.中国科学院海洋研究所博士论文,2004:5-8.
    王 岩,张鸿雁.海水实验围隔中桡足类对海洋原甲藻摄食的研究.应用生态学报,1999,10(4):489-491.
    颜天,周名江,傅萌等.赤潮异湾藻毒性及毒性来源的初步研究.海洋与湖沼,2003,34(1):50-55.
    杨波,徐汉光.黄海主要桡足类的生物量.大连水产学院学报,1988,3(3-4):35-42.
    赵 文,宋青春,高 放.大连近海两种桡足类摄食生态的初步研究.大连水产学院学报,2002,17(1):8-14.
    Alstyne K L. Effects of phytoplankton taste and smell on feeding behavior of the copepod Centropages hamatus. Marine Ecology-Progress Series,1986,34:187-190.
    Delgado M, Alcaraz M. Interations between red tide microalgae and herbivorous zooplankton:the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). Journal of Plankton Research,1999,21:2361-2371.
    Frost B W. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus Pacificus. Limnology and Oceanography,1972,17: 805-815.
    Huntley M, Sykes P, Rohan S, et al. Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus:mechanism, occurrence and significance. Marine Ecology-Progress Series,1986,28:105-120.
    Ives J D. Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. Journal of Experimental Marine Biology Ecology,1987,112:131-145.
    Kim D, Sato Y, Oda T, et al. Specific toxic effect of dinoflagellate Heterocapsa circularisquama on the rotifer Brachionus plicatilis. Bioscience Biotechnology and Biochemistry,2000,64(12): 2719-2722.
    Kirk K L. Egg size, offspring quality and food level in planktonic rotifers. Fresh Water Biology, 1997,37:515-521.
    Laabir M, Buttino I, Ianora A, et al. Effect of specific dinoflagellate and diatom diets on gamete ultrastructure and fatty acid profiles of the copepod Temora stylifera. Marine Biology,2001, 138:1241-1250.
    Liu S, Wang W. Feeding and reproductive reponses of marine copepods in South China Sea to toxic and nontoxic phytoplankton.Marine Biology,2002,40:595-603.
    Marshall S M. Respiration and feeding in copepods. Advance of Marine Biology,1973,11: 57-120.
    Poulet S A. Comparison between five coexisting species of marine copepods feeding on naturally occurring particulate matter. Limnology and oceanography,1978,23(6):1126-1143.
    Sarma S S S, and Rao T R. Effect of food level on body size and egg size in a growing population of the rotifer Brachionus patulus Muller. Arch. Hydrobiol.,1987,111:245-253.
    Sykes P F, Huntley M E. Acute physiological reactions of Calanus pacificus to selected dinoflagellates:direct observations. Marine Biology,1987,94:19-24.
    Teegarden G J. Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Marine Ecology-Progress Series,1999,181:163-176.
    Tobiesen A. Growth rates of Heterophrys marina (Heliozoa)on Chrysochromulina polylepis (Prymnesiophyceae). Ophelia,1991,3(3):205-212.
    Tomas C R, Deason E E. The influence of grazing by two Acartia species on Olisthodiscus luteus Carter. P.S.Z.N.I:Marine Ecology,1981,2:215-223.
    Turriff N, Runge J A, Cembella A D. Toxin accumulation and feeding behaviour of the planktonic copepod Calanus finmarchicus exposed to the red-tide dinoflagellate Alexandrium excavatum. Marine Biology,1995,123:55-64.
    Turner J T, Anderson D M. Zooplankton grazing during dinoflagellate blooms ina cape cod embayment, with observations of predation upon tintinnids by copepods. Marine Ecology,1983, 4(4):359-374.
    Turner J T, Tester P A, Hansen P J. Interactions between toxic marine phytoplankton and metazoan and protistan grazers. In:Anderson D M, Cembella A D, Hallegraeff GM ed. Physiological Ecology of Harmful Algal Blooms. Springer-Verlag Berlin Heidelberg, Germany, 1998,453-474.
    Uye S. Impact of copepod grazing on the red-tide flagellate Chattonella antiqua. Marine Biology, 1986,123:55-64.
    Uye S, Takamatsu K. Feeding interactions between planktonic copepods and red-tide flagellates from Japanese coastal waters. Marine Ecology-Progress Series,1990,59:97-107.
    Xi Y L, Liu G Y, and Jin H J. Population growth, body size of two different strains of Brachionus calyciflorus Pallas (Rotifera) fed different algae. Journal of Freshwater Ecology,17(2): 185-190.
    Walz N, Rothbucher F. Effect of food concentration on body size, egg size and population dynamics of Brachionus angularis (Rotatoria). Verh Internat Verein Limnol,1991,24: 2750-2753.
    陈艳,王金秋,王阳,等.微囊藻毒素对褶皱臂尾轮虫的毒性效应和种群增长影响.中国环境科学.2002,22(3):198-201.
    高亚辉,林波.几种因素对太平洋纺锤水蚤摄食率的影响.厦门大学学报(自然科学版),1999,38(5):751-757.
    李金涛,赵卫红,杨登峰,王江涛.室内培养研究硝酸盐对中肋骨条藻生长的影响.海洋科学集锦.2004,(00):158-164.
    李铁,胡立阁,史致丽.营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响.2000,(01).46-52.
    李铁,史致丽,李俊,张金良.营养盐对中肋骨条藻和新月菱形藻部分生化组成和性质的影响.2000,(03).239-244.
    刘东艳,孙军,陈宗涛,魏天迪.不同氮磷比对中肋骨条藻生长特性的影响.2002,(02).3944.
    江天久,黄伟建,王朝晖,骆育敏,尹伊伟,杞桑.几种环境因子对塔玛亚历山大藻(大鹏湾株)生长及其藻毒力影响.应用与环境生物学报.2000,6(2):151-154.
    江天久,杞桑.广东深圳大鹏湾的桡足类腹刺纺锤水蚤对链状亚历山大藻摄食的研究.暨南大学学报(自然科学版),1994,15(3):99-105.
    孙 雷,杞 桑.桡足类刺尾纺锤水蚤(Acartia spinicauda)对海洋原甲藻(Prorocentrrum micans)摄食的研究.暨南大学学报(自然科学版),1993,14(3):74-79.
    孙军,刘东艳,王宗灵,朱明远.浮游动物摄食在赤潮生消过程中的作用.生态学报2004, 24(7):1514-1522.
    王丽平,颜天,谭志军,等.有害赤潮藻对浮游动物影响的研究进展.应用生态学报.2003,14(7):1191-1196.
    席贻龙,黄祥飞.温度对壶状臂尾轮虫实验种群动态的影响.海洋与湖沼.2000,31(1):23-28
    张杭君,张建英,陈英旭,蕉荔.微囊藻毒素含量与自然水体环境影响因子的相关性.环境科学.2006,27(10):1969-1973.
    赵 文,宋青春,高 放.大连近海两种桡足类摄食生态的初步研究.大连水产学院学报,2002,17(1):8-14.
    郑 重,李少菁,连光山.海洋桡足类生物学.厦门:厦门大学出版社,1992,234-292.
    Deason E E. Grazing of Acartia hudsonica (A. clausi) on Skeletonema costatum in Narragansett Bay, (USA): Influence of food concentration and temperature. Marine Biology,1980,60: 101-113.
    Doblin Martina A., Coyne Kathryn J., Rinta-Kanto Johanna M. et al. Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting the Great Lakes--implications for HAB invasion]. Harmful Algae.2007,6(4):519-530.
    Fernandez-Araiza Mario A., Sarma S. S. S., Nandini S. Combined Effects of Food Concentration and Temperature on Competition Among Four Species of Brachionus (Rotifera). Hydrobiologia. 2005,546(1):519-534.
    Ruscoe Ian M., Williams Graham R., Shelley Colin C. Limiting the use of rotifers to the first zoeal stage in mud crab (Scylla serrata Forskal) larval rearing. Aquaculture.2004,231(1-4):517-527.
    Stock Charles A., McGillicuddy Jr Dennis J., Anderson Donald M. et al. Blooms of the toxic dinoflagellate Alexandrium fundyense in the western Gulf of Maine in 1993 and 1994:A comparative modeling study. Continental Shelf Research.2007,27(19):2486-2512.
    Sotero-Santos Rosana Barbosa, Silva Carlos Roberto De Souza E., Verani Nelsy Fenerich et al. Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tiete River, Sao Paulo, Brazil). Ecotoxicology and Environmental Safety.2006,64(2):163-170.
    Samocha T. M., Uziel N., Browdy C. L. The effect of feeding two prey organisms, nauplii of Artemia and rotifers, Brachionus plicatilis (Muller), upon survival and growth of larval marine shrimp, Penaeus semisulcatus (de Haan). Aquaculture.1989,77(1):11-19.
    Turner Jefferson T., Borkman David G. Impact of zooplankton grazing on Alexandrium blooms in the offshore Gulf of Maine. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography.2005, 52(19-21):2801-2816.
    Turner J T, Tester P A. Toxic marine phytoplankton, zooplankton grazers and pelagic food webs. Limnology and oceanography,1997,42:1203-1214.
    Van der Stap Irene, Vos Matthijs, Mooij Wolf. Inducible defenses and rotifer food chain dynamics. Hydrobiologia.2007,593(1):103-110.
    Zhenxing Wu, Yinglin Zou, Mingyuan Zhu et al. Effects of toxic Alexandrium species on the survival and feeding rates of brine shrimp, Artemia salina. Acta Ecologica Sinica.2006,26(12): 3942-3947.
    储昭霞,席贻龙,徐晓平等.除草剂草甘膦对萼花臂尾轮虫生活史特征的影响.应用生态学报,2005,16(6):1142-1145.
    王丽平,颜天,谭志军等.塔玛亚历山大藻和东海原甲藻对褶皱臂尾轮虫种群数量的影响.应用生态学报,2003,14(7):1151-1155.
    王丽平,颜天,谭志军等.有害赤潮藻对浮游动物影响的研究进展.应用生态学报,2003,14(7):1]91-1196.
    席贻龙,黄祥飞,汪本勤等.环境因子对萼花臂尾轮虫种群动态的影响.安徽师范大学学报(自 然科学版),2000,23(4):334-338.
    邢小丽,高亚辉,林荣澄.赤潮藻对桡足类摄食、产卵及孵化影响的研究进展.台湾海峡,2003,22(3):369-376.
    颜 天,周名江,傅 萌等.赤潮异湾藻毒性及毒性来源的初步研究.海洋与湖沼,2003,34(1):50-55.
    周立红,王大志.塔玛亚历山大藻对褶皱臂尾轮虫实验种群动态的影响.应用与环境生物学报,2005,11(4):444-447.
    Awaiss A, Kestemont P. An investigation into the mass production of the freshwater rotifer Brachionus calyciflorus Pallas.2:Influence of temperature on the population dynamics. Aquaculture,1992,105:337-344.
    Colin S P, Dam H G. Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and reproduction of populations of the copepod Acartia hudsonica. Harmful Algae,2002,1:113-125.
    Day K, Kaushik N K. An assessment of the chronic toxicity of the synthetic pyrethriod, fenvalerate, to Daphnia galeatamendoate, using life table. Environmental Pollution,1987,13: 13-26.
    Delgado M, Alcaraz M. Interations between red tide microalgae and herbivorous zooplankton:the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). Journal of Plankton Research,1999,21:2361-2371.
    Dutz J. Repression of fecundity in the meritic copepod Acartia clausi exposed to the toxic dinoflagellate Alexandrium lusitanicum:relationship between feeding and egg production. Marine Ecology-Progress Series,1998,175:97-107.
    Hart RC. Copepod post-embryonic durations: pattern, conformity and predictability. The realities of isochronal and equiproportional development, and trends in the copepod-naupliar duration ratio. Hydrobiologia,1990,206:175-205.
    Huntley M, Sykes P, Rohan S, et al. Chemically-mediated rejection of dinoflagellate prey by. the copepods Calanus pacificus and Paracala nusparvus: mechanism, occurrence and significance. Marine Ecology-Progress Series,1986,28:105-120.
    Ianora A, Poulet S A, Miralto A. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology,1995,121:533-539.
    Kim D,Sato Y, Oda T,et al. Specific toxic effect of dinoflagellate Heterocapsa circularisquama on the rotifer Brachionus plicatilis. Bioscience Biotechnology and Biochemistry,2000,64(12): 2719-2722.
    Kiorboe T, Sabatini M. Scaling of fecundity, growth and development in marine planktonic copepods. Mar.Ecol.Prog.Ser.,1995 120:285-298.
    Peterson WT. Patterns in stage durations and development among marine and freshwater calanoid and cyclopoid copepod:a review of rules, physiological constraints, and evolutionary significance. Hydrobiologia,2001,453/454:91-105.
    Pourriot R. Les rotifers-biology. Aquaculture,1986,5:201-221.
    Rao T R, Sarma S S S. Demographic parameters of Brachionus patulus Muller (Rotifera) exposed to sublethal DDT concentrations at low and high food levels. Hydrobiologia,1986,139: 193-200.
    Sarma S S S, Nandini S. Life table demography and population growth of Brachionus variahilis Hempel.1896 in relation to Chlorella vulgaris densities. Hydrobiologia,2001,446/447:75-83.
    Schmid-Araya J. The effect of food concentration on the life histories of Brachionus plicatilis (O.F.M.) and Encentrum linnhei Scott. Arch. Hydrobiologia,1991,121:87-102.
    Teresa R P, Sarma S S S, Nandini S. Effects of Mercury on the life table demography of the rotifer Brachionus calyciflorus Pallas (Rotifera). Ecotoxicology,2004,13:535-544.
    Turner J T, Tester P A, Hansen P J. Interactions between toxic marine phytoplankton and metazoan and protistan grazers. In:Anderson DM, Cembella AD, Hallegraeff GM ed. Physiological Ecology of Harmful Algal Blooms. Springer-Verlag Berlin Heidelberg, Germany, 1998,453-474.
    Xi Y L, Hu H Y. Effect of thiophanate-methyl on the reproduction and survival of the freshwater rotifer Brachionus calyciflorus pallas. Bulletin of Environmental Contamination and Toxicology, 2003,71:722-728.
    韩 刚.东海大规模赤潮对中华哲水蚤和黑褐新糠虾的生态毒理学研究.中国科学院研究生院硕士学位论文,2006,1.
    江天久,杞桑.广东深圳大鹏湾的桡足类腹刺纺锤水蚤对链状亚历山大藻摄食的研究.暨南大学学报(自然科学版),1994,15(3):99-105.
    孙军,王小冬,宋书群.春季东海中华哲水蚤对有害藻华物种的选择性摄食.应用生态学报,2007,18(1):151-157.
    孙 雷,杞 桑.桡足类刺尾纺锤水蚤(Acartia spinicauda)对海洋原甲藻(Prorocentrum micans)摄食的研究.暨南大学学报(自然科学版),1993,14(3):74-79.
    王 岩,张鸿雁.海水实验围隔中桡足类对海洋原甲藻摄食的研究.应用生态学报,1999,10(4):489-491.
    王丽平,颜天,谭志军等.塔玛亚历山大藻和东海原甲藻对褶皱臂尾轮虫种群数量的影响.应用生态学报,2003,14(7):1151-1155.
    王丽平,颜天,谭志军等.有害赤潮藻对浮游动物影响的研究进展.应用生态学报,2003, 14(7):1191-1196.
    王丽平.有害赤潮藻对海湾扇贝(Argopecten irradians)早期发育和褶皱臂尾轮虫(Brachionus plicatilis)种群数量的影响.中国科学院海洋研究所博士论文,2004:54-60.
    周立红,王大志.塔玛亚历山大藻对褶皱臂尾轮虫实验种群动态的影响.应用与环境生物学报,2005,11(4):444-447.
    Adams J A, Seaton D D, Buchanan J B, et al. Biological observations associated with the toxic phytoplankton bloom of the East Coast. Nature,1968,220:24-25.
    Boyer G L, Sullivan J J, Andersen R J. The assimilation of PSP toxins by the copepod Tigriopus californicus from dietary Protogonyaulax catenella. In:White, D.M., Baden, A.W.,Gentien, D.G.(Eds.), Toxic Dinoflagellates. Elsevier, New York, pp.1985,407-412.
    Colin S P, Dam H G. Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica:a test of the mechanisms that reduce ingestion rate. Marine Ecology-Progress Series,2003,248:55-65.
    Delgado M, Alcaraz M. Interations between red tide microalgae and herbivorous zooplankton:the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). Journal of Plankton Research,1999,21:2361-2371.
    Dutz J. Repression of fecundity in the meritic copepod Acartia clausi exposed to the toxic dinoflagellate Alexandrium lusitanicum:relationship between feeding and egg production. Marine Ecology-Progress Series,1998,175:97-107.
    Frangopulos M, Guisande C, Maneiro I, et al. Short-term and long-term effects of the toxic dinoflagellate Alexandrium minumum on the copepod Acartia clausi. Marine Ecology-Progress Series,2000,203:161-169.
    Hansen P J. The red tide dinoflagellate Alexandrium tamarense:effects on behavior and growth of a tintinnid ciliate. Marine Ecology-Progress Series,1989,53:105-116.
    Huntley M, Sykes P, Rohan S, et al. Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracala nusparvus:mechanism, occurrence and significance. Marine Ecology-Progress Series,1986,28:105-120.
    Ives J D. Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. Journal of Experimental Marine Biology and Ecology,1987,112:131-145.
    Kim D,Sato Y, Oda T,et al. Specific toxic effect of dinoflagellate Heterocapsa circularisquama on the rotifer Brachionus plicatilis. Bioscience Biotechnology and Biochemistry,2000,64(12): 2719-2722.
    McClatchie, S. Functional response of the euphausid Thysanoessa raschii grazing on small diatoms and toxic dinoflagellates. Journal of Marine Research,1988,46:631-646.
    Robineau B, Gagne J A, Fortier L. Potential impact of a toxic dinoflagellate(Alexandrium excavatum) bloom on survival of fish and crustacean larvae. Marine Biology,1991,108: 293-301.
    Schmid-Araya J. The effect of food concentration on the life histories of Brachionus plicatilis (O.F.M.) and Encentrum linnhei Scott. Arch. Hydrobiologia,1991,121:87-102.
    Teegarden G J, Cembella A D. Grazing of toxic dinoflagellates Alexandrium spp. by adult copepods of coastal Maine: implications for the fate of paralytic shellfish toxins in marine food webs. Journal of Experimental Marine Biology and Ecology,1996,196:145-176.
    Uye S, Takamatsu K. Feeding interactions between planktonic copepods and red tide flagellates from Japanese coastal waters. Marine Ecology Progress Series,1990,59:97-107.
    Watras C J, Garcon V C, Olson R J, et al. The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis. Journal of Plankton Research,1985,6: 891-908.
    蔡恒江,唐学玺,张培玉等。3种海洋赤潮微藻抗氧化酶活性对UV-B辐射增强的响应。中国海洋大学学报,2006,36(1):081-084
    曹锡清。脂质过氧化对细胞与机体的作用。生物化学与生物物理进展,1986,2: 17-23。
    唐学玺,李永祺,久效磷对三角褐指藻的毒性,水产学报,1997,21(4):438-442
    唐学玺,李永祺,三种有机磷农药对三角褐指藻活性氧伤害的差异性研究,环境科学学报,1999,19(5):579581
    唐学玺,李永祺,黄健,对硫磷对扁藻和杜氏藻膜脂的过氧化和脱脂化伤害,海洋与湖沼,1999,30(3):295-299
    唐学玺,王悠,黄健等,活性氧在海带抗褐藻酸降解菌感染中的作用,植物学报,2001,43(12):1303-1306
    王雅平,刘伊强,施磊等小麦对赤霉病抗性不同品种的SOD活性[J]。植物生理学报,1993,19(4):353-358.
    谢荣,唐学玺等,丙溴磷影响海洋微藻生长机理的初步研究,环境科学学报,2000,20(4):473-477
    谢荣,唐学玺等,丙溴磷对二种海洋微藻的GPX活性及GSH、 CAR含量的影响,青岛海 洋大学学报,2000,30(4):645-650
    谢荣,唐学玺等,活性氧对3种海洋微藻生长的影响,海洋学报,2001,23(1):99-106
    于娟,唐学玺等,蒽对二种海洋微藻抗氧化系统的研究,应用与环境生物学报,2001,7(4):340-343
    曾韶西,王以柔。低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响。植物生理学报,1990,16(1):37-42。
    郑荣梁。氧的毒性。生物化学与生物物理进展,1984,1:9-11。
    Averyanov A A, Lapikova V P, Djawakhia V G. Active oxygen mediates heat-induced resistance of rice plant to blast disease. Plant Sci,1993,92:2734
    Beauchamp C, Fridovich I. Superoxide dismutase:Improved assays and an assay applicable to acrylamide gels. Anal Biochem,1971,44 (5):276-287.
    Bewley RD. Physiological aspects of desication tolerance. Ann Rev Plant Physiology,1979, 20:195-238.
    Borgeraas J and Hessen DO. UV-B induced mortality and antioxidant enzyme activities in Daphnia magna at different oxygen concentrations and temperatures Journal of Plankton Research,2000,22(6):1167-1183.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254.
    Doke N.1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hypha wall components. Physiol. Plant Physiol.23:345-359
    Droillard M J, Paulin A, Massot J C. Free radical production,catalase and superoxide dismutase activities and membrane integrity during senescence of petal of cut carnations[J]. Physiologia Plantrum.1987,71:197-202.
    Ellman GL. Tissue Sulfhydryl Groups. Arch Bilchem Biophys,1959,82:70-77.
    Esterbzuer H, Grill D. Seasonal variation of glutathion and glutathion reductase in needles of picea abies. Plant Physiol,1978,61:119-121.
    Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys,1968,125:189-198.
    Ishii S. Generation of active oxygen species during enzymatic isolation of protoplast from oat leaves. In vitro,1987,23(4):653-657.
    Koshio O, et al.1988. Hydrogen peroxide stimulates tyrosine phosphorylation of the insulin receptor and its tyrosine kinase activity in intact cells. Biochemistry Journal.250:95-101
    lstner,E F, Kramer,R. Role of the superoxide free radical ion in photosynthetic ascorbate oxidation and ascorbate-mediated photophos-phlrylation[J]. Biochem. Biophys. Acta,1973,314:340-353.
    Marx JL.1987. Oxygen free radicals linked to many diseases. Science.30:529-530
    Mehdy MC.1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 105:467-472
    Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of arabidopsis thaliana. Plant Physiol,1996,110:125-136.
    Vega MP, Pizarro R. Lethal effect induced by ultraviolet-B in a planktonic copepod: role of the post-irradiation time on mortality measurements. Journal of Freshwater Ecology,2000,15(1): 1-5.
    Wu G,Shortt B J,,Lawrence E B. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato. Plant Cell,1995,7:1357-1368
    Yu Juan, TANG Xue-xi, ZHANG Pei-yu, TIAN Ji-yuan, CAI Heng-jiang. Effect of CO2 enrichment on Photosynthesis, Lipid peroxidation and Activities of Antioxidative Enzymes of Platymonas subcordiformis Subjected to UV-B Radiation Stress. ACTABOTANICA SINICA, 2004,46 (6):682—690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700