聚合物基复合材料中无机组分表面性能反气相色谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料是由有机高分子、无机非金属材料或金属等几类不同材料通过复合工艺组合而成的新型材料,具有单一材料所不具备的优异性能。高分子复合材料由于其优异的性能倍受人们的青睐,得到了飞速的发展,成为材料研究领域的热点之一,并已广泛应用于工业、农业、航空航天、国防、民用生活等各个领域。通过加入填料,尤其是功能性填料可以改善复合材料制品某些方面的性能,或赋予高分子复合材料制品全新的性能。
     反气相色谱法(IGC)是一种十分有效的表征方法,它可以较全面的了解材料表面的宏观热力学性质,研究表面热力学参数与表面的组成及形态的关系,它可以用于研究填充材料表面改性的效果,表征表面改性对聚合物复合材料的组成及形态的影响,从而预测填充材料与聚合物之间可能的相互作用;它可以表征材料的表面活性,从而为材料的使用、复合材料的设计提供理论依据。
     本论文的主要研究工作和结果如下:
     (1)采用IGC法表征了经过化学改性的碳纳米管的表面性能,通过对未改性的多壁碳纳米管(MWNTs)、用丙烯酸接枝改性的多壁碳纳米管(PAA-g-MWNTs)和表面带有羟基的多壁碳纳米管(MWNTols)等三种碳管的表面热力学参数的测试和计算,包括非极性表面能,表面极性吸附自由能、吸附焓和酸碱性参数等,定量表征了碳管的表面改性效果。研究结果表明碳管的表面经过化学改性后与未处理的碳管相比,表面能的色散分量大大降低,表面极性基团增加,这有利于防止碳管的自身吸附团聚,加强与聚合物之间的界面作用。丙烯酸接枝改性后的PAA-g-MWNTs,表面偏酸性,而羟基改性的MWNTols表面偏碱性。而碳纳米管经过化学改性后,表面带有少量基团的改性产物的表面性能很难用其他方法表征,如红外(FTIR)等。
     (2)以甲酚为第二酚单体,氢氧化镁为催化剂,在膨胀石墨的存在下,通过原位聚合合成了热固性酚醛树脂复合材料,石墨片层均匀分散在高分子基体中。对材料电性能分析发现该体系中石墨剥离片层的逾渗阈值在3.2 wt%,当石墨含量达到4 wt%时,电导率达到1 S/m,实现绝缘体和导体的相互转变。采用IGC法测试并计算了缩聚反应前后石墨的表面热力学性质,包括非极性表面能、极性表面吸附自由能、吸附焓和酸碱性等参数的变化,研究酚醛树脂和石墨的界面相互作用。结果表明缩聚反应后石墨片层的非极性表面能下降,极性吸附自由能、酸碱性参数等大大增加,表明表面极性增强。这样既降低了石墨自身的团聚,又加强石墨与树脂界面的相互作用,有利于石墨在树脂中的分散,形成网络结构,从而使电导率提高。
     (3)采用浸渍法制备了不同负载量的铑负载氢化β沸石(Rh/H-β-zeolite),利用IGC法研究了氢化β沸石(H-β-zeolite)和Rh/H-β-zeolite的表面性能,测试计算了沸石的表面吸附自由能、吸附焓、极性和非极性表面能,以及与极性探针之间的极性相互作用参数。结果表明H-β-zeolite的表面吸附性能由于铑的负载而发生改变,负载后比表面积、吸附焓和非极性表面能都有所下降。铑的负载显著增强了沸石对苯的吸附,由于这个特性,Rh/H-β-zeolite有望用于催化含苯的化学反应和分离工程。
     (4)由于铑负载沸石与苯的特殊相互作用,我们设计将负载1.0%铑的β-沸石添加在PVC膜中,利用铑沸石对苯的选择性吸附,以及沸石的巨大比表面积,用于渗透汽化法分离苯/环己烷混合溶液,提高膜对苯的选择渗透性。论文详细考察了了料液中苯的含量、沸石的添加量、沸石种类以及料液温度对复合膜的分离性能的影响。研究结果发现相同料液组成下,PVC/H-β-zeolite复合膜的选择性高于PVC膜,添加Rh/H-β-zeolite的复合膜的渗透汽化性能则高于添加H-β-zeolite的复合膜,这是由铑沸石对苯的选择吸附引起。膜的渗透通量可以用Arrhenius定律表征,拟合得到添加Rh/H-β-zeolite的复合膜的渗透表观活化能低于添加H-β-zeolite的复合膜。含7.0%的Rh/H-β-zeolite的复合膜具有最高的分离选择性。当沸石添加量低于7.0%时,随着沸石的添加量增加,膜的通量降低,分离因子增加,这主要是由于沸石的添加降低了膜的溶胀;当沸石添加量大于7.0%,膜的通量增加,分离因子下降,这可能是缺陷增多引起的。随着苯在料液中含量的增加,所有膜的渗透通量增大,选择性下降,这是由于苯的溶胀作用引起。
Composite is a kind of novel materials consisted of polymer,nonmetallic or metallic materials.It has better properties than neat materials.People prefer polymer composites because of the excellent performance.They attract many researchers in the materials fields and have been applied in many fields,such as industry,agriculture, aviation and spaceflight,national defence et al.Fillers,especially functional fillers can improve some properties or bring some new properties for composites.
     Inverse gas chromatography(IGC) is an effective method to obtain the macro thermodynamic properties of the surface of solid materials and study the relationship between the thermodynamic parameters and the composition and conformation of surface.It can be used to characterize the effect of the surface modification of fillers and the influence of the surface modification on the polymer composites, consequently predict the interactions between fillers and polymers.It can be used to characterize the surface activity of materials and provide the theoretical base for the use of the materials and the design of composites.
     The main research content and results are as follows.
     (1) Inverse gas chromatography(IGC) was used to characterize the surface properties of pristine multi-walled carbon nanotubes(MWNTs),as well as the poly(acrylic acid) sidewall covalently functionalized MWNTs(PAA-g- MWNTs) and hydroxyl group directly grafted MWNTs(MWNTols).The surface thermodynamic parameters were calculated,including the dispersive component of the surface energy(γ_S~D),the specific free energy(△G~(AB)),the enthalpy(△H~(AB)) of adsorption corresponding to acid-base surface interactions and the acidic(K_A) and the basic(K_D) parameters.The results show that chemical modification successfully reduces the dispersive component of the surface energy of MWNTs. Furthermore,MWNTs grafted with hydroxyl groups exhibit a more basic character,while MWNTs grafted with poly(acrylic acid) show a more acidic character,which can reduce the agglomeration of CNTs and strengthen the interaction between CNTs and polymer at the same time.IGC can provide useful complementary information on the changes resulted from the chemical modifications of the surface which is difficult for other technologies,such as FTIR et al.
     (2) Phenolic resin/expanded graphite(EG) composites were synthesized via in situ condensation polymerization of the monomers in the presence of foliated graphite. SEM observation showed that the graphite flakes were well dispersed in the phenolic resin matrix.The electrical conductivity of the composites was investigated as a function of the foliated graphite fraction.The composites containing graphite sheets exhibited an electrical conductivity percolation threshold with 3.2 wt%graphite content in polymer matrix.Inverse gas chromatography measurements were carried out to characterize the surface of the foliated graphite before and after condensation polymerization of phenolic resin using a series of both non-polar and polar acid-base probe gases.The data obtained indicated that the character of graphite surface changed after the polymerization of phenolic resin.The dispersive component of surface free energy decreased greatly.Before polymerization the graphite surface is predominantly acidic while the surface turns to basic after polymerization.The increased polarity of surface contributed to the stronger interactions between graphite and phenolic resin and the fine dispersion of expanded graphite in the matrix,and resulted in the low conductivity percolation threshold.
     (3) Zeolite loading rhodium(Rh)was prepared by the wet impregnation method using H-β-zeolite as support.Retention time of three n-alkanes(C5-C7),cyclohexane, benzene,trichloroethylene and tetrachloroethylene on the Rh/H-β-zeolite catalysts (0.5-2.0 wt%of Rh) and H-β-zeolite were measured by inverse gas chromatography(IGC) in the 473.2~513.2 K temperature range.Standard free energy of adsorption,dispersive component of surface free energy of adsorbent and specific interaction parameters between polar probes and catalysts were evaluated.The results indicate that the adsorption characteristics of H-β-zeolite can be modified by rhodium.Surface area,enthalpy of adsorption and dispersive component of surface free energy of the zeolite decrease after the impregnation of rhodium.Besides,it was found that rhodium dispersed in the framework of H-β-zeolite had special adsorption for benzene which may be useful for making catalysts for certain reactions and separation engineering involving benzene in the future.
     (4) Because of the specific interaction between benzene and the zeolite loaded with rhodium(Rh/H-β-zeolite),novel hybrid membranes were prepared by incorporating Rh/H-β-zeolite into polyvinyl chloride(PVC) for the pervaporative separation of benzene and cyclohexane.The characteristics of these membranes for separating benzene/cyclohexane mixtures were investigated by varying zeolite type,zeolite content,feed composition and operating temperature. The results showed that the pervaporation performances for membranes filled with Rh/H-β-zeolite were higher than those for membranes filled with H-β-zeolite which was caused by the special interactions between benzene and Rh/H-β-zeolite proved by IGC previously.And the PVC-RhB-7 membrane exhibited much lower activation energy E_J value compared to PVC-B-7 membrane.The membrane containing 7%of Rh/H-β-zeolite had the highest separation selectivity of benzene at all feed composition.When zeolite content is lower than 7%,the membrane flux decreases and separation factor increases with the increase of zeolite loading. The reason was that the zeolite particles were more resistant to membrane swelling and reduced possibility of loosening of polymeric chains.When zeolite content is higher than 7%,the membrane flux increases and separation factor increases because of the defects on the interface.
引文
[1]王汝敏,郑水蓉,郑亚萍,聚合物基复合材料工艺[M].北京:科学出版社,2004
    [2]Zhang G.S.,Sui G.X.,Sun Z.S.,Yang R.,Pseudoreinforcement effect of multiwalled carbon nanotubes in epoxy matrix composites[J].J.Appl.Polym.Sci.2006,102(4):3664-3672
    [3]Chen Q.Y.,Bin Y.Z.,Matsuo M.,Characteristics of ethylene-methyl methacrylate copolymer and ultrahigh molecular weight polyethylene composite filled with multiwall carbon nanotubes prepared by gelation/crystallization from solutions[J].macromolecules,2006,39(19):6528-6536
    [4]张佐光主编.功能复合材料[M].北京:化学工业出版社,2004:111
    [5]傅永林.偶联剂在塑料复合材料中的应用[J].中国塑料,1991,5(3):20-23
    [6]吴绍吟,马文石.塑料工业中无机填料高性能研究进展.中国塑料,1999,13(6):20-23
    [7]Roger Rothon.Particulate-Filled Polymer Composites[M].北京:世界图书出版公司,1995
    [8]刘英俊,刘伯元主编.塑料填充改性[M].北京:中国轻工业出版社,1998
    [9]郝元恺,肖加余主编.高性能复合材料学[M].北京:化学工业出版社,2004
    [10]Zhu J.,Peng H.Q.,Rodriguez-Macias E,Margrave J.L.,Khabashesku V.N.,Imam A.M.,Lozano K.,Barrera E.V.,Reinforcing epoxy polymer composites through covalent intergration of functionalized nanotubes[J].Adv.Funct.mater.2004,14(7):643-648
    [11]Shen L.,Lin Y.J.,Du Q.G,Zhong W.,Yang Y.L.,Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure[J].Polym.2005,46(15):5758-5766
    [12]Wang H.T.,Xu P.,Zhong W.,Shen L.,Du Q.G,Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities[J].Polym.Degrad.Stabil.2005,87(2):319-327
    [13]吴S,高聚物的界面与粘合[M].潘强余,吴敦汉译.北京:纺织工业出版社,1987
    [14]赫尔-D,复合材料导论[M].张双寅,郑维平,蔡良武译.北京:中国建筑工业出版社,1989:46-52
    [15]Pothan L.A.,Zimmermann Y.,Thomas S.,et al.Determination of polarity parameters of chemically modified cellulose fibers by means of the solvatochromic technique[J].J.Polyrn.Sci.Pol.Phys.2000,38(19):2546-2553
    [16]Sun S.S.,Li C.Z.,Zhang L.,et al.Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride)composites[J].Eur.Polym.J.2006,42(7):1643-1652
    [17]Rothon R.,Particulate-filled polymer composites[M].北京:世界图书出版社公司,1995
    [18]胡福增,郑安呐等编,聚合物及其复合材料表界面[M].北京:中国轻工业出版社,2001
    [19]Fowkes F.M..Acid-Base contributions to polymer-filler interaction[J].J.Rub.Chem.Tech.1984,9(57):328-343
    [20]Drago R.S.,Wayland B.B.,A double-scale equation for correlating enthalpies of lewis acid-base interactions[J].J.Am.Chem.Soc.1965,87(16):3571-3577
    [21]Kaelble D.H.,Physical chemistry of adhesion[M].New York:John Wiley,1971
    [22]蔡绪伏,王贵恒编.高分子复合材料界面科学基础[M].成都:四川大学高分子材料系,2000
    [23]汪困华,罗传秋编著,聚合物近代仪器分析[M].北京:清华大学出版社,2000
    [24]Eick J.D.,Good R.J.,In fluence of Roughness on Wetting and Adhesion in a Dental Adhesion System[J].J.Adhesion 1971(3):23-34
    [25]Chwastia.S.Wicking method for measuring wetting properties of carbon yams [J].J.Colloid Interf.Sci.1973,42(2):298-309
    [26]于中振,欧玉春等,界面相互作用对尼龙6/聚乙烯共混物形态结构和流变行为的影响[M].高分子学报,1995(5):566-570
    [27]Zhang Z.Q.,Liu Y.W.,Huang Y.D.,et al.The effect of carbon-fiber surface properties on the electron-beam curing of epoxy-resin composites[J].Compos.Sci.Technol.2002,62(3):331-337
    [28]Xu Z.W.,Huang Y.D.,Zhang C.H.,et al.Effect of gamma-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites[J].Compos.Sci.Technol.2007,67(15-16):3261-3270
    [29]Sydenstricker T.H.D.,Mochnaz S.,Amico S.C.,Pull-out and other evaluations in sisal-reinforced polyester biocomposites[J].Polym.Test 2003,22(4):375-380
    [30]Lin M.,Wang H.T.,Meng S.,et al.Structure and release behavior of PMMA/silica composite drug delivery system[J].J.Pharm.Sci.2007,96(6):1518-1526
    [31]Kim M.G.,Kang S.G.,Kim C.G.,et al.Tensile response of graphite/epoxy composites at low temperatures [J]. Composite Structures 2007, 79: 84-89
    [32] Shaffer O.L., Bagheri R., Qian J.Y., et al. Characterization of the particulate-matrix interface in rubber modified epoxy by atomic force microscopy [J]. J. Appl. Polym. Sci., 1995, 58(2): 465-484
    [33] Han M.J., Wan L.J., Lei S.B., et al. Electrochemical construction of novel C-60 derivative/PPV composite adlayer on Cu(III) and their current/voltage characteristics [J]. J. Phys. Chem. B 2004, 108(3): 965-970
    [34] Yu A.P., Hu H., Bekyarova E., et al. Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix [J]. Compos. Sci. Technol. 2006,66(9): 1190-1197
    [35] Eren T., Okte A.N., Polymerization of methacryl and triethoxysilane functionalized stearate ester: Titanium dioxide a composite film and their photocatalytic degradations [J]. J. Appl. Polym. Sci. 2007, 105(3): 1426-1436
    [36] Xu X.M., Li B.J., Lu H.M., et al. The interface structure of nano-SiO2/PA66 composites and its influence on material's mechanical and thermal properties [J]. Appl. Surf. Sci. 2007, 254(5): 1456-1462
    [37] Li F., Ye L., Nie F.D., et al. Synthesis of boron-containing coupling agents and its effect on the interfacial bonding of fluoropolymer/TATB composite [J]. J. Appl. Polym. Sci.2007, 105(2): 777-782
    [38] Girones J., Mendez J.A., Boufi S., et al. Effect of silane coupling agents on the properties of pine fibers/polypropylene composites [J]. J. Appl. Polym. Sci. 2007, 103(6), 3706-3717
    [39] Chen Y.C., Zhou S.X., Yang H.H., et al. Preparation and characterization of nanocomposite polyurethane [J]. J. Colloid Interf. Sci. 2004, 279(2): 370-378
    [40] Feih S., Wei J., Kingshott P., Sorensen B.F., The influence of fibre sizing on the strength and fracture toughness of glass fibre composites [J]. Compos. Part A-Appl. S. 2005, 36(2): 245-255]
    [41] Van Vaeck L., Adriaens A., Gijbels R., Static secondary ion mass spectrometry:(S-SIMS)Part 1. Methodology and structural interpretation [J]. Mass Pectrom. Rev. 1999, 18(1): 1-47
    [42] Singh B., Gupta M., Verma A., Influence of fiber surface treatment on the properties of sisal-polyester composites [J]. Polym. Composite 1996, 17(6): 910-918
    [43] Gojny F.H., Nastalczyk J., Roslaniec Z., Schulte K., Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites[J].Chem.Phy.Lett.2003,370(5-6):820-824
    [44]Price G.J.,Ansari D.M.,Surface modification of calcium carbonates studied by inverse gas chromatography and the effect on mechanical properties of filled polypropylene[J].Polym.Int.2004,53(4):430-438
    [45]Dotremont C.,Vankelecom I.F.J.,Morobe M.,et al.Zeolite-filled PDMS membranes 2.Pervaporation of halogenated hydrocarbons[J].J.Phys.Chem.B 1997,101(12):2160-2163
    [46]陈新,平郑骅,丁雅娣等,高硅ZSM-5沸石填充硅橡胶膜的研究[J].高等学校化学学报1993,15(9):1272-1275
    [47]Kao S.T.,Wang F.J.,Lue S.J.,Sorption,diffusion,and pervaporation of benzene/cyclohexane mixtures on silver-nation membranes[J].Desalination 2002,149(1-3):35-40
    [48]Kiselev A.V.,Advances in Chromatography,Giddings J.C.,Keller R.A.Eds.,Marcel Dekker Co.:New York,1967
    [49]Braun J.M.,Guillet J.E.Inverse gas-chromatography in vicinity of TG-effects of probe molecule[J].Macromolecules 1976,9(2):340-344
    [50]Condor J.R.,Young C.L.,Physiochemical Applications of Gas Chromatography [M].Wiley,New York,1979
    [51]Voelkel A.,Review:Inverse gas chromatography in characterization of surface [J].Chemometr.Intell.Lab.2004,72:205-207
    [52]Shui M.,Polymer surface modification and characterization of particulate calcium carbonate fillers[J].Appl.Surf.Sci.2003,220(1-4):359-366
    [53]Papirer E.,Brendle E.,Ozil F.,Balard H.,Comparison of the surface properties of graphite,carbon black and fullerene samples,measured by inverse gas chromatography[J].Carbon 1999,37(8):1265-1274
    [54]Dominkovics Z.,Danyadi L.,Pukanszky B.,Surface modification of wood flour and its effect on the properties of PP/wood composites[J].Compos.Part A-Appl.S.2007,38:1893-1901
    [55]Castellano M.,Conzatti L.,Turturro A.,et al.Influence of the silane modifiers on the surface thermodynamic characteristics and dispersion of the silica into elastomer compounds[J].J.Phys.Chem.B 2007,111(17):4495-4502
    [56]于中振,欧玉春,方晓萍,冯宇鹏,高岭土表面性质的反气相色谱研究[J].中国科学院研究生学报1996,13(1):29-37
    [57]Partlett M.J.,Thomas ES.,Characterization of surface-modified poly(ethylene terephthalate) fibres by inverse gas chromatography[J].Polym.Int.2000,49(6):495-500
    [58]Rjiba N,Nardin M.,Drean J.Y.,et al.A study of the surface properties of cotton fibers by inverse gas chromatography[J].J.Colloid Interf.Sci.2007,314(2):373-380
    [59]Tamargo-Martinez K,Villar-Rodil S.,Paredes J.I.,et al.Surface characterization of PBO fibers[J].Macromolecules 2003,36(23):8662-8672
    [60]Montes-Moran M.A.,Paredas J.I.,Martinez-Alonso A.,et al.Adsorption of n-alkanes on plasma-oxidized high-strength carbon fibers[J].J.Colloid Interf.Sci.2002,247(2):290-302
    [61]Planinsek O.,Buckton G.,Inverse gas chromatograohy:considerations about appropriate use for amorphous and crystalline powders[J].J.Pharm.Sci.-Us 2003,92(6):1286-1294
    [62]Mukhopadhyay P.,Desbaumes L.,Schreiber H.P.,et al.Component interactions and the stability of some pigment/polymer dispersions[J].J.Appl.Polym.Sci.1998,67:245-253
    [63]Ziani A.,Xu R.,Schreiber H.P.,Kobayashi T.,Inverse gas chromatography,surface properties,and interactions among components of paint formulations[J].J.Coat.Technol.1999,71(893):53-60
    [64]Fagelman K.E.,Guthrie J.T.,Preferential interactions in pigmented,polymer blends- C.I.Pigment Blue 15:4 and C.I.Pigment Red 122-as used in a poly(carbonate)-poly(butylenes terephthalate)polymer[J].J.Chromatogr.A 2005,1095(1-2):145-155
    [65]Sun C.H.,Berg J.C.,A review of the different techniques for solid surface acid-base characterization[J].Adv.Colloid Interf.Sci.2003,105:151-175
    [66]Voelkel A.,Andrzejewska E.,Limanowska-Shaw H.,Andrzejewski M.,Acid-base surface properties of glass-ionomers determined by IGC[J].Appl.Surf.Sci.2005,245(1-4):149-154
    [67]Walinder M.E.P.,Gardner D.J.,Acid-base characterization of wood and selected thermoplastics[J].J.Adhesion Sci.Technol.2002,16(12):1625-1649
    [68]Liang H.,Xu R.J.,Favis B.D.,et al.Surface modification strategies for multicomponent polymer systems,VI:acid-base interactions as stratefy for interfacial modification in immiscible polymer blends[J].Polym.1999,40: 4419-4423
    [69] Jackson P.L., Huglin M.B., Cervenka A., Use of inverse gas-chromatography to quantify interactions in amine cured epoxy-resins [J]. Polym. Int. 1994, 35(2): 119-133
    [70] Price G.J., in: Lyoyd D.R., Ward T.C., Schreiber H.P. (Eds.), Inverse Gas Chromatography, Characterization of Polymers and Other Materials [M]. American Chemical Society, Washington, 1989: 48-57
    [71] Du Q., Hattam P., Munk P., Inverse Gas Chromatography. 7. Polymer-solvent interactions of hydrocarbon polymers [J]. J. Chem. Eng. Data 1990, 35, 367-371
    [72] Su C.S., Patterson D., Schreiber H.P., Thermodynamic interactions and properties of PVC-Plasticizer systems [J]. J. Appl. Polym. Sci. 1976, 20: 1025-1034
    [73] Hibri M.J.E1, et al, in: Lyoyd D.R., Ward T.C., Schreiber H.P. (Eds.), Inverse Gas Chromatography, Characterization of Polymers and Other Materials [M]. American Chemical Society, Washington, 1989: 120-133
    [74] Du Q., Chen W., Inverse Gas Chromatography. 8. Apparent Probe Dependence of x23' for a Poly(vinyl chloride)-Poly(tetramethylene glycol) Blend [J]. Macromolecules, 1999, 32: 1514-1518
    [75] Braun J.M., Lavoie A., Guillet J.E., Evaluation of a Gas Chromatographic Method for the Determination of Glass Transitions in Polymers [J]. Macromolecules, 1975,8:311
    [76] Surana R., Randall L., Pyne A., et al. Determination of glass transition temperature and in situ study of the plasticizing effect of water by inverse gas chromatography [J]. Pharmaceutical Res. 2003, 20(10): 1647-1654
    [77] Zhao C.W., Li J.J., Jiang Z., Chen C.X., Measurement of the Infinite Dilution Diffusion Coefficients of Small Molecule Solvents in Silicon Rubber by Inverse Gas Chromatography [J]. Eur. Polym J. 2006, 42, 615-624
    [78] Guillet J.E., Romansky M., Price GJ., van der Mark R., Inverse Gas Chromatography, Lloyd D.R., Schreiber H.P., Ward T.C. Eds., ACS Symposium Series No. 391, American Chemical Society: Washington D.C., 1989 : 20-32
    [79] Strathmann H., Membrane separation processes: current relevance and future opportunities [J]. AIChE J. 2001, 47(5): 1077-1087
    [80] Kober P.A., Pervaporation, perstillation and percrystallisation, J. Am. Chem. Soc, 1917,39:944-948
    [81] Bining R.C., James F.E., Now separate by membrane permeation [J]. Petrol. Refiner.,1958,37:214-215
    [82]Bining R.C.,James F.E.,Separation by membrane permeate[J].Oil gas J.1958,56:104-105
    [83]陈翠仙,韩宾兵,郎宁威,渗透蒸发和渗透蒸气渗透[M].北京:化学工业出版社,2004:2
    [84]Wijmans J.G.,Baker R.W.,The solution-diffusion model- A review[J].J.Membr.Sci.1995,107(1-2):1-21
    [85]Okada T.,Yoshikawa M.,Matsuura T.,A study on the pervaporation of ethanol/water mixtures on the basis of pore flow model[J].J.Membr.Sci.1991,59(2):151-168
    [86]Feng X.S.,Huang R.Y.M.,Liquid separation by membrane pervaporation:A review[J].Ind.Eng.Chem.Res.1997,36(4):1048-1066
    [87]Lonsdale H.K.,The growth of membrane and technology[J].J.Membr.Sci.1982,10:81
    [88]陈俸荣,陈洪钫,在渗透蒸发过程中渗透组分在渗透边膜表面处的浓度预测[J].膜科学与技术.1996,16(4):39-43
    [89]George S.C.,Thomas S.,Transport phenomena through polymeric systems[J].Prog.Polym.Sci.2001,26(6):985-1017
    [90]Shelden R.A.,Thompson E.V.,Dependence of diffusive permeation rates on upstream and downstream pressures 4.Computer-simulation of nonideal systems[J].J.Membr.Sci.1984,19(1):39-49
    [91]Yeom C.K.,Huang R.Y.M.,Modelling of the pervaporation separation of ethanol-water mixtures through crosslinked poly(vinyl alcohol) membranes[J].J.Membr.Sci.1992,67(1):39-55
    [92]Huang R.Y.M.,Rhim J-W.,Theoretical estimations of diffusion coefficients[J].J.Appl.Polym.Sci.,1990,41(3-4):535-546
    [93]Tamai Y.,Tanaka H.,Nakanishi K.,Molecular simulation of permeation of small penetrants through membranes 1.Diffusion-coefficients[J].Macromolecules 1994,27(16):4498-4508
    [94]Fritz L.,Hofmann D.,Molecular dynamics simulations of the transport of water-ethanol mixtures through polydimethylsiloxane membranes[J].Polym.38(5):1035-1045
    [95]Okada T.,Matsuura T.,A new transport model for pervaporation[J].J.Membr.Sci.1991,59:133-150
    [96] Lee J.F., Wang Y.C., Dehydration of acetic acid water mixture by pervaporation through a chemically modified poly(4-methyl-l-pentene) membrane [J]. Sep. Sci. Technol. 1998, 33(2): 187-200
    [97] Bengtsson E., Tragardh G., Hallstrom S., Concentration polarization during the enrichment of aroma compounds from a water solution by pervaporation [J]. J. Food Eng. 1993, 19(4): 399-407
    [98] Enneking L., Stephan W., Heintz A., Sorption and diffusivity measurements of cyclohexane/benzene and cyclohexane/toluene mixtures in polyurethane membranes-Model-calculations of the pervaporation process [J]. Ber. Bunsenges. Phys. Chem. 1993, 97(7): 912-922
    [99] Sander U., Soukup P., Design and operation of a pervaporation plant for ethanol dehydration [J]. J. Membr. Sci. 1988, 36: 463-475
    [100] Doguparthy S.P., Pervaporation of aqueous alcohol mixtures through a photopolymerised composite membrane [J]. J. Membr. Sci. 2001, 185(2): 201-205
    [101] Baudot A., Marin M., Pervaporation of aroma compounds: comparison of membrane performances with vapour-liquid equilibria and engineering aspects of process improvement [J]. Food Bioprod. Process 1997, 75(c2): 117-142
    [102] Tian X.Z., Zhu B.K., Xu Y.Y., P(VDF-co-HFP) membrane for recovery of aroma compounds from aqueous solutions by pervaporation -1. Ethyl acetate/water system [J]. J. Membr. Sci. 2005, 248(1-2): 109-117
    [103] Budd P.M., Elabas E.S., Ghanem B.S., et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity [J]. Adv. Mater. 2004, 16(5): 456
    [104] Smitha B., Suhanya D., Sridhar S., Ramakrishna M., Separation of organic-organic mixtures by pervaporation-a review [J]. J.Membr. Sci. 2004, 241: 1-21
    [105] Doghieri F., Nardella A., Sarti G.C., Valentini C, Pervaporation of methanol/MTBE through modified Poly(Phenylene Oxide) membranes [J]. J. Membr.Sci. 1994, 91(3): 283-291
    [106] Nam S.Y., Lee Y.M., Pervaporation separation of methanol/MTBE through chitosan composite membrane modified with surfactants [J]. J. Membr. Sci. 1999, 157(1): 63-71
    [107] Mandal S., Pangarkar V.G., Separation of methanol-benzene and methanol-toluene mixtures by pervaporation: effects of thermodynamics and structural phenomenon[J].J.Membr.Sci.2002,201(1-2):175-190
    [108]Yoshikawa M.,Shimada H.,Tsubouchi K.,Kondo Y.,Speciality polymeric membranes 12.Pervaporation of benzene-cyclohexane mixtures through carbon graphite-nylon 6 composite membranes[J].J.Membr.Sci.2000,177(2):49-53
    [109]Shen J.N.,Zheng X.C.,Ruan H.M.,Wu L.G.,Qiu J.H.,Gao C.J.,Synthesis of AgC1/PMMA hybrid membranes and their sorption performance of cyclohexane/cyclohexene[J].J.Membr.Sci.2007,304(1-2):118-124
    [110]Yuan W.H.,Lin Y.S.,Yang W.S.,Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers[J].J.Am.Chem.Soc.2004,126(15):4776-4777
    [111]Garcia Villaluenga J.P.,Tabe-Mohammadi A.,A review on the separation of benzene/cyclohexane mixtures by pervaporation processes[J].J.Membr.Sci.2000,169:159-174
    [112]Huang R.Y.M.,Lin V.J.C.,Separation of liquid mixtures by using polymer membranes Ⅰ.Permeation of binary organic liquid mixtures through polyethylene [J].J.Appl.Polym.Sci.1968,12:2615-2631
    [113]Kucharsk M.,Stelmasz J.,Separation of liquid mixtures by permeation[J].Int.Chem.Eng.1967,7(4):618-622
    [114]Ren J.Z.,Staudt-Bickel C.,Lichtenthaler R.N.,Separation of aromatics/aliphatics with crosslinked 6FDA-Based Copolyimides[J].Sep.Purif.Technol.2001,22-3(1-3):31-43
    [115]Hao J.Q.,Tanaka K.,Kita H.,Okamoto K.,The pervaporation properties of sulfonyl-containing polyimide membranes to aromatic/aliphatic hydrocarbon mixtures[J].J.Membr.Sci.1997,132(1):97-108
    [116]徐利文,样立明,王玉玲等.含砜基聚酰亚胺膜渗透汽化分离苯/环己烷混合物的研究[J].高分子材料科学与工程,2003,19(2):184-187
    [117]徐利文,周金芳,杨立明等.DDBT类可溶性聚酰亚胺的合成与性能研究[J].功能高分子学报,2001,14(4):437-441
    [118]Tanihara N.,Tanaka K.,Kita H.,Okamoto K.,Pervaporation of organic liquid-mixtures through membranes of polyimides containing methyl-substituted phenylenediamine moieties[J].J.Membr.Sci.1994,95(2):161-169
    [119]Okamoto K.,Wang H.Y.,Ljyuin T.,Fujiwara S.,Tanaka K.,Kita H.,Pervaporation of aromatic/non-aromatic hydrocarbon mixtures through crosslinked membranes of polyimide with pendant phosphonate ester groups[J].J.Membr.Sci. 1999, 157(1): 97-105
    [120] Cabasso I., Organic liquid mixtures separation by permselective polymer membranes I . Selection and characteristics of dense Isotropic membranes employed in the pervaporation process [J]. Ind. Eng. Chem. Res. 1983, 22(2): 313-319
    [121] Acharya H.R., Stern S.A., Liu Z.Z., Cabasso I, Separation of liquid Benzene /cyclohexane mixtures by pertraction and pervaporation. J. Membr. Sci. 1988, 37 (3): 205-232
    [122] Fang J.H., Tanaka K., Kita H., Okamota K., Pervaporation properties of ethynyl-containing copolyimide membranes to aromatic/non-aromatic hydrocarbon mixtures [J]. Polym. 1999, 40(11): 3051-3059
    [123] Terada J., Hohjoh T., Yoshimasu S., Ikemi M., Shinohara I, Separation of benzene-cyclohexane azeotropic mixture through polymeric membranes with microphase separated structures [J]. Polym. J. 1982, 14(5): 347-353
    [124] Wenzel A., Yanagishita H., Kitamoto D., et al. Effects of preparation condition of photoinduced graft filling-polymerized membranes on pervaporation performance [J]. J. Membr. Sci. 2000, 179(1-2): 69-77
    [125] Wolinska-Grabazyk A., Preparation and characterization of novel polyurenthane-based materials for membrane organic liquid separation, in: Bowen W.R., Field R.W., Proceedings of Euromembrane'95. Vol 1. England: Antony Rowe Ltd., 1995.406-409
    [126] Inui K., Okazaki K., Miyata T., Uragami T., Effect of mesogenic groups on characteristics of permeation and separation for benzene/cyclohexane mixtures of side-chain liquid-crystalline polymer membranes [J]. J. Membr. Sci., 1998, 143 (1-2): 93-104
    [127] Inui K.,Miyata T., Uragami T., Effect of permeation temperature on permeation and separation of a benzene/cyclohexane mixture through liquid-crystalline polymer membranes [J]. J. Polym. Sci. Part B: Polym. Phys. 1998, 36 (2): 281-288
    [128] Inui K., Miyata T., Uragami T., Permeation and separation of Benzene/cyclohexane mixtures through liquid-crystalline Polymer membranes [J]. J. Polym. Sci. Part B: Polym. Phys. 1997, 35 (4): 699-707
    [129] Kusumocahyo S.P., Ichikawa T., Shinbo T., et al. Pervaporation separation of organic mixtures using dinitrophenyl group-containing cellulose acetate membrane [J]. J. Membr. Sci. 2005, 253(1-2): 43-48
    [130] Pandey L.K., Saxena C., Dubey V., Modification of poly(vinyl alcohol) membranes for pervaporative separation of benzene/cyclohexane mixtures [J]. J. Membr. Sci. 2003, 227(1-2): 173-182
    [131] Gagliardi S., Arrighi V., Ferguson R., Telling M.T.F., Restricted dynamics in polymer-filler systems. Physical B, 2001, 301(1-2): 110-114
    [132] Tsagaropoulos G., Eisenberg A., Dynamic-mechanical study of the factors affecting the 2 glass-transition behavior of filled polymers-similarities and differences with random ionomers [J]. Macromolecules 1995, 28(18): 6067-6077
    [133] Arrighi V., Higgins J.S., Burgess A.H., Floudas G., Local dynamics of poly(dimethyl siloxane) in the presence of reinforcing filler particles. Polymer, 1998, 39(25): 6369-6376
    [134] Peng F.B., Lu L.Y., Sun H.L, Hybrid organic-inorganic membrane: solving the tradeoff between permeability and selectivity [J]. Chem. Mater. 2005, 17, 6790-6796
    [135] Goethaert S., Dotremont C., Kuijpers M, et al. Coupling phenomena in the removal of chlorinated hydrocarbons by means of pervaporation [J]. J. Membr. Sci. 1993, 78(1-2): 135-145
    [136] Sun H.L., Lu L.Y., Peng F.B., et al. Pervaporation of benzene/ cyclohexane mixtures through CMS-filled poly( vinyl alcohol) membranes [J]. Sep. Purf. Tech. 2006, 52:203-208
    [137] Bhat S. D., Aminabhavi T.M, Zeolite K-LTL-loaded sodium alginate mixed matrix membranes for pervaporation degydration of aqueous-organic mixtures [J]. J. Membr. Sci. 2007, 306: 173-185
    [138] Peng F.B., Lu L.Y., Hu C.L., etal. Significant increase of permeation flux and selectivity of poly(vinyl alcohol) membranes by incorporation of crystalline flake graphite [J]. J. Membr. Sci. 2005, 259: 65-76
    [139] Peng F.B., Pan F.S., Sun H.L., et al. Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube [J]. J. Membr. Sci. 2007, 300, 13-19
    [140] Bryant D.L., Noble R.D., Koval C.A., Facilitated transport separation of benzene and cyclohexane with poly(vinyl alcohol)-AgNO3 membranes [J]. J. Membr. Sci. 1997, 127(2): 161-170
    [141] Park C.K., Oh B.K., Choi M.J., Lee Y.M., Separation of benzene cyclohexane by pervaporation through poly(vinyl alcohol) poly(allyl amine) blend membrane [J]. Polym.Bull.1994,33(5):591-598
    [142]Yamaguchi T.,Miyazaki Y.,Nakao S.,et al.Membrane design for pervaporation or vapor permeation separation using a filling-type membrane concept[J].Ind.Eng.Chem.,1998,37(1):177-184
    [143]Kai T.,Yamaguchi T.,Nakao S.,Preparation of organic/inorganic composite membranes by plasma-graft filling polymerization technique for organic-liquid separation[J].Ind.Eng.Chem.Res.,2000,39:3284-3290
    [144]Feng X.S.,Huang R.Y.M.,Liquid separation by membrane pervaporation:a review[J].Ind.Eng.Chem.Res.,1997,36:1048
    [1] Iijima S., Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58
    [2] Zhang X.F., Sreekumar T.V., Liu T., Kumar S., Properties and structure of nitric acid oxidized single wall carbon nanotube films [J]. J. Phys. Chem. B, 2004, 108: 16435-16440
    [3] Terrones M, Science and technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes [J]. Annu. Rev. Mater. Res. 2003, 33:419-501
    [4] Rao C.N.R., Satishkumar B.C., Govindaraj A. Nath M., Nanotubes [J]. Chemphyschem 2001, 2: 78-105
    [5] Berber S., Kwon Y.K., Tomanek D., Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84: 4613-4616
    [6] Besancon B.M., Green P.F., Polystyrene-based single-walled carbon nanotube nanocomposite thin films: Dynamics of structural instabilities [J]. Macromolecules 2005, 38: 110-115
    [7] Li S.P., Qin Y.J., Shi J.H., Guo Z.X., Yongfang L., Zhu D.B., Electrical properties of soluble carbon nanotube/polymer composite films [J]. Chem. Mater. 2005, 17: 130-135
    [8] Weisenberger M.C., Grulke E.A., Jacques D., Rantell T., Andrews R., Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers [J]. J. Nanosci. Nanotech. 2003, 3: 535-539
    [9] Liu J., Rinzler A. G., Dai H. J., Hafner J.H., Bradley R.K., Boul P.J., Lu A., Iverson T., Shelimov K., Huffman C.B., Rodriguez-macias F., Shon Y.S., Lee T.R., Colbert D.T., Smalley R.E., Fullerene pipes [J]. Science , 1998, 280(5367): 1253-1256
    [10] Hamon M. A., Chen J., Hu H., Chen Y.S., Itkis M.E., Rao A.M., Eklund P.C., Haddon R.C., Dissolution of single-walled carbon nanotubes [J]. Adv. Mater. 1999, 11(10): 834-840
    [11] Chen J., Rao A. M., Lyuksyutov S., Itkis M.E., Hamon M. A., Hu H., Conn R.W., Eklund P.C., Colbert D.T., Smalley R.E., Haddon R.C., Dissolution of full-length single-walled carbon nanotubes [J]. J. Phys. Chem. B , 2001 , 105 (13) : 2525-2528
    [12] Sun Y.P., Fu K.F., Lin Y., Huang W.J., Functionalized carbon nanotubes: Properties and applications [J]. Acc. Chem. Res. 2002, 35: 1096-1104
    [13] Zhang L., Kiny V.U., Peng H.Q., Zhu J., Lobo R.F.M., Margrave J.L., Khabashesku V.N., Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties [J]. Chem. Mater. 2004, 16: 2055-2061
    [14] Liu A.H., Honma I., Ichihara M., Zhou H.S., Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties [J]. Nanotechnology 2006, 17: 2845-2849
    [15] Sun C.H., Berg J.C., A review of the different techniques for solid surface acid-base characterization [J]. Adv. Colloid Interface Sci. 2003,105: 151-175
    [16] Price G.J., Ansari D.M., Surface modification of calcium carbonates studied by inverse gas chromatography and the effect on mechanical properties of filled polypropylene [J]. Polym. Inter. 2004, 53: 430-438
    
    [17] Montes -Moran M.A., Paredes J.I., Martinez-Alonso A., Tascon J.M.D., Surface characterization of PPTA fibers using inverse gas chromatography [J]. Macromolecules 2002, 35: 5085-5096
    [18] Askin A., Yazici D.T., Surface characterization of sepiolite by inverse gas chromatography [J]. Chromatographia 2005, 61: 625-631
    [19] Pfohl O., Dohrn R., Provision of thermodynamic properties of polymer systems for industrial applications [J]. Fluid Phase Equilibr. 2004, 217: 189-199
    [20] Papirer E., Brendle E., Ozil F., Balard H., Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography [J]. Carbon 1999, 37: 1265-1274
    [21] Conder J.R., Young C.L. (ed), Physicochemical measurement by gas chromatography [M]. New York, Wiley-Interscience, 1979
    [22] Grob R.L. (ed) Modern practice of gas chromatography [M]. New York, Wiley- Interscience, 1995
    [23] Schultz J., Lavielle L., Martin C, The role of the interface in carbon-fiber epoxy composites [J]. J. Adhesion 1987, 23: 45-60
    
    [24] van Asten A., van Veenendaal N., Koster S., Surface characterization of industrial fibers with inverse gas chromatrography [J]. J. Chromatography A, 2000,888: 175-196
    
    [25] Fowkes F.M., Attractive forces at interfaces [J]. Ind. Eng. Chem. 1964, 56: 40
    [26] Fowkes F.M., Donor-acceptor interactions at interfaces [J]. J.Adhesion 1972, 4: 155
    [27] Fowkes F.M., Mostafa M.A., Acid-base interactions in polymer adsorption [J]. Ind. Eng. Chem, Prod. Res. Dev. 1978, 17: 3-7
    [28] Mukhopadhyay P., Schreiber H. P., Aspects of acid-base interactions and use of inverse gas-chromatography [J]. Colloid. Surface. A 1995, 100: 47-71
    [29] Panzer U., Schreiber H. P., On the evaluation of surface interactions by inverse gas-chromatography [J]. Macromolecules 1992, 25: 3633-3637
    [30] Kamdem D.P., Bose S.K., Luner P., Inverse gas-chromatography characterization of birch wood meal [J]. Langmuir 1993, 9: 3039-3044
    [31] Liu L.Q., Zhang S. A., Hu T.J. Guo Z. X., Ye C, Dai L., Zhu D. B., Solubilized multi-walled carbon nanotubes with broadband optical limiting effect [J]. Chem. Phys. Lett. 2002,359:191-195
    [32] Yang D., Guo G.Q., Hu J.H., Wang C, Jiang D.L., Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes [J]. J. Mater. Chem. 2008, 18(3): 350-354
    [33] Yang D., Hu J.H., Wang C.C., Synthesis and characterization of pH-responsive single-walled carbon nanotubes with a large number of carboxy groups [J]. Carbon, 2006, 44: 3161-3167
    [34] Bailey R.A., Persaud K.C., Application of inverse gas chromatography to characterization of a polypyrrole surface [J]. Anal Chim Acta 1998, 363: 147-156
    [35] Planinsek O., Buckton G., Inverse gas chromatography: Considerations about appropriate use for amorphous and crystalline powders [J]. J. Pharm. Sci. 2003, 92: 1286-1294
    [36] Schultz J., Tsutsumi K., Donnent J.B. Surface properties of high-energy solids. 1. Determination of dispersive component of surface free-energy of mica and its energy of adhesion to water and N-alkanes [J]. J. Colloid. Interface Sci. 1977, 59: 272-276
    [37] Shui M., Polymer surface modification and characterization of particulate calcium carbonate fillers [J]. Appl. Surf. Sci. 2003, 220: 359-366
    [38] Packham D.E.(ed) Handbook of adhesion [M]. London, Longman, 1992
    [1]殷荣忠,山永年,毛乾聪,方燮奎.酚醛树脂及其应用[M].北京,化学工业出版社,1990
    [2]黄发荣,焦杨生。酚醛树脂及其应用[M].北京:化学工业出版社,2003
    [3]Kopf P.W.,Encycl Polym Sci & Eng.11[M].New York,John Wiley,1987,45
    [4]Kopf P.W.,Kirk-Othmer Encycl Chem Technol.18[M].New York,John Wiley,1996,603
    [5]Robitschek P.,Lewin A.,Phenolic Resins[M].London,Iliffe & Sons,Ltd.1950
    [6]Martin R.W.,The Chemistry of Phenolic Resins[M].New York,John Wiley,1956
    [7]Megson N.J.L.,Phenolic Resin Chemistry[M].London,Butterworths,1958
    [8]Knop A.,Pilato L.A.,Phenolic Resin:Chemistry,Application,and Performance,Future Directions[M].Berlin,Springer-Verlag,1985
    [9]Knop A.,Scheib W.,Chemistry and Application of Phenolic Resins[M].Heidelberg,Springer-Verlag,1979
    [10]亢雅君,饶军,新型酚醛复合材料及工艺进展[J].玻璃钢/复合材料,1996,02.43-46
    [11]张凤桐,蔡玉海,薛维宝,酚醛树脂及其复合材料最新进展[J].工程塑料应用,1996,06,53-57
    [12]杨淑丽,国外酚醛树脂及塑料的新进展[J].热固性树脂,1998,02,44-47
    [13]张凤桐,蔡玉海,薛维宝,张国海,新型酚醛树脂及其复合材料国内外发展概况[J].热固性树脂,1999,4,47-54
    [14]朱永茂,国外酚醛树脂及其塑料发展动向[J].热固性树脂,2003,06,28-36
    [15]朱永茂,刘勇,殷荣忠,刘义红,杨玮,酚醛树脂及其复合材料发展动向[J].玻璃纤维,2005,03,35-43
    [16]Choi M.H.,Chung I.J.,Lee J.D.,Morphology and curing behaviors of phenloic resin-layered silicate nanocomposites prepared by melt intercalation[J].Chem.Mater.2000,12,2977-2983
    [17]Pappas J.,Patel K.,Nauman E.B.,Structure and properties of phenolic resin/nanoclay composites synthesized by in situ polymerization[J].J.Aappl.Polym.Sci.2005,95,1169-1174
    [18]Wang H.,Zhao T.,Zhi L.,Yan Y.,Yu Y.,Synthesis of novolac/layered silicate nanocomposites by reaction exfoliation using acid-modified montmorillonite[J]. Macromol. Rapid. Commun. 2002, 23, 44-48
    [19] Choi M.H., Chung I.J., Mechanical and thermal properties of phenolic resin-layered silicate nanocomposites synthesized by melt intercalation [J]. J. Appl. Polym. Sci. 2003, 90, 2316-2321
    [20] Pappas J., Patel K., Nauman E.B., Structure and properties of phenolic resin/nanoclay composites synthesized by in situ polymerization [M]. J. Aappl. Polym. Sci. 2005, 95, 1169-1174
    [21] King J.A., Tucker K.W., Vogt B.D., Weber E., Quan C.L., Electrically and thermally conductive nylon 6,6 [J]. Polym. Compos. 1999, 20, 643-654.
    [22] Tchmutin I.A., Ponomarenko A.T., Krinichnaya E.P., Kozub G.I., Efimov O.N., Electrical properties of composites based on conjugated polymers and conductive fillers [J]. Carbon 2003, 41, 1391-1935
    [23] Marquez A., Uribe J., Cruz R., Conductivity variation induced by solvent swelling of an elastomer-carbon black-graphite composite [J]. J. Appl. Polym. Sci. 1997,66,2221-2232
    [24] Beloshenko V.A., Varyukhin V.N., Voznyak Y.V., Electrical properties of carbon-containing epoxy compositions under shape memory effect realization [J]. Compos. Part A-Appl. S. 2005, 36, 65-70
    [25] Shen W.C., Wen S.Z., Cao N.Z., Zheng L., Zhou W., Liu Y.J., Expanded graphite - A new kind of biomedical material [J]. Carbon 1999, 37, 356-358.
    [26] Chung D.D.L., Review: exfoliation of graphite [M]. J. Mater. Sci. 1987, 22, 4190-4198
    [27] Song L.N., Xiao M., Meng Y.Z., Electrially conductive nanocomposites of aromatic polydisulfide/expanded graphite [J]. Composites Sci. Technol. 2006, 66, 2156-2165
    [28] Yasmin A., Luo J.J., Daniel I.M., Processing of expanded graphite reinforced polymer nanocomposites [J]. Composites Sci. Technol. 2006, 66, 1182-1189.
    [29] Zheng W.G., Wong S.C., Sue H.J., Transport behavior of PMMA/expanded graphite nanocomposites [J]. Polymer, 2002, 43, 6767-6773
    [30] Chen G.H., Weng W.G., Wu D.J., Wu C.L., Lu J.R., Wang P.P., Chen X.F., Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J]. Carbon, 2004, 42, 753-759
    [31] Price G.J., Ansari D.M., Surface modification of calcium carbonates studied by inverse gas chromatography and the effect on mechanical properties of filled polypropylene [J]. Poly. Inter. 2004, 53, 430-438
    [32] Montes-Moran M.A., Paredes J.I., Martinez-Alonso A., Tascon J.M.D., Surface characterization of PPTA fibers using inverse gas chromatography [J]. Macromolecules 2002, 35, 5085-5096
    [33] Askin A., Yazici D.T., Surface characterization of sepiolite by inverse gas chromatography [J]. Chromatographia 2005, 61, 625-631
    [34] Pfohl O., Dohrn R., Provision of thermodynamic properties of polymer systems for industrial applications [J]. Fluid Phase Equilibr. 2004, 217, 189-199
    [35] Papirer E., Brendle E., Ozil F., Balard H., Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography [J]. Carbon 1999, 37, 1265-1274
    [36] Zhang X.L., Yang. D., Xu P., Wang C.C., Du Q.G., Characterizing the surface properties of carbon nanotubes by inverse gas chromatography [J]. J. Mater. Sci. 2007, 42, 7069-7075
    [37] Maciel GE., Chuang I.S., Solid-state C-13 NMR-study of resol-type phenol formaldehyde resins [J]. Macromolecules 1984, 17, 1081-1087
    [38] Nishimura T., Maeda M., Nitadori Y, Tsuruta T. Polystyrene-polyamine comb-type graft co-polymer, sythesis and microphase structure [J]. Macromol Chem. Rapid. Commun. 1980, 1, 573-577
    [39] Chen G.H., Wu C.L., Weng W.G., Wu D.J., Yan W.L., Preparation of polystyrene/graphite nanosheet composite [J]. Polymer 2003, 44, 1781-1784
    [40] Chen G.H., Wu D.J., Weng W.G., Wu C.L., Exfoliation of graphite flake and its nanocomposites [J]. Carbon 2003, 41, 619-621
    [41] Stauffer G. In Introduction to Percolation Theory [M]. London, Taylor & Francis, 1985
    [42] Kilbride B.E., Coleman J.N., Fraysse J., Fournet P., Cadek M., Drury A., Hutzler S., Roth S., Blau W.J., Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films [J]. J. Appl. Phys. 2002, 92, 4024-4030
    [43] Reghu M., Yoon C.O., Yang C.Y., Moses D., Smith P., Heeger A.J., Cao Y., Transport in polyaniline networks near the percolation-threshold [J]. Phys. Rev. B 1994,50, 13931-13941
    [44]Gubbels F.,Jerome J.,Teyssie P.,Vanlathem E.,Deltour R.,Calderone A.,Parente V.,Bredas J.L.,Selective localization of carbon-black in immiscible polymer blends-a useful tool to design electrical conductive composites[J].Macromolecules 1994,27(7):1972-1974
    [45]Barrau S.,Demont P.,Peigney A.,Laurent C.,Lacabanne C.,DC and AC conductivity of carbon nanotubes-polyepoxy composites[J].Macromolecules 2003,36(14):5187-5194
    [1] Bhat, S.D. Aminabhavi T.M., Zeolite K-LTL-loaded sodium alginate mixed matrix membranes for pervaporation dehydration of aqueous-organic mixtures [J]. J. Membr. Sci. 2007, 306: 173-185
    [2] Wu H., Zheng B., Zheng X.H., Wang J.T., Yuan W.K., Jiang Z.Y., Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell [J]. J. Power Sources 2007,173: 842-852
    [3] He X.M., Chan W.H., Ng C.F., Water-alcohol separation by pervaporation through zeolite-modified poly(amidesulfonamide) [J]. J. Appl. Polym. Sci. 2001, 82:1323
    [4] Bowenl T.C., Noble R.D., Falconer J.L., Fundamentals and applications of pervaporation through zeolite membranes [J]. J. Membr. Sci. 2004, 245: 1-33
    [5] Shen J.N., Zheng X.C., Ruan H.M., Wu L.G., Qiu J.H., Gao C.J., Synthesis of AgCl/PMMA hybrid membranes and their sorption performance of cyclohexane/cyclohexene [J]. J. Membr. Sci. 2007, 304: 118-124
    [6] Jia M.D., Peinemann K.V., Behling R.D., Molecular-sieving effect of the zeolite-filled silicone-rubber membranes in gas permeation [J]. J. Membr. Sci. 1991,57:289-296
    [7] Lu S.Y., Chiu C.P., Huang H.Y., Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes [J]. J. Membr. Sci. 2000, 176:159-167
    [8] Li L., Xiao Z.Y., Zhang Z.B., et al. Pervaporatio of acetic acid/water through carbon molecular sieve-filled PDMS membranes [J]. Chem. Eng. J. 2004, 97(1): 83-86
    [9] Schaep J., Vandecasteele C, Leysen R., et al. Salt retention of Zirfon (R) membranes [J]. Sep. Purif. Techno. 1998, 14: 127-131
    [10] Aerts P., Greenberg A.R., Leysen R., et al. The influence of filler concentration on the compaction and filtration properties of Zirofon (R)-composite ultrafiltration membranes [J]. Sep. Purif. Technol. 2001, 22-3: 663-669
    [11] Ebert K., Fritsch D., Koll J., et al. Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes [J]. J. Membr. Sci. 2004,233:71-78
    [12] Bottino A., Capannelli G., DAsti V., et al. Preparation and properties of novel organic-inorganic porous membranes [J]. Sep. Purfi. Technol. 2001, 22-3, 269-275
    [13] Wara N.M., Francis L.F., Velamakanni B.V., Addition of alumina to cellulose-acetate membranes [J]. J. Membr. Sci. 1995, 104(1-2): 43-49
    [14] Bottino A., Capannelli G., Comite A., Preparation and characterization of novel porous PVDF-ZrO2 composite membranes [J]. Desalination 2002, 146(1-3): 35-40
    [15] Aerts P., Genne I., Kuypers S., et al. Polysulfone-aerosil composite membranes Part 2. The influence of the addition of aerosol on the skin characteristics and membrane properties [J]. 2000, 178(1-2): 1-11
    [16] Sun H.L., Lu L.Y., Peng F.B., et al. Pervaporation of benzene/ cyclohexane mixtures through CMS-filled poly( vinyl alcohol) membranes [J]. Sep. Purf. Tech. 2006, 52: 203-208
    [17] Park C.K., Oh B.K., Choi M.J., Lee Y.M., Separation of benzene cyclohexane by pervaporation through poly(vinyl alcohol) poly(allyl amine) blend membrane [J]. Polym. Bull. 1994, 33(5): 591-598
    [18] Kameoka S., Kita K., Tanaka S., Nobukawa T., Ito S., Tomoshige K., Miyadera T., Kunimori K., Enhancement of C2H6 oxidation by 02 in the presence of N2O over Fe ion-exchanged BEA zeolite catalyst [J]. Catal. Lett. 2002, 79(1-4): 63-67.
    [19] Weitkamp J., Traa Y., Isobutane/butane alkylation on solid catalysts. Where do we stand? [J] Catal. Today 1999, 49(1-3): 193-199
    [20] Yoo K., Burckle E. C, Smirniotis P. G., Comparison of protonated zeolites with various dimensionalities for the liquid phase alkylation of i-butane with 2-butene [J]. Catal. Lett. 2001, 74: 85-90
    [21] Cui X. H., Burgess K., Catalytic homogeneous asymmetric hydrogenations of largely unfunctionalized alkenes [J]. Chem. Rev. 2005, 105: 3272-3296
    [22] Thomas C. M., Suss-Fink G., Ligand effects in the rhodium-catalyzed carbonylation of methanol [J]. Coord. Chem. Rev. 2003, 243 (1-2): 125-142
    [23] Carroll A. M., O'Sullivan T. P., Guiry P. J., The development of enantioselective rhodium-catalysed hydroboration of olefins [J]. Adv. Synth. Catal. 2005, 347 (5): 609-631
    [24] Matolin V., Masek K., Elyakhloufi M. H., Gillet E., Adsorption of CO on small supported rhodium particles-SSIMS and TPD study [J]. J. Catal. 1993, 143 (2): 492-498
    [25]Hwang C.P.,Yeh C.T.,Zhu Q.M.,Rhodium-oxide species formed on progressive oxidation of rhodium clusters dispersed on alumina[J].Catal.Today 1999,51(1):93-101
    [26]Nakatsuji T.,Komppa V.,A catalytic NOx reduction system using periodic steps,lean and rich operations[J].Catal.Today 2002,75(1-4):407-412
    [27]Stevens R.W.,Chuang S.S.C.,In situ IR study of transient CO2 reforming of CH4 over Rh/Al2O3[J].J.Phys.Chem.B 2004,108(2):696-703
    [28]Portugal U.L.,Santos A.C.S.F.,Damyanova S.,Marques C.M.P.J.,Bueno J.M.C.,CO2 reforming of CH4 over Rh-containing catalysts[J].J.Mol.Catal.A:Chem.2002,184(1-2):311-322
    [29]Qian L.P.,Cao Y.,Yue B.,Ren Y.,Chen B.L.,He H.Y.,Carbon exchange between methane and carbon dioxide over Rh/H-BEA[J].Chinese J.Catal.2005,26(6):455-457
    [30]任淑华,潘大海,马静红,负载型金属簇催化剂的结构表征,太原理工大学学报[J].2003,34(5):521-524
    [31]Diaz E.,Ordonez S.,Vega A.,Coca J.,Influence of catalyst treatments on the adsorption properties of gamma-A1203 supported Pt,Rh and Ru catalysts[J].Micropor.Mesopor.Mater.2005,77(2-3):245-255
    [32]Diaz E.,Ordonez S.,Vega A.,Coca J.,J.Chromatogr.A Adsorption characterization of different volatile organic compounds over alumina,zeolites and activated carbon using inverse gas chromatography[J].2004,1049:139-146
    [33]De Boer J.H.,in:The Dynamical Character of Adsorption.Oxford University Press[M].London,1953
    [34]Xie J.H.,Zhang Q.L.,Chuang K.T.,An IGC study of Pd/SDB catalysts for partial oxidation of propylene to acrylic acid[J].J.Catal.2000,191(1):86-92
    [35]Van Asten A.,Van Veenendaal N.,Koster S.,Surface characterization of industrial fibers with inverse gas chromatography[J].J.Chromatogr.A 2000,888(1-2):175-196
    [36]Diaz E.,Ordonez S.,Vega A.,Coca J.,Benzylation of benzene over Fe-modified ZSM-5 zeolites:Correlation between activity and adsorption properties[J].Appl.Catal.A:Gen.2005,295(2):106-115
    [37]Mukhopadhyay P.,Schreiber H.P.,Inverse gas-chromatography for polymer surface characterization above and below Tg[J].Macromolecules 1993,26(24):6391-6396
    [38]Qin R.Y.,Schreiber H.P.,Application of inverse gas-chromatography to molecular-diffusion in polymers[J].Langrnuir 1994,10(11):4153-4156
    [39]Diaz E.,Ordonez S.,Vega A.,Coca J.,J.Chromatogr.A Adsorption characterization of different volatile organic compounds over alumina,zeolites and activated carbon using inverse gas chromatography[J].2004,1049:139-146
    [40]Diaz E.,Ordonez S.,Vega A.,Coca J.,Adsorption properties of a Pd/gamma -Al2O3 catalyst using inverse gas chromatography[J].Micropor.Mesopor.Mater.2004,70(1-3):109-118
    [41]Diaz E.,Ordonez S.,Vega A.,Coca J.,Characterizaion of Co,Fe and Mn-exchanted zeolites by inverse gas chromatography[J].J.Chromatogr.A 2004,1049:161-169
    [1]Ray S.K.,Sawant S.B.,Joshi J.B.,Pangarkar V.G.,Development of New Synthetic Membranes for Separation of Benzene-Cyclohexane Mixtures by Pervaporation:A Solubility Parameter Approach,Ind.Eng.Chem.Res.1997,36:5265-5276
    [2]Villaluenga J.P.G.,Tabe-Mohammadi A.,A Review on the Separation of Benzene /Cyclohexane Mixtures by Pervaporation Processes[J].J.Membr.Sci.2000,169(2):159-174
    [3]Huang R.Y.M.,Pervaporation Membrane Separation Process[M].Amsterdam:Elsevier,1991
    [4]Gao C.J.,Cai B.X.,Chen H.L.,et al A Study on Spearation of Organics by Pervaporation[J].膜科学与技术,2003,23(4):1-3
    [5]Bai Y.X.,Qian J.W.,Zhao Q.,Xu Y.,Ye S.R.,Compatibility of PTET-60/CA Blends and Separation Performance of Their Membranes for Benzene/Cyclohexane Mixture by Pervaporation[J]J.Appl.Polym.Sci.2006,102:2832-2838
    [6]Peng F.B.,Lu L.Y.,Hu C.L.,Wu H.,Jiang Z.Y.,Significant increase of permeation flux and selectivity of poly(vinyl alcohol) membranes by incorporation of crystalline flake graphite[J].J.Membr.Sci.2005,259:65-73
    [7]Lue S.J.,Wang F.J.,Hsiaw,S.Y.Pervaporation of benzene/cyclohexane mixtures using ion-exchange membrane containing copper ions[J].J.Membr.Sci.2004,240:149-158
    [8]Berg L.,Separation of benzene from close boiling hydrocarbons by extractive distillation[P].US Patent 5,458,741,1995
    [9]Nieuwoudt I.,van Dyk B.,Separation of components from aromatic hydrocarbon mixtures thereof by extractive distillation[P].US Patent 6,395,141,2002
    [10]张秋根,陈建华,周国波,刘庆林,填充型有机一无机杂化分离膜研究进展[J].现代化工,2006,26(7):22-26
    [11]Bhat,S.D.Aminabhavi T.M.,Zeolite K-LTL-loaded sodium alginate mixed matrix membranes for pervaporation dehydration of aqueous-organic mixtures[J].J.Membr.Sci.2007,306:173-185
    [12]Wu H.,Zheng B.,Zheng X.H.,Wang J.T.,Yuan W.K.,Jiang Z.Y.,Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell [J].J.Power Sources 2007,173:842-852
    [13] He X.M., Chan W.H., Ng C.F., Water-alcohol separation by pervaporation through zeolite-modified poly(amidesulfonamide) [J]. J. Appl. Polym. Sci. 2001, 82:1323
    [14] Bowenl T.C., Noble R.D., Falconer J.L., Fundamentals and applications of pervaporation through zeolite membranes [J]. J. Membr. Sci. 2004, 245: 1-33
    [15] Shen J.N., Zheng X.C., Ruan H.M., Wu L.G., Qiu J.H., Gao C.J., Synthesis of AgCl/PMMA hybrid membranes and their sorption performance of cyclohexane/cyclohexene [J]. J. Membr. Sci. 2007, 304: 118-124
    [16] Rao P.S., Krishnaiah A., Smitha B., Sridhar S., Separation of acetic acid/water mixtures by pervaporation through poly(vinyl alcohol)-sodium alginate blend membranes [J]. Sep. Sci. Technol. 2006, 41: 979-999
    [17] Kim K.J., Park S.H., So W.W., Moon S.J.P., Pervaporation separation of aqueous organic mixtures through sulfated zirconia-poly(vinyl alcohol) membrane [J]. J. Appl. Polym. Sci. 2001, 79: 1450-1455
    
    [18] Liu B.B., Cao Y.M., Wang T.H., Yuan Q., Preparation of novel ZSM-5 zeolite-filled chitosan membranes for pervaporation separation of dimethyl carbonate/methanol mixtures [J]. J. Appl. Polym. Sci. 2007, 106: 2117-2125
    [19] Kujawski W., Roszak R., Sep. Sci. Technol. Pervaporative removal of volatile organic compounds from multicomponent aqueous mixtures [J]. 2002, 37: 3559-3575
    [20] Okumus E., Gurkan T., Yilmaz L., Effect of fabrication and process parameters on the morphology and performance of a PAN-based zeolite-filled pervaporation membrane [J]. J. Membr. Sci. 2003, 223: 23
    [21] He X.M., Chan W.H., Ng C.F., Water-alcohol separation by pervaporation through zeolite-modified poly(amidesulfonamide) [J]. J. Appl. Polym. Sci. 2001, 82: 1323-1329
    [22] Kittur A.A., Kulkarni S.S., Aralaguppi M.I., Kariduraganavar M.Y., Preparation and characterization of novel pervaporation membranes for the separation of water-isopropanol mixtures using chitosan and NaY zeolite [J]. J. Membr. Sci. 2005, 247: 75
    [23] Yildirim A.E., Hilmioglu N.D., Tulbentci S., Pervaporation Separation of Benzene/Cyclohexane Mixtures by Poly(vinyl chloride) Membranes [J]. Chem. Eng. Technol. 2001, 24: 275-279
    [24] Yoshikawa M., Tsubouchi K., Specialty polymeric membranes. 9. Separation of benzene/cyclohexane mixtures through poly(vinyl chloride)-graft-poly(butyl methacrylate) [J]. J. Membr. Sci. 1999, 158: 269-276
    [25] An Q.F., Qian J.W., Sun H.B., Wang L.N., Zhang L., Chen H.L., Compatibility of PVC/EVA blends and the pervaporation of their blend membranes for benzene/cyclohexane mixtures [J]. J. Membr. Sci. 2003, 222: 113-122
    [26] Kao S.T., Wang F.J., Lue S.J., Sorption, diffusion, and pervaporation of benzene/cyclohexane mixtures on silver-Nafion membranes [J]. Desalination 2002, 149: 35-40
    [27] Zhang X.L., Qian L.P., Xu P., He H.Y., Du Q.G., Study of H-β-zeolite supported Rh catalyst by inverse gas chromatography [J]. Chem. Eng. J. 2008, 137: 579-586
    [28] Adebajo M.O., Long M.A., Frost R.L., Spectroscopic and XRD characterization of zeolite catalysts active for the oxidative methylation of benzene with methane [J]. Spectrochim. Acta, Part A 2004, 60: 791-799
    [29] Wijmans J.G., Baker R.W., The solution-diffusion model-a review [J]. J. Membr. Sci. 1995, 107(1-2): 1-21
    [30] Kittur A.A., Tambe S.M., Kulkarni S.S., Kariduraganavar M.Y., Pervaporation separation of water-acetic acid mixtures through NaY zeolite incorporated sodium alginate membranes, J. Appl. Polym. Sci. 2004, 94(5): 2101-2109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700