嵌段共聚物的自组装形态及热分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作主要围绕ABC树枝状嵌段共聚物本体相形态、ABC星型三嵌段共聚物薄膜相形态的自洽场理论研究以及线型ABC三嵌段共聚物的RAFT合成展开。
     第一部分:运用SCFT的实空间解法求来研究树枝状ABC共聚物(dendrimer)在2D空间的相行为。比较了线型、星型、树枝状嵌段共聚物体系在相分离行为上的主要区别,得到七种不同的有序相结构。它们分别是(1)中心对称的12,6,4边形相dodecagon-hexagon-tetragon(DOHT. [12.6.4]);(2)三色层状相"three-color" lamellae phase(LAM3);(3)核—壳型六角晶格相,core-shell hexagonal lattice phase(CSH);(4)三色蜂窝六角相,"thrree-color" hexagonal honeycomb phase(HEX3);(5)结合10,6,4边形和10,6,6边形的中心不对称相结构decagon-hexagon-tetragon, decagon-hexagon-hexagon phase (DEHT;DEHH, [10.6.4;10.6.6]);(6)交替珠子层状相lamellae phase with alternating beads(LAM+BD);(7)8,8,4多边形相octagon-octagon-tetragon phase (00T,[8.8.4]).
     通过系统改变树枝状共聚物第一代共聚物的组成,得到对称相互作用(xABN =xACN=XBCN=80)和不对称相互作用(xABN=80,xACN=xBCN=100)的三张三元相图。树枝状共聚物有4个三链段的汇结点,这种高分子链的拓扑结构约束使其相结构变得更加复杂。尤其是当三组分的组成差别不大(fA≈fB≈fC)时,在三角形相图的中心区域可以搜索到完美的三色蜂窝六角相HEX3微相结构。此外在三角形相图靠近HEX3区域的位置,还出现了与HEX3能量接近、体系相形态互相竞争的8,8,4边形的微相结构(OOT)。我们还在树枝状共聚物的相图中明确了中心对称的12,6,4多边形(DOHT)相形态的出现,同时也补充说明了10,6,4边形不是体系单一的相区,它往往伴随另外一种10,6,6边形相区的出现,进而形成整个中心不对称的微相结构([10.6.4;10.6.6])。然而,当体系的一个组分的组成很大(fA(orfB,fc)≥0.7)时,而其他的两个组分的组成很小,则树枝状共聚物的特征得不到充分的表现,这时候的相行为(LAM3 or LAM+BD)类似于线型三嵌段共聚物。
     第二部分:嵌段共聚物薄膜是一种普遍而且重要的受限体系。受限体系的边界效应在给嵌段的熵带来变化的同时,受限边界对不同嵌段的浸润性质也会引起也会引起表面能的变化,两者的共同作用可以很大程度地改变受限边界附近的嵌段的分子构型,从而改变受限表面附近区域的微相分离形态。这一部分运用自洽场理论结合伪谱算法系统地模拟了在两个性质相同的平行基板之间的受限星型A0.3B0.3C0.4三嵌段共聚物薄膜的相行为。在模拟中,选择体系各个链段组分的体积分数近似相等(fA=fB=0.3,fB=0.4)以突出线型聚合物的高分子链段的特征结构。在三个不同的系列的组分间相互作用下,着重考察了嵌段共聚物薄膜厚度,表面场的强度对共聚物薄膜相行为的影响。研究结果表明,在受限及表面场的作用下出现了一系列稳定的相形态,包括柱状相、层状相、穿孔层状相以及混合结构相;在我们的模拟过程中,那些以星型三嵌段共聚物中的其中一个嵌段形成类似无机CsCl结构的混合结构相形态尤其引起我们的兴趣。结果表明,这样的混合结构相形态常常会出现在一个较大的混合结构区域(H-区域),这是由于它们的自由能太过接近以致于难以被区分开来的缘故;通过系统性的调节星型三嵌段共聚物薄膜的厚度和表面场的强度,来确定和评价嵌段共聚物的相行为及相转变;同时我们对比了弱选择性平面场与强选择性表面场的相图,最后讨论了聚合物薄膜厚度、表面场的选择性以及星型三嵌段共聚物的本身性质对不同厚度的的星型三嵌段共聚物薄膜的稳定性的影响。
     第三部分:以偶氮二异丁腈为引发剂,二硫代苯甲酸异丙苯酯以链转移剂的RAFT活性聚合技术合成了两种不同的线型三嵌段共聚物:等臂的聚(甲基丙烯酸特丁酯)-b-聚(甲基丙烯酸环氧丙酯)-b-聚(苯乙烯)和接近等臂的聚(甲基丙烯酸特丁酯)-b-聚(甲基丙烯酸羟乙酯)-b-聚(N,N-二甲基乙基甲基丙烯酸甲酯)。红外光谱说明了这些线型三嵌段共聚物的嵌段特征官能团的分子结构与’H核磁共振图谱的测试结果一致。通过’H核磁共振图谱还确定了线型三嵌段共聚物各个嵌段的聚合度。此外,还采用两种不同的非等温热分解动力学分析方法:Friedma微分法和Ozawa-Flymn-Wall积分法,来补充说明它们各自的热稳定性。分析结果表明:聚(甲基丙烯酸特丁酯)-b-聚(甲基丙烯酸环氧丙酯)-b-聚(苯乙烯)的热分解活化能远大于聚(甲基丙烯酸特丁酯)-b-聚(甲基丙烯酸羟乙酯)-b-聚(N,N-二甲基乙基甲基丙烯酸甲酯),是由于前者在聚合过程中引入了刚性的苯环官能团以及带有反应活性的环氧基团嵌段。
In this thesis, the study mainly includes the following three aspects:(ⅰ) self-assembly of ABC dendrimer by real-space self-consistent mean field theory; (ⅱ) self-assembly of ABC star triblock copolymer thin films confined with a preferential surface:a self-consistent mean field theory; (ⅲ) synthesis and thermal analysis of linear triblock copolymers based on methacrylate ester.
     In the first part, we systematically studied the phase behavior of ABC dendrimer melt systems by real-space implementation of self-consistent mean field theory, and compared it with linear, star ABC triblock copolymer to find the major influences of different chain topology. Seven ordered morphologies have been observed during the simulation. They are (a) dodecagon-hexagon-tetragon (DOHT. [12.6.4]); (b) "three-color" lamellae phase (LAM3); (c) core-shell hexagonal lattice phase (CSH); (d) "three-color" hexagonal honeycomb phase (HEX3); (e) decagon-hexagon-tetragon, decagon-hexagon-hexagon phase (DEHT, DEHH. [10.6.4; 10.6.6]); (f) lamellae phase with alternating beads (LAM+BD); (g) octagon-octagon-tetragon phase (OOT. [8.8.4]). Most of them present in the simulation of linear or star ABC triblock copolymer; however, the DOHT is particular in ABC dendrimer.
     Triangle phase diagrams are constructed for three classes of typical ABC dendrimer in terms of the relative strength of the interaction parameters:symmetric interaction parameters xABN=xACN=xBCN=80 and asymmetric interaction parameters one, xABN=80, xACN= XBCN=100. When the volume fraction and interaction energies of the three species are comparable, the HEX3 phase is found to be the most stable. Near the region of HEX3 in the triangle phase diagrams, we found another competitive microphase (OOT) with its energy is close to HEX3. The DOHT phase is first reported in the ABC dendrimer, and the decagon-hexagon-tetragon, decagon-hexagon-hexagon phase ([10.6.4; 10.6.6]) mixed phase is complementary shown as a microphase with asymmetric center. When the volume of one species is big enough, such as fA(or fB,fc)≥0.7, the chain topology of dendrimer do not stretch as it want to be, then it takes a LAM+BD microphase as linear ABC triblock copolymers.
     In the second part, microphase separation and morphology of a near-symmetric A0.3B0.3C0.4 star triblock copolymer thin film confined between two parallel and homogeneous hard walls have been investigated by self-consistent mean field theory (SCMFT) with a pseudo-spectral method. Our simulation experiments reveal that under surface confinement, in addition to the typically parallel, perpendicular, and tilted cylinders, other phases, such as lamellae, perforated lamellae, and complex hybrid phases, have been found to be stable, which are attributed to the block-substrate interactions. Especially those hybrid phases in which A block and B block disperse as spheres and alternately arrange as cubic CsCl structures, with a network perforative structure of C block. The results show that these hybrid phases are also stable within a broad hybrid region (H-region) under suitable film thickness and broad field strength of substrates, due to their free energies is too close to being distinguished. Phase diagrams have been evaluated by purposefully and systematically varying the film thickness and field strength at three different cases of Flory-Huggins interaction parameters between species in the star polymer. We also compare the phase diagrams for weak and strong preferential substrates, each with a couple of opposite quality and discuss the influence of confinement, substrate preference, and the nature of the star polymer on the stability of relatively thinner and thick film phases in this work.
     In the third part, Two linear triblock copolymer:poly(t-butyl methacrylate-b-glycidyl methacrylate-b-styrene) with equivalent arms (PtBMA97-b-PGMA18-b-PSt98), and poly(t-butyl methacrylate-b-2-hydroxyl ethyl methacrylate-b-N,N-dimethylamino-ethyl methacrylate) with unequal arms (PtBMA137-b-PHEMA23-b-PDMAEMA156) were controlled synthesized with living RAFT polymerization technique under the chain transfer of cumyl dithiobenzoate. The results of FT-IR spectra illuminates that the characteristic groups of copolymer fit well with the result of 1H-NMR which successfully determine the corresponding molecular structure of triblock copolymers. The thermal stability of PtBMA97-b-PGMA18-b-PSt98 and PtBMA137-b-PHEMA23-b-PDMAEMA156 were also complementarily explained by the activation energy of thermal decomposition from Friedman differential method and Ozawa-Flynn-Wall integral method. The results show that the degradation energy of the former copolymer was much higher than that of the latter copolymer due to the aromatic groups were introduced into the polymer segments of the former copolymer during the RAFT polymerization process and because of the oxirane rings are typically reactive, that they occurred intermolecular crosslinking reaction during the thermal decomposition.
引文
[1]de Gennes, P. G. Soft Matter (Nobel Lecture) [J]. Angewante Chemie-International Edition in English,1992,31(7):842-845.
    [2]de Gennes, P. G. Soft Matter [J]. Reviews of Modern Physics,1992,64(3): 645-648.
    [3]Chaikin, P.M.; Lubensky, T. C. Principles of Condensed Matter Physics [M]. Cambridge:Cambridge University Press,1997.
    [4]Jones, R. A. L. Soft Condensed Matter [M]. New York:Oxford University Press, 2002.
    [5]Larson, R. G. The Structure and Rheology of Complex Fluids [M]. Oxford: Oxford University Press,1999.
    [6]Kleman, M.; Lavretovich, O. D. Soft Matter Physics:An Introduction [M]. New York:Springer,2003.
    [7]Hamley, I. W. Introduction to Soft Matter-Revised Edition:Synthetic and Biological Self-Assembling Materials [M]. Chichester:John Wiley & Sons, Ltd, 2007.
    [8]陆坤权;刘寄星.软物质物理学导论[M].北京:北京大学出版社,2006.
    [9]Zvelindovsky, A. V. Nanostructured Soft Matter:Experiment, Theory, Simulation and perspectives [M]. Dordrecht:Springer,2007.
    [10]Daoud, M.; Williams, C. E. Soft Matter Physics [M]. New York:Springer-Verlag, 1999.
    [11]张国杰.自洽场理论Fourier空间解法:ABC星型与线型嵌段共聚物相图计算[D].上海:复旦大学,2009.
    [12]韩文驰.复杂高分子体系的自洽场理论研究及微管动力学的蒙特卡罗模拟[D].上海:复旦大学,2008.
    [13]Yablonovitch, E. How to Be Truly Photonic [J]. Science,2000,289(5479): 557-559.
    [14]Lin, K. H.; Crocker, J. C.; Prasad, V.; Schofield, A.; Weitz, D. A.; Lubensky, T. C.; Yodh, A. G. Entropically driven colloidal crystallization on patterned surfaces [J]. Physical Review Letters,2000,85(8):1770-1773.
    [15]Thomas, E. L. The ABCs of Self-Assembly [J]. Science,1999,286(5443):1307.
    [16]Jenekhe, S. A.; Chen, X. L. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers [J]. Science,1999,283(5400):372-375.
    [17]Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Block Copolymer Lithography:Periodic Arrays of~1011 Holes in 1 Square Centimeter [J]. Science,1997,276(5317):1401-1404.
    [18]Matsen, M. W. The standard Gaussian model for block copolymer melts [J]. Journal of Physics-Condensed Matter,2002,14(2):R21-R47.
    [19]Chiefari, J.; Chong, Y. K.; Ercole, E.; Krstina, J.; Jeffery, J.; Le, T. P. T. Mayadunne, R. T. A.; Meijs, G. E.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process [J]. Macromolecules,1998,31(16):5559-5562.
    [20]Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. PCT International Patent Application, WO 9801478 A1 980115,1998.
    [21]Corpart, P.; Charmot, D.; Biadatti, T.; Zard, S. Z.; Michelet, D. PCT International Patent Application, WO 9858974,1998.
    [22]Coote, M. L.; Radom, L. Substituent effects in xanthate-mediated polymerization of vinyl acetate:Ab initio evidence for an alternative fragmentation pathway [J]. Macromolecules,2004,37(2):590-596.
    [23]Destarac, M.; Brochon, C.; Catala, J. M.; Wilczewska, A.; Zard, S. Z. Macromolecular design via the interchange of xanthates (MADIX):Polymerization of styrene with O-ethyl xanthates as controlling agents [J]. Macromolecular Chemistry and Physics,2002,203(16):2281-2289.
    [24]Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents:ABA Triblock Copolymers by Radical Polymerization in Two Steps [J]. Macromolecules,2000,33(2):243-245.
    [25]Gaillard, N.; Guyot, A.; Claverie, J. Block copolymers of acrylic acid and butyl acrylate prepared by reversible addition-fragmentation chain transfer polymerization: Synthesis, characterization, and use in emulsion polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry,2003,41(5):684-698.
    [26]Schilli, C.; Lanzendoerfer, M. G.; Mueller, A. H. E. Benzyl and Cumyl Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-Isopropylacrylamide. In Situ FT-NIR and MALDI-TOF MS Investigation [J]. Macromolecules,2002,35(18):6819-6827.
    [27]Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents [J]. Macromolecules,1999,32(21):6977-6980.
    [28]Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents [J]. Macromolecular Rapid Communications,2000,21(15):1035-1039.
    [29]Ganachaud, F.; Monteiro, M. J.; Gilbert, R. G.; Dourges, M. A.; Thang, S. H. Rizzardo, E. Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization [J]. Macromolecules,2000,33(18): 6738-6745.
    [30]Shinoda, H.; Matyjaszewski, K. Improving the structural control of graft copolymers. Copolymerization of poly (dimethyl siloxane) macromonomer with methyl methacrylate using RAFT polymerization [J]. Macromolecular Rapid Communications,2001,22(14):1176-1181.
    [31]Bai, R. K.; You, Y. Z.; Zhong, P.; Pan, C. Y. Controlled polymerization under Co-60 gamma-irradiation in the presence of dithiobenzoic acid [J]. Macromolecular Chemistry and Physics,2001,202(9):1970-1973.
    [32]Zhu, M. Q.; Wei, L. H.; Zhou, P.; Du, F. S.; Li, Z. C.; Li, F. M. Controlled radical copolymerization of iso-butyl vinyl ether with electron-withdrawing monomers [J]. Acta Polym. Sinica.,2001, (3):418-421.
    [33]Goto, A.; Sato, K.; Tsujii, Y.; Fukuda, T.; Moad, G.; Rizzardo, E.; Thang, S. H. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate [J]. Macromolecules,2001,34(3):402-408.
    [34]Pyun, J.; Matyjaszewski, K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/ "living" radical polymerization [J]. Chemistry of Materials,2001,13(10):3436-3448.
    [35]Kamal, M.; Srivastava, A. K. Styrene-co-acrylonitrile and poly(arsenicacrylate) based interpenetrating polymer network:synthesis and characterization [J]. Reactive and Functional Polymers,2001,49(1):55-65.
    [36]Monteiro, M. J.; Sjoberg, M.; van der Vlist, J.; Gottgens, C. M. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer:Effect of surfactant migration upon film formation [J]. Journal of Polymer Science Part a-Polymer Chemistry,2000,38(23): 4206-4217.
    [37]Zhuang, R. C.; Chen, H. H.; Lin, J.; Ye, J. L.; Zou, Y S. Syntheses of A-B type block copolymers using 1-phenylethyl dithiobenzoate as raft agent [J]. Acta Polym. Sinica.,2001, (3):288-292.
    [38]Wieland, P. C.; Raether, B.; Nuyken, O. A new additive for controlled radical polymerization [J]. Macromolecular Rapid Communications,2001,22(9):700-703.
    [39]Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents [J]. Macromolecules,1999,32(21):6977-6980.
    [40]Rizzardo, E.; Chiefari, J.; Chong, B. Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Thang, S. H. Tailored polymers by free radical processes [J]. Macromolecular Symposia,1999,143: 291-307.
    [41]Rizzardo, E.; Chiefari, J.; Mayadunne, R. T. A.; Moad, G.; Thang, S. H. Synthesis of defined polymers by reversible addition-fragmentation chain transfer [J]. Abstracts of Papers of the American Chemical Society,1999,218:316.
    [42]Donovan, M. S.; Lowe, A. B.; McCormick, C. L. Synthesis of well-defined, stimuli-responsive, water-soluble polymers by the raft process [J]. Abstracts of Papers of the American Chemical Society,1999,218:U447-U448.
    [43]Asgarzadeh, F.; Beyou, E.; Chaumont, P. Synthesis of polymeric networks by reversible addition-fragmentation transfer polymerization [J]. Abstracts of Papers of the American Chemical Society,1999,218:U467-U467.
    [44]Liu, S. S.; Gu, B.; Rowlands, H. A.; Sen, A. Controlled random and alternating copolymerization of methyl acrylate with 1-alkenes [J]. Macromolecules,2004, 37(21):7924-7929.
    [45]Rizzardo, E.; Chiefari, J.; Mayadunne, R. T. A.; Moad, G.; Thang, S. H. Synthesis of defined polymers by reversible addition-fragmentation chain transfer:the RAFT process [J]. ACS Symposium Series,2000,768:278-296.
    [46]Kubo, K.; Goto, A.; Sato, K.; Kwak, Y.; Fukuda, T. Kinetic study on reversible addition-fragmentation chain transfer (RAFT) process for block and random copolymerizations of styrene and methyl methacrylate [J]. Polymer,2005,46(23): 9762-9768.
    [47]Hoogenboom, R.; Schubert, U. S.; Van Camp, W.; Du Prez, F. E. RAFT polymerization of 1-ethoxyethyl acrylate:A novel route toward near-monodisperse poly(acrylic acid) and derived block copolymer structures [J]. Macromolecules,2005, 38(18):7653-7659.
    [48]Sahnoun, M.; Charreyre, M. T.; Veron, L.; Delair, T.; D'Agosto, F. Synthetic and characterization aspects of dimethylaminoethyl methacrylate reversible addition fragmentation chain transfer (RAFT) polymerization [J]. Journal of Polymer Science Part A-Polymer Chemistry,2005,43(16):3551-3565.
    [49]Eberhardt, M.; Theato, P. RAFT polymerization of pentafluorophenyl methacrylate:Preparation of reactive linear diblock copolymer [J]. Macromolecular Rapid Communications,2005,26(18):1488-1493.
    [50]McCormack, C. L.; Lowe, A. B. Aqueous RAFT polymerization:Recent developments in synthesis of functional water-soluble (Co)polymers with controlled structures [J]. Accounts of Chemical Research,2004,37(5):312-325.
    [51]Mitsukami, Y.; Hashidzume, A.; Yusa, S.; Morishima, Y.; Lowe, A. B.; McCormick, C. L. Characterization of pH-dependent micellization of polystyrene-based cationic block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization [J]. Polymer, 2006,47(12):4333-4340.
    [52]Ray, B.; Isobe, Y.; Matsumoto, K.; Habaue, S.; Okamoto, Y.; Kamigaito, M.; Sawamoto, M. RAFT polymerization of N-isopropylacrylamide in the absence and presence of Y(OTf)(3):Simultaneous control of molecular weight and tacticity [J]. Macromolecules,2004,37(5):1702-1710.
    [53]Lutz, J. F.; Neugebauer, D.; Matyjaszewski, K. Stereoblock copolymers and tacticity control in controlled/living radical polymerization [J]. Journal of the American Chemical Society,2003,125(23):6986-6993.
    [54]Li, Y. T.; Lokitz, B. S.; McCormick, C. L. RAFT synthesis of a thermally responsive ABC triblock copolymer incorporating N-acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media [J]. Macromolecules, 2006,39(1):81-89.
    [55]Perrier, S.; Takolpuckdee, P.; Westwood, J.; Lewis, D. M. Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures [J]. Macromolecules,2004,37(8): 2709-2717.
    [56]Bussels, R.; Bergman-Gottgens, C.; Meuldijk, J.; Koning, C. Multiblock copolymers synthesized by miniemialsion polymerization using multifunctional RAFT agents [J]. Macromolecules,2004,37(25):9299-9301.
    [57]Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents:ABA triblock copolymers by radical polymerization in two steps [J]. Macromolecules,2000,33(2):243-245.
    [58]Pai, T. S. C.; Barner-Kowollik, C.; Davis, T. P.; Stenzel, M. H. Synthesis of amphiphilic block copolymers based on poly (dimethyl siloxane) via fragmentation chain transfer (RAFT) polymerization [J]. Polymer,2004,45(13):4383-4389.
    [59]Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo, E. Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization):Approaches to star polymers [J]. Macromolecules,2003,36(5): 1505-1513.
    [60]Stenzel-Rosenbaum, M.; Davis, T. P.; Chen, V.; Fane, A. G Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization [J]. Journal of Polymer Science Part A-Polymer Chemistry,2001,39(16):2777-2783.
    [61]Suzuki, A.; Nagai, D.; Ochiai, B.; Endo, T. Synthesis of well-defined three-armed polystyrene having thiourethane-isocyanurate as the core structure derived from trifunctional five-membered cyclic dithiocarbonate [J]. Journal of Polymer Science Part A-Polymer Chemistry,2005,43(22):5498-5505.
    [62]Stenzel, M. H.; Davis, T. P. Star polymer synthesis using trithiocarbonate functional beta-cyclodextrin cores [J]. Journal of Polymer Science Part A-Polymer Chemistry,2002,40(24):4498-4512.
    [63]Feng, X. S.; Pan, C. Y. Synthesis of amphiphilic miktoarm ABC star copolymers by RAFT mechanism using maleic anhydride as linking agent [J]. Macromolecules, 2002,35(13):4888-4893.
    [64]Fredrickson, G. H.; Ganesan,V.; Drolet, F. Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids [J]. Macromolecules,2002,35(1):16-39.
    [65]Groot, R. D.; Warren, P. B. Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation [J]. Journal of Chemical Physics,1997, 107(11):4423-4435.
    [66]Leibler, L. Theory of Microphase Separation in Block Co-Polymers [J]. Macromolecules,1980,13(6):1602-1617.
    [67]Ohta, T.; Kawasaki, K. Equilibrium Morphology of Block Copolymer Melts [J]. Macromolecules,1986,19(10):2621-2632.
    [68]Helfand, E.; Wasserman, Z. R. Block Co-polymer Theory.6. Cylindrical Domains [J]. Macromolecules,1980,13(4):994-998.
    [69]Semenov, A. N. Contribution to the Theory of Microphase Layering in Block-Copolymer Melt [J]. Zhurnal Eksperimentalnoi Ⅰ Teoreticheskoi Fiziki,1985, 88(4):1242-1256.
    [70]Matsen, M.W.; Schick, M. Stable and Unstable Phase of a Diblock Copolymer Melt [J]. Physical Review Letters,1994,72(16):2660-2663.
    [71]Edwards, S. F. Proceedings of the Physical Society, London [M],1965,85: 613-624.
    [72]Flory, P. J. Principles of polymer chemistry [M]. New York:Cornell University Press,1953.
    [73]Rubinstein, M.; Colby, R. H. Polymer physics [M]. New York:Oxford University Press,2005.
    [74]de Gennes, P. G. Scaling concepts in polymer physics [M]. New York:Cornell University Press,1979.
    [75]于禄;郝伯林.相变和临界现象[M].北京:科学出版社,1984.
    [76]Dobrynin, A. V.; Erukhimovich, I. Y. Computer-Aided Comparative Investigation of Architecture Influence on Block Copolymer Phase-Diagrams [J]. Macromolecules, 1993,26(2):276-281.
    [77]Mayes, A. M.; Delacruz, M. O. Microphase Separation in Multiblock Copolymer Melts [J]. Journal of Chemical Physics,1989,91(11):7228-7235.
    [78]Werner, A.; Fredrickson, G. H. Architectural effects on the stability limits of ABC block copolymer [J]. Journal of Polymer Science Part B-Polymer Physics,1997, 35(5):849-864.
    [79]Foster, D. P.; Jasnow, D.; Balazs, A. C. Macrophase and Microphase Separation in Random Comb Copolymers [J]. Macromolecules,1995,28(9):3450-3462.
    [80]Shinozaki, A.; Jasnow, D.; Balazs, A. C. Microphase Separation in Comb Copolymers [J]. Macromolecules,1994,27(9):2496-2502.
    [81]Uneyama, T.; Doi, M. Density functional theory for block copolymer melts and blends [J]. Macromolecules,2005,38(1):196-205.
    [82]Fredrickson, G. H.; Helfand, E. Fluctuation Effects in the Theory of Microphase Separation in Block Copolymer [J]. Journal of Chemical Physics,1987,87(1): 697-705.
    [83]Helfand, E.; Wasserman, Z. R. Block Co-polymer Theory.4. Narrow Interphase Approximation [J]. Macromolecules,1976,9(6):879-888.
    [84]Helfand, E.; Wasserman, Z. R. Block Co-polymer Theory.5. Spherical Domains [J]. Macromolecules,1978,11(5):960-966.
    [85]Broseta, D.; Fredrickson, G. H.; Helfand, E.; Leibler, L. Molecular-Weight and Polydispersity Effects at Polymer-Polymer Interfaces [J]. Macromolecules,1990, 23(1):132-139.
    [86]Milner, S. T.; Witten, T. A.; Cates, M. E. A Parabolic Density Profile for Grafted Polymer [J]. Europhysics Letters,1988,5(5):413-418.
    [87]Likhtman, A. E.; Semenov, A. N. Stability of the Obdd Structure for Diblock Copolymer Melts in the Strong Segregation Limit [J]. Macromolecules,1994,27(11): 3103-3106.
    [88]Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Forster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Fluctuations, Conformational Asymmetry and Block-Copolymer Phase-Behavior [J]. Faraday Discussions,1994,7-18.
    [89]Hajhuk, D. A.; Gruner, S. M.; Rangarajan, P.; Register, R. A.; Fetters, L. J.; Honeker, C.; Albalak, R. J.; Thomas, E. L. Observation of a Reversible Thermotropic Order-Order Transition in a Diblock Copolymer [J]. Macromolecules,1994,27(2): 490-501.
    [90]Matsen, M. W.; Bates, F. S. Unifying weak-and strong-segregation block copolymer theories [J]. Macromolecules,1996,29(4):1091-1098.
    [91]Likhtman, A. E.; Semenov, A. N. Theory of microphase separation in block copolymer/homepolymer mixtures [J]. Macromolecules,1997,30(23):7273-7278.
    [92]Olmsted, P. D.; Milner, S. T. Strong segregation theory of bicontinuous phases in block copolymers [J]. Macromolecules,1998,31(12):4011-4022.
    [93]Fredrickson, G. H. Stability of a Catenoid-Lamellar Phase for Strongly Stretched Block copolymers [J]. Macromolecules,1991,24(11):3456-3458.
    [94]Olmsted, P. D.; Milner, S. T. Strong-Segregation Theory of Bicontinuous Phases in Block-Copolymers [J]. Physical Review Letters,1994,72(6):936-939.
    [95]Zheng, W.; Wang, Z. G. Morphology of ABC Triblock Copolymers [J]. Macromolecules,1995,28(21):7215-7223.
    [96]Kawasaki, K.; Ohta, T.; Kohrogui, M. Equilibrium Morphology of Block Copolymer Melts.2 [J]. Macromolecules,1988,21(10):2972-2980.
    [97]Matsen, M. W.; Whitmore, M. D. Accurate diblock copolymer phase boundaries at strong segregation [J]. Journal of Chemical Physics,1996,105(21):9698-9701.
    [98]Matsen, M. W. Testing strong-segregation theory against self-consistent field theory for block copolymer melts [J]. Journal of Chemical Physics,2001,114(23): 10528-10530.
    [99]Matsen, M. W.; Gardiner, J. M. Anomalous domain spacing difference between AB diblock and homologous A(2)B(2) starblock copolymer [J]. Journal of Chemical Physics,2000,113(5):1673-1676.
    [100]Matsen, M. W.; Bates, F. S. Testing the strong-strectching assumption in a block copolymer microstructure [J]. Macromolecules,1995,28(26):8884-8886.
    [101]Semenov, A. N. Theory of Block-Copolymer Interfaces in the Strong Segregation Limit [J]. Macromolecules,1993,26(24):6617-6621.
    [102]Likhtman, A. E.; Semenov, A. N. An advance in the theory of strongly segregated polymers [J]. Europhysics Letters,2000,51(3):307-313.
    [103]Ball, R. C.; Marko, J. F.; Milner, S. T.; Witten, T. A. Polymers Grafted to a Convex Surfaces [J]. Macromolecules,1991,24(3):693-703.
    [104]Goveas, J. L.; Milner, S. T.; Russel, W. B. Corrections to strong-stretching theories [J]. Macromolecules,1997,30(18):5541-5552.
    [105]Fredrickson, G. H.; Ganesan, V.; Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids [J]. Macromolecules,2002,35(1):16-39.
    [106]Fredrickson, G. H. Computational field theory of polymers:opportunities and challenges [J]. Soft Matter,2007,3(11):1329-1334.
    [107]Fredrickson, G. H. Theoretical profits [J]. Nature Materials,2008,7(4): 261-263.
    [108]Fredrickson, G. H. The Equilibrium Theory of Inhomogeneous Polymers [M]. New York:Oxford University Press,2006.
    [109]Schmid, F. Self-consistent-field theories for complex fluids [J]. Journal of Physics-Condensed Matter,1998,10(37):8105-8138.
    [110]Muller, M.; Schmid, F. Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends. Advanced Computer Simulation Approaches for Soft Matter Sciences Ⅱ [J]. Advances in Polymer Science,2005,185: 1-58.
    [111]Shi, A. C. Chapter 8. Self-Consistent Field Theory of Block Copolymer. Developments in Block Copolymer Science and Technology [M]. John Wiley & Sons, Ltd, Wiley Online Library,2004.
    [112]Lin, B.; Zhang, H. D.; Qiu, F.; Yang, Y. L. Self-Assembly of ABC Star Triblock Copolymer Thin Films Confined with a Preferential Surface:A Self-Consistent Mean Field Theory [J]. Langmuir,2010,26(24):19033-19044.
    [113]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers [J]. Journal of Physical Chemistry B,2004,108(24):8434-8438.
    [114]Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory [J]. Physical Review Letters, 1999,83(21):4317-4320.
    [115]Rasmussen, K.; Kalosakas, G. Improved Numerical Algorithm for Exploring Block Copolymer Mesophases [J]. Journal of Polymer Science Part B:Polymer Physics,2002,40(16):1777-1783.
    [116]Sides, S. W.; Fredrickson, G. H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure [J]. Polymer,2003,44(19): 5859-5866.
    [117]Sun, M. Z.; Wang, P.; Qiu, F.; Tang, P.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of ABC linear triblock copolymers:Parallel real-space self-consistent-field-theory simulation [J]. Physical Review E,2008,77(1):9.
    [118]Shi, A. C.; Noolandi, J.; Desai, R. C. Theory of anisotropic fluctuations in ordered block copolymer phases [J]. Macromolecules,1996,29(20):6487-6504.
    [119]Shull, K. R. Interfacial Phase-Transitions in Block Copolymer Homopolymer Blends [J]. Macromolecules,1993,26(9):2346-2360.
    [120]Hahn, T. International Table for Crystallography [M]. Boston:Kluwer Academic Publishers,1996.
    [121]Barrat, J. L.; Fredrickson, G. H.; Sides, S. W. Introducing variable cell shape methods in field theory simulations of polymers [J]. Journal of Physical Chemistry B, 2005,109(14):6694-6700.
    [1]Yablonovitch, E. How to Be Truly Photonic [J]. Science,2000,289(5479): 557-559.
    [2]Lin, K. H.; Crocker, J. C.; Prasad, V.; Schofield, A.; Weitz, D. A.; Lubensky, T. C.; Yodh, A. G. Entropically driven colloidal crystallization on patterned surfaces [J]. Physical Review Letters,2000,85(8):1770-1773.
    [3]Thomas, E. L. The ABCs of Self-Assembly [J]. Science,1999,286(5443):1307.
    [4]Jenekhe, S. A.; Chen, X. L. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers [J]. Science,1999,283(5400):372-375.
    [5]Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Block Copolymer Lithography:Periodic Arrays of~1011 Holes in 1 Square Centimeter [J]. Science,1997,276(5317):1401-1404.
    [6]Matsen, M. W. The standard Gaussian model for block copolymer melts [J]. Journal of Physics-Condensed Matter,2002,14(2):R21-R47.
    [7]Leibler, L. Theory of microphase separation in block copolymers [J]. Macromolecules,1980,13(6):1602-1617.
    [8]Mogi, Y.; Kotsuji, H.; Kaneko, Y.; Mori, K.; Matsushita, Y.; Noda, I. Preparation and Morphology of Triblock Copolymers of the ABC Type [J]. Macromolecules, 1992,25(20):5408-5411.
    [9]Tyler, C. A.; Morse, D. C. Orthorhombic Fddd Network in Triblock and Diblock Copolymer Melts [J]. Physical Review Letters,2005,94(20):208302.
    [10]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers [J]. Journal of Physical Chemistry B,2004,108(24):8434-8438.
    [11]Tang, P.; Qiu, F.; Zhang, H. D.; Yang Y. L. Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymers [J]. Physical Review E 2004,69(3):031803.
    [12]Ye, X.; Shi, T.; Lu, Z.; Zhang, C.; Sun, Z.; An, L. Study of Morphology and Phase Diagram of π-Shaped ABC Block Copolymers Using Self-Consistent-Field Theory [J]. Macromolecules,2005,38(21):8853-8857.
    [13]Sun, D. W.; Sun, Z. Y.; Li, H. F.; An, L. J. Study of morphology and phase diagram of the H-shaped (AC)B(CA) ternary copolymers using self-consistent field theory [J]. Polymer,2009,50(17):4270-4280.
    [14]Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory [J]. Physical Review Letters, 1999,83(21):4317-4320.
    [15]Drolet, F.; Fredrickson, G. H. Optimizing chain bridging in complex block copolymers [J]. Macromolecules,2001,34(15):5317-5324.
    [16]Sides, S.W.; Fredrickson, G. H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure [J]. Polymer,2003,44(19): 5859-5866.
    [17]Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes [M]. Cambridge, England:Cambridge University press,1989.
    [18]A. Takano, S. Wada, S. Sato, T. Araki, K. Hirahara, T. Kazama, S. Kawahara, Y. Isono, A. Ohno, N. Tanaka and Y. MatsushitaObservation of Cylinder-Based Microphase-Separated Structures from ABC Star-Shaped Terpolymers Investigated by Electron Computerized Tomography [J]. Macromolecules,2004,37,9941-9946
    [19]Bohbot-Raviv, Y; Wang, Z. G. Discovering new ordered phases of block copolymers[J]. Physical Review Letters,2000,85(16):3428-3431.
    [20]He, X. H.; Huang, L.; Liang, H. J.; Pan, C. Y. Localizations of junction points of ABC 3-miktoarm star terpolymers [J]. Journal of Chemical Physics,2003,118(21): 9861-9863.
    [21]Gemma, T.; Hatano, A.; Dotera, T. Monte Carlo Simulations of the Morphology of ABC Star Polymers Using the Diagonal Bond Method [J]. Macromolecules,2002, 35(8):3225-3237.
    [22]Dotera, T.; Hatano, A. The diagonal bond method:A new lattice polymer model for simulation study of block copolymers [J]. Journal of Chemical Physics,1996, 105(18):8413-8427.
    [1]Matsen, M. W. The standard Gaussian model for block copolymer melts [J]. Journal of Physics-Condensed Matter,2002,14(2):R21-R47.
    [2]Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Block copolymer lithography:Periodic arrays of similar to 10(11) holes in 1 square centimeter [J]. Science,1997,276(5317):1401-1404.
    [3]Xu, Y. C.; Li, W. H.; Qiu, F.; Yang, Y. L. Self-Assembly of ABC Star Triblock Copolymers under a Cylindrical Confinement [J]. Journal of Physical Chemistry B, 2009,113(32),11153-11159.
    [4]Yang, Y. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Cylindrical phase of diblock copolymers confined in thin films. A real-space self-consistent field theory study [J]. Polymer,2006,47(6):2205-2216.
    [5]Khanna, V.; Cochran, E. W.; Hexemer, A.; Stein, G. E.; Fredrickson, G. H.; Kramer, E. J.; Li, X.; Wang, J.; Hahn, S. F. Effect of chain architecture and surface energies on the ordering behavior of lamellar and cylinder forming block copolymers [J]. Macromolecules,2006,39(26):9346-9356.
    [6]Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermodynamics-Theory and Experiment [J]. Annual Review of Physical Chemistry,1990,41:525-557.
    [7]Bates, F. S.; Fredrickson, G. H. Block copolymers-Designer soft materials [J]. Physics Today,1999,52(2):32-38.
    [8]Han, W. C.; Tang, P.; Li, X.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Self-Assembly of Star ABC Triblock Copolymer Thin Films:Self-Consistent Field Theory [J]. Journal of Physical Chemistry B,2008,112(44):13738-13748.
    [9]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers [J]. Journal of Physical Chemistry B,2004,108(24):8434-8438.
    [10]Kellogg, G. J.; Walton, D. G.; Mayes, A. M.; Lambooy, P.; Russell, T. P.; Gallagher, P. D.; Satija, S. K. Observed surface energy effects in confined diblock copolymers [J]. Physical Review Letters,1996,76(14):2503-2506.
    [11]Walton, D. G.; Kellogg, G. J.; Mayes, A. M.; Lambooy, P.; Russell, T. P. A Free-Energy Model for Confined Diblock Copolymers [J]. Macromolecules,1994, 27(21):6225-6228.
    [12]Matsen, M. W. Thin films of block copolymer [J]. Journal of Chemical Physics, 1997,106(18):7781-7791.
    [13]Wang, Q.; Yan, Q. L.; Nealey, P. F.; de Pablo, J. J. Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surfaces [J]. Journal of Chemical Physics,2000,112(1):450-464.
    [14]Huinink, H. P.; Brokken-Zijp, J. C. M.; van Dijk, M. A.; Sevink, G. J. A. Asymmetric block copolymers confined in a thin film [J]. Journal of Chemical Physics,2000,112(5):2452-2462.
    [15]Wang, Q.; Nealey, P. F.; de Pablo, J. J. Monte Carlo simulations of asymmetric diblock copolymer thin films confined between two homogeneous surfaces [J]. Macromolecules,2001,34(10):3458-3470.
    [16]Sevink, G. J. A.; Zvelindovsky, A. V.; Fraaije, J.; Huinink, H. P. Morphology of symmetric block copolymer in a cylindrical pore [J]. Journal of Chemical Physics, 2001,115(17):8226-8230.
    [17]Li, W. H.; Wickham, R. A.; Garbary, R. A. Phase diagram for a diblock copolymer melt under cylindrical confinement [J]. Macromolecules,2006,39(2): 806-811.
    [18]Yu, B.; Sun, P. C.; Chen, T. H.; Jin, Q. H.; Ding, D. T.; Li, B. H.; Shi, A. C. Self-assembly of diblock copolymers confined in cylindrical nanopores [J]. Journal of Chemical Physics,2007,127(11):114906-114915.
    [19]He, X. H.; Song, M.; Liang, H. J.; Pan, C. Y. Self-assembly of the symmetric diblock copolymer in a confined state:Monte Carlo simulation [J]. Journal of Chemical Physics,2001,114(23):10510-10513.
    [20]Lee, J. Y.; Shou, Z. Y.; Balazs, A. C. Predicting the morphologies of confined copolymer/nanoparticle mixtures [J]. Macromolecules,2003,36(20):7730-7739.
    [21]Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase behavior in thin films of cylinder-forming ABA block copolymers:Mesoscale modeling [J]. Journal of Chemical Physics,2004,120(2):1117-1126.
    [22]Matsen, M. W. Self-assembly of block copolymers in thin films [J]. Current Opinion in Colloid & Interface Science,1998,3(1):40-47.
    [23]Pickett, G. T.; Balazs, A. C. Equilibrium behavior of confined triblock copolymer films [J]. Macromolecular Theory and Simulations,1998,7(2):249-255.
    [24]Feng, J.; Ruckenstein, E. Monte Carlo simulation of triblock copolymer thin films [J]. Polymer,2002,43(21):5775-5790.
    [25]Chen, H. Y.; Fredrickson, G. H. Morphologies of ABC triblock copolymer thin films [J]. Journal of Chemical Physics,2002,116(3):1137-1146.
    [26]Chen, P.; Liang, H. J. Monte Carlo simulations of cylinder-forming ABC triblock terpolymer thin films [J]. Journal of Physical Chemistry B,2006,110(37): 18212-18224.
    [27]Ludwigs, S.; Krausch, G.; Magerle, R.; Zvelindovsky, A. V.; Sevink, G. J. A. Phase behavior of ABC triblock terpolymers in thin films:Mesoseale simulations [J]. Macromolecules,2005,38(5):1859-1867.
    [28]Ludwigs, S.; Schmidt, K.; Stafford, C. M.; Amis, E. J.; Fasolka, M. J.; Karim, A. Magerle, R.; Krausch, G. Combinatorial mapping of the phase behavior of ABC triblock terpolymers in thin films:Experiments [J]. Macromolecules,2005,38(5): 1850-1858.
    [29]Gemma, T.; Hatano, A.; Dotera, T. Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method [J]. Macromolecules,2002, 35(8):3225-3237.
    [30]Kou, D. Z.; Jiang, Y.; Liang, H. J. Microstructures from a mixture of ABC 3-miktoarm star terpolymers and homopolymers in two-dimensional space [J]. Journal of Physical Chemistry B,2006,110(46):23557-23563.
    [31]Krishnan, S.; Paik, M. Y.; Ober, C. K.; Martinelli, E.; Galli, G.; Sohn, K. E.; Kramer, E. J.; Fischer, D. A. NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films [J]. Macromolecules,2010,43(10):4733-4743.
    [32]Rodwogin, M. D.; Spanjers, C. S.; Leighton, C.; Hillmyer, M. A. Polylactide-Poly(dimethylsiloxane)-Polylactide Triblock Copolymers as Multifunctional Materials for Nanolithographic Applications [J]. ACS Nano,2010, 4(2):725-732.
    [33]Yang, G.; Tang, P.; Yang, Y.; Cabral, J. T. Self-Assembly of AB Diblock Copolymers under Confinement into Topographically Patterned Surfaces [J]. Journal of Physical Chemistry B,2009,113(43):14052-14061.
    [34]Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory [J]. Physical Review Letters, 1999,83(21):4317-4320.
    [35]Drolet, F.; Fredrickson, G. H. Optimizing chain bridging in complex block copolymers [J]. Macromolecules,2001,34(15):5317-5324
    [36]Tang, P.; Qiu, F.; Zhang, H. D.; Yang Y. L. Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymers [J]. Physical Review E 2004,69(3):031803.
    [37]Hayashida, K.; Takano, A.; Dotera, T.; Matsushita, Y. Giant Zincblende Structures Formed by an ABC Star-Shaped Terpolymer/Homopolymer Blend System [J]. Macromolecules,2008,41(17):6269-6271.
    [38]Harrison, C.; Park, M.; Chaikin, P.; Register, R. A.; Adamson, D. H.; Yao, N. Layer by Layer Imating of Diblock Copolymer Films with A Scanning Electron Microscope [J]. Polymer,1998,39(13):2733-2744.
    [39]Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Nanoscopic Templates from Oriented Block Copolymer Films [J]. Advanced Materials,2000,12(11):787-791.
    [40]Lammertink, R. G. H.; Hempenius, M. A.; Vancso, G. J. Morphology and Crystallization of Thin Films of Asymmetric Organic-Organometallic Diblock Copolymers of Isoprene and Ferrocenyldimethylsilane [J]. Langmuir,2000,16(15): 6245-6252.
    [41]Yokoyama, H.; Mates, T. E.; Kramer, E. J. Structure of Asymmetric Diblock Copolymers in Thin Films [J]. Macromolecules,2000,33(5):1888-1898.
    [42]Fasolka, M. J.; Banerjee, P.; Mayes, A. M.; Pickett, G.; Balazs, A. C. Morphology of Ultrathin Supported Diblock Copolymer Films:Theory and Experiment [J]. Macromolecules,2000,33(15):5702-5712.
    [43]Lammertink, R. G. H; Hempenius, M. A.; Vancso, G. J.; Shin, K.; Rafailovich, M. H.; Sokolov, J. Morphology and Surface Relief Structures of Asymmetric Poly(styrene-block-ferrocenylsilane) Thin Films [J]. Macromolecules,2001,34(4): 942-950.
    [44]Segalman, R. A.; Hexemer, A.; Kramer, E. J. Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films [J]. Macromolecules,2003, 36(18):6831-6839.
    [45]Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A.V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers [J]. Physical Review Letters,2002,89(3):035501.
    [46]Sevink, G. J. A.; Fraaije, J. G. E. M.; Huinink, H. P. Structure of Aqueous Pluronics Films:Dynamics of Surfae Directed Mesophase Formation [J]. Macromolecules,2002,35(5):1848-1859.
    [47]Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.; Magerle, R. Role of dissimilar Interfaces in Thin Films of Cylinder-Forming Block Copolymers [J]. Journal of Chemical Physics,2004,120(2):1127-1137.
    [48]Knoll, A.; Lyakhova, K. S.; Horvat, A.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Direct Imaging and Mesoscale Modelling of Phase Transitions in a Nanostructured Fluid [J]. Nature Materials,2004,3(12):886-890.
    [49]Suh, K. Y.; Kim, Y. S.; Lee, H. H. Parallel and vertical morphologies in block copolymers of cylindrical domain [J]. Journal of Chemical Physics,1998,108(3): 1253-1256.
    [50]Brown, G.; Chakrabarti, A. Surface-Induced Ordering in Block Copolymer Melts [J]. Journal of Chemical Physics,1994,101(4):3310-3317.
    [51]Karim, A.; Singh, N.; Sikka, M.; Bates, F. S.; Dozier, W. D.; Felcher, G. P. Ordering in Asymmetric Poly (Ethylene-Propylene)-poly (Ethylethylene) Diblock Copolymer Thin Films [J]. Journal of Chemical Physics,1994,100(2):1620-1629.
    [52]Liu, Y.; Zhao, W.; Zheng, X.; King, A.; Singh, A.; Rafailovich, M. H.; Sokolov, J.; Dai, K. H.; Kramer, E. J. Surface-Induced Ordering in Asymmetric Block Copolymers [J]. Macromolecules,1994,27(14):4000-4010.
    [53]Harrison, C.; Park, M.; Chaikin, P.; Register, R. A.; Adamson, D. H.; Yao, N. Depth Profiling Block Copolymer Microdomains [J]. Macromolecules,1998,31(7): 2185-2189.
    [54]Huinink, H. P.; van Dijk, M. A.; Brokken-Zijp, J. C. M.; Sevink, G. J. A. Surface-Induced Transitions in Thin Films of Asymmetric Diblock Copolymers[J]. Macromolecules,2001,34(15):5325-5330.
    [55]Tyler, C. A.; Qin, J.; Bates, F. S.; Morse, D. C. SCFT study of nonfrustrated ABC triblock copolymer melts [J]. Macromolecules,2007,40(13):4654-4668.
    [1]Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. Synthesis of amphiphilic graphene nanoplatelets [J]. Small,2009,5(1):82-85.
    [2]Cheng, J.; He, J.; Li, C.; Yang, Y. Facile approach to functionalize nanodiamond particles with v-shaped polymer brushes [J]. Chemistry of materials,2008,20(13): 4224-4230.
    [3]Mayya, K. S.; Schoeler, B.; Caruso, F. Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles [J]. Advanced Functional Materials,2003, 13(3):183-188.
    [4]Zhang, M.; Liu, L.; Zhao, H.; Yang, Y.; Fu, G.; He, B. Double-responsive polymer brushes on the surface of colloid particles [J]. Journal of colloid and interface science,2006,301(1):85-91.
    [5]Li, D.; He, Q.; Cui, Y.; Li, J. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine) [J]. Chemistry of materials,2007,19(3): 412-417.
    [6]Wang, D.; Duan, H.; Mohwald, H. The water/oil interface:the emerging horizon for self-assembly of nanoparticles [J]. Soft Matter,2005,1(6):412-416.
    [7]Binder, W. H. Supramolecular assembly of nanoparticles at liquid-liquid interfaces [J]. Angewandte Chemie International Edition,2005,44(33):5172-5175.
    [8]Li, D.; Sheng, X.; Zhao, B. Environmentally responsive "hairy" nanoparticles: mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques [J]. Journal of the American Chemical Society,2005, 127(17):6248-6256.
    [9]Lin, Y.; Skaff, H.; Boker, A; Dinsmore, A. D.; Emrick, T.; Russell, T. P. Ultrathin cross-linked nanoparticle membranes [J]. Journal of the American Chemical Society,2003,125(42):12690-12691.
    [10]Skaff, H.; Lin. Y.; Tangirala, R.; Breitenkamp, K.; Boker, A.; Russell, T. P.; Emrick, T. Crosslinked capsules of quantum dots by interfacial assembly and ligand crosslinking [J]. Advanced Materials,2005,17(17):2082-2086.
    [11]Chrissafis, K. Kinetics of thermal degradation of polymers [J]. Jounal of Thermal Analysis and Calorimetry,2009,95(1):273-283.
    [12]Lin, B.; Yang, L.; Dai, H.; Hou, Q.; Zhang, L. Thermal analysis of soybean oil based polyols [J]. Jounal of Thermal Analysis and Calorimetry,2009,95(3):977-983.
    [13]Friedman, H. L. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry:application to a phenolic resin [J]. Journal of Polymer Science, 1965,6(C):183-195.
    [14]Vlase, T.; Vlase, G.; Doca, N. Kinetics of thermal decomposition of alkaline phosphates [J]. Jounal of Thermal Analysis and Calorimetry,2005,80(1):207-210.
    [15]Pratap, A.; Lilly Shanker Rao T.; Lad, K.; Dhurandhar, H. D. Isoconversional vs. model fitting methods [J]. Jounal of Thermal Analysis and Calorimetry,2007,89(2): 399-405.
    [16]Vyazovkin, S. Model-free kinetics [J]. Jounal of Thermal Analysis and Calorimetry,2006,83(1):45-51.
    [17]Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. PCT International Patent Application (Int Pat Appl) WO 9801478 A1 980115,1998.
    [18]Starink, M. J. On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature-dependent equilibrium state [J]. Journal of materials science,1997,32(24):6505-6512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700