氮氧自由基偶合反应条件的探索及其在嵌段聚合物合成方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有复杂结构的高分子聚合物由于其优越的性能(如在溶液中丰富的自组装行为,微相形态结构及其纳米技术中的应用等),而引起了大家的广泛关注。因此,高分子聚合物的分子设计成为了高分子化学领域中一项极其重要的工作。近年来,由于活性/“可控”聚合技术,"Click" Chemistry偶合技术等的快速发展,为聚合物的合成提供了各种新颖的思路。特别是不同聚合反应机理和偶合技术的联合应用,更是为人们设计具有复杂结构聚合物提供了极大的便利。
     本文研究的氮氧自由基偶合反应,是一种新型而高效的偶合反应,它可以广泛地应用于复杂结构聚合物的合成与材料的表面修饰。这种偶合反应基于原子转移自由基聚合(ATRP)或者单电子转移自由基活性聚合(SET-LRP)的机理,在金属铜盐和配体的作用下,使聚合物末端的溴基团离去,形成“活性”自由基,然后通过另外一种聚合物末端的氮氧稳定自由基(一种自由基捕捉剂)将其捕捉,形成稳定的烷氧基胺键,完成聚合物之间偶合。根据碳自由基生成机理的不同,氮氧自由基偶合反应可分为原子转移氮氧自由基偶合反应(ATNRC)和单电子转移氮氧自由基偶合反应(SETNRC)。本课题对于氮氧自由基偶合反应的机理以及反应条件进行了详细的讨论,并将这种偶合反应与活性阴离子聚合、原子转移自由基聚合(ATRP)、“活性”开环聚合(ROP), "Click" Chemistry偶合技术联用,制备各种不同结构的嵌段聚合物。我们的主要工作以及结果如下:
     1.探寻反应温度、反应体系以及参与反应的溴基团结构对于反应的影响。采用ATRP技术,引发苯乙烯(St)、丙烯酸叔丁酯(tBA)、甲基丙烯酸甲酯(MMA)聚合,得到了带有不同结构溴基团的聚苯乙烯(PS-Br)、聚丙烯酸叔丁酯(PtBA-Br)和聚甲基丙烯酸甲酯(PMMA-Br)。同时,利用开环聚合(ROP),以4-羟基-2,2,6,6-四甲基哌啶氧自由基(4-Hydroxyl-2,2,6,6-tetramethylpiperidyl-1-oxyl, HTEMPO)为引发剂,引发ε-己内酯(ε-CL)聚合,得到末端带有TEMPO基团的聚ε-己内酯(PCL-TEMPO)。将PS-Br、PtBA-Br和PMMA-Br分别与PCL-TEMPO混合,在三个不同的反应体系中:(1) Cu0/PMDETA; (2) CuBr/PMDETA; (3) Cu0/CuBr/PMDETA,反应温度从室温(25℃)到90℃之间,观测反应温度、反应体系以及参与反应的溴基团结构的变化,对于偶合效率的影响,探寻适宜的偶合反应体系、反应温度以及所适用的溴基团结构。研究结果显示:在反应体系Cu0/PMDETA以及CuBr/PMDETA中,随着温度的升高,偶合效率下降了;在反应体系Cu0/CuBr/PMDETA中,在温度范围25~75℃之间,PtBA-Br的偶合效率都高于85%;在温度范围25~90℃之间,PS-Br的偶合效率皆高于90%;PMMA-Br只有在25℃下的偶合效率高于90%。
     2.联合应用原子转移氮氧自由基偶合(ATNRC)反应与“Click" Chemistry偶合技术,一步法合成了ABC型三嵌段聚合物PtBA-b-PS-b-PEO和PtBA-b-PS-b-PCL.首先,通过酯化反应,合成了两端分别带有炔丙基和溴基团小分子引发剂2-溴异丁酸丙炔酯(Propargyl 2-Bromoisobutyrate, PgBiB),然后以PgBiB为引发剂,采用ATRP技术引发苯乙烯(St)聚合,得到两端分别带有炔丙基和溴基团的聚苯乙烯(Alkyne-PS-Br)。接着,使用ATRP方法得到结构明确的末端带有溴基团的聚丙烯酸叔丁酯(PtBA-Br),利用端基叠氮化,得到末端带有叠氮基团的聚丙烯酸叔丁酯(PtBA-N3)。同时,利用开环聚合(ROP),以4-羟基-2,2,6,6-四甲基哌啶氧自由基(4-Hydroxyl-2,2,6,6-tetramethylpiperidyl-1-oxyl, HTEMPO)为引发剂,引发环氧乙烷(EO)和s-己内酯(ε-CL)聚合,得到末端带有TEMPO基团的聚环氧乙烷(PEO-TEMPO)和聚ε-己内酯(PCL-TEMPO).最后,将Alkyne-PS-Br, PtBA-N3以及PEO/PCL-TEMPO混合,在CuBr/PMDETA存在的条件下加热,炔基与叠氮基团发生"Click" Chemistry,溴基团与TEMPO基团之间发生ATNRC反应,一步法合成了两亲性ABC三嵌段聚合物PtBA-b-PS-b-PEO以及PtBA-b-PS-b-PCL。用1H NMR、GPC、FT-IR和DSC等手段对中间产物和目标产物进行了详细地表征。
     3.联合应用阴离子聚合,ATRP以及单电子转移氮氧偶合(SETNRC)反应,制备两亲性的ABC型三嵌段共聚物PI-b-PS-b-PEO、PI-b-PtBA-b-PEO以及PI-b-PAA-b-PEO。通过活性阴离子方法聚合异戊二烯,然后用EO作为小分子“盖帽”试剂进行封端反应,得到末端带有羟基的聚异戊二烯(PI-OH),通过2-溴异丁酰溴与羟基的酯化反应,得到末端带有溴基团的聚异戊二烯(PI-Br).以PI-Br为大分子引发剂,利用ATRP方法引发单体St以及tBA聚合,然后与PEO-TEMPO在室温下,以THF为溶剂,进行SETNRC反应。同时,研究了反应时间以及聚合物链长对于偶合效率的影响。结果显示:SETNRC反应在Cu0/Me6TREN体系中具有很高的反应速率,在2小时内达到91.6%;随着参与反应的聚合物链长的增长,偶合的效率快速下降。
Block copolymers have attracted much attention for their potential excellent properties (e.g, their self-assembling behavior in solution, the morphologies of microdomain and applications in nano-field). Therefore, the synthesis of these copolymers with well-defined structure is an important work in polymer chemistry. Nowadays, with the development of controlling/"living" polymerization and "click" chemistry, it provides the mature and reliable technical support for synthesis of these copolymers. In particular, by means of the combination of different polymerizations with the coupling techniques, it is more effective to design and synthesize these copolymers with well-defined structure.
     Nitroxide radical coupling reaction was investigated and developed as a potential coupling technique in this field. The "living" radicals generated by atom transfer or single electron transfer mechanisms can be trapped by nitroxide stable radical (a radical capture agent) to form a new alkoxyamine bond. In this work, we investigated the mechanism and reaction condition of nitroxide radical coupling reaction. By means of combination of this coupling technology with other polymerizations (like living anionic polymerization, atom transfer radical polymerization and ring-opening polymerization) and coupling reaction (like click chemistry), a serial of block copolymers with different structures were synthesized. The essential results obtained are showed as follows:
     1. The effect of temperature, catalyst system and the structure of bromine connected groups on the nitroxide radical coupling (NRC) reaction was investigated. A series of polymers with different bromine connected groups as poly(tert-butyl acrylate) (PtBA-Br), polystyrene (PS-Br) and poly(methyl methacrylate) (PMMA-Br) are prepared by ATRP first, then the bromine-containing polymers were coupled with 2,2,6,6-tetramethylpiperidinyl-l-oxy-containing poly(ε-caprolactone) (PCL-TEMPO) in different catalyst systems as CuBr/PMDETA, Cu0/PMDETA and CuBr/Cu0/PMDETA in the temperature range from 90℃to 25℃. The result shows that the catalyst system of CuBr/Cu0/PMDETA is the best one for NRC reaction, in which the NRC reaction could be conducted in high efficiency in the wide temperature range from room temperature to high temperature. The efficiency of NRC reaction between PtBA-Br and PCL-TEMPO is more than 85% in the temperature range from 25~75℃, the efficiency between PS-Br and PCL-TEMPO is more than 90% from 25~90℃, and the efficiency between PMMA-Br and PCL-TEMPO is more than 90% only at the room temperature.
     2. A new strategy for one-pot synthesis of ABC type triblock copolymers via a combination of "click chemistry" and atom transfer nitroxide radical coupling (ATNRC) was suggested, and poly(tert-butyl acrylate)-block-polystyrene-block-poly (ethylene oxide) (PtBA-PS-PEO) and poly(tert-butyl acrylate)-block-polystyrene-block-poly(ε-caprolactone) (PtBA-PS-PCL) were successfully prepared by this method. The precursors with predetermined number average molecular weight and low polydispersity indices, such as PS with a-alkyne and co-bromine end groups, PtBA with azide end group, PEO and PCL with a 2,2,6,6-tetramethylpiperidine-l-oxyl end group, were directly prepared by living polymerization technique using the compounds with corresponding functional groups as initiators, and no further modification of the end groups were needed except P/BA-N3. The coupling reaction between precursors was carried out in the CuBr/PMDETA system with high efficiencies. All the copolymers and precursors were characterized by1H NMR、GPC、FT-IR and DSC in detail.
     3. A serial of ABC triblock copolymers as polyisoprene-block-polystyrene-block-poly(ethylene oxide) (PI-PS-PEO), polyisoprene-block-poly(tert-butyl acrylate)-block-poly(ethylene oxide) (PI-PtBA-PEO) and polyisoprene-block-poly(acrylic acide)-block-poly(ethylene oxide) (PI-PAA-PEO) were obtained by combination of anionic technique, atom transfer radical polymerization (ATRP) with single electron transfer nitroxide coupling (SETNRC) reaction. Anionic polymerization of isoprene followed by end-capping with ethylene oxide yielded hydroxyl terminated PI. After esterification, PI with Br end group was used as a macroinitiator to initiate the polymerization of St and tBA by ATRP, then trapped by 2,2,6,6-tetramethylpiperidine-1-oxyl group in poly(ethylene oxide) by single electron transfer nitroxide radical coupling (SETNRC) reaction rapidly with high efficiency in THF at room temperature. The effect of reaction time and polymer chain length on SETNRC reaction was discussed in detail. In the present of Cu0/Me6TREN, SETNRC between PI-PS-Br and PEO-TEMPO was carried out with the efficiency up to 91.6% in 2 hours. With the polymer chain length increasing, the efficiency decreased fleetly.
引文
[1]Szwarc M. Living Polymers. Nature[J],1956,178:168-169.
    [2]Szwarc M. Levy M, and Milkovich R. Polymerization initiated by electron transfer to monomer-A new method of formation of block polymers. Journal of the American Chemical Society[J],1956,78:2656-2657.
    [3]Vebster O W. Living Polymerization methods. Science[J],1991,251:887-888.
    [4]Szwarc M. Living polymers. Their discovery, characterization, and properties. Journal of Polymer Science Part a-Polymer Chemistry[J],1998,36:Ⅸ-ⅩⅤ.
    [5]Uhrig D and Mays J W. Experimental Techniques in High-Vacuum Anionic Polymerization. Journal of Polymer Science Part a-Polymer Chemistry[J],2005, 43:6179-6222.
    [6]Akiyama Y, Otsuka H, Nagasaki Y, Kato M, and Kataoka K. Selective Synthesis of Heterobifunctional Poly(ethylene glycol) Derivatives Containing Both Mercapto and Acetal Terminals. Bioconjugate Chemistry[J],2000,11:947-950.
    [7]Kricheldorf H R, Kreiser-Saunders I, and Stricker A. Polylactones 48. SnOct2-initiated polymerizations of lactide:A mechanistic study. Macromolecules[J], 2000,33:702-709.
    [8]Storey R F and Sherman J W. Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of epsilon-caprolactone. Macromolecules[J],2002,35:1504-1512.
    [9]Otsu T and Yoshida M. Role of initiator-transfer agent-terminator(iniferter) in radical polymerizations-polymer design by organic disulfide as iniferters. Makromolekulare Chemie-Rapid Communications[J],1982,3:127-132.
    [10]Kannurpatti A R, Lu S, Bunker G M, and Bowman C N. Kinetic and Mechanistic Studies of Iniferter Photopolymerizations. Macromolecules[J],1996,29: 7310-7315.
    [11]Hawker C J, Barclay G G, Orellana A, and Dao J. Initiating Systems for Nitroxide-Mediated "Living" Free Radical Polymerizations:Synthesis and Evaluation. Macromolecules[J],1996,29:5245-5254.
    [12]Moad G, Rizzardo E, and Solomon D H. Selectivity of the reaction of free radicals with styrene. Macromolecules[J],1982,15:909-914.
    [13]Rizzardo E and Solomon D H. A new method for investigating the mechanism of radical polymerization. Polymer Bulletin[J],1979,1:529-534.
    [14]Georges M K, Veregin R P N, Kazmaier P M, and Hamer G K. Narrow molecular weight resins by a free-radical polymerization process Macromolecules[J],1993, 26:2987-2988.
    [15]Hawker C J, Elce E, Dao J, Volksen W, Russell T P, and Barclay G G. Well-Defined Random Copolymers by a "Living" Free-Radical Polymerization Process. Macromolecules[J],1996,29:2686-2688.
    [16]Lokaj J, Vlcek P, and Kriz J. Synthesis of Polystyrene-Poly(2-(dimethylamino) ethyl methacrylate) Block Copolymers by Stable Free-Radical Polymerization Macromolecules[J],1997,30:7644-7646.
    [17]Veregin R P N, Odell P G, Michalak L M, and Georges M K. Molecular Weight Distributions in Nitroxide-Mediated Living Free Radical Polymerization: Kinetics of the Slow Equilibria between Growing and Dormant Chains Macromolecules[J],1996,29:3346-3352.
    [18]Gabaston L I, Jackson R A, and Armes S P. Living Free-Radical Dispersion Polymerization of Styrene. Macromolecules[J],1998,31:2883-2888.
    [19]Bouix M, Gouzi J, Charleux B, Vairon J P, and Guinot P. Synthesis of amphiphilic polyelectrolyte block copolymers using "living" radical polymerization. Application as stabilizers in emulsion polymerization. Macromolecular Rapid Communications[J],1998,19:209-213.
    [20]Drache M, Koch A, and Schmidt-Naake G. N-Oxyl-kontrollierte radikalische Losungspolymerisation von Styrol. Angewandte Makromolekulare Chemie[J], 1999,265:47-54.
    [21]Benoit D, Grimaldi S, Robin S, Finet J P, Tordo P, and Gnanou Y. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic-Phosphonylated Nitroxide. Journal of the American Chemical Society[J],2000,122:5929-5939.
    [22]Benoit D, Chaplinski V, Braslau R. and Hawker C J. Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations. Journal of the American Chemical Society[J],1999,121:3904-3920.
    [23]Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rizzardo E, and Thang S H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process. Macromolecules[J],1998,31:5559-5562.
    [24]De Brouwer H, Schellekens M A J, Klumperman B, Monteiro M J, and German A L. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Journal of Polymer Science Part a-Polymer Chemistry[J],2000,38:3596-3603.
    [25]Goto A, Sato K, Tsujii Y, Fukuda T, Moad G, Rizzardo E, and Thang S H. Mechanism and Kinetics of RAFT-Based Living Radical Polymerizations of Styrene and Methyl Methacrylate. Macromolecules[J],2001,34:402-408.
    [26]Wang J S and Matyjaszewski K. Controlled/"living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society[J],1995,117:5614-5615.
    [27]Wang J S and Matyjaszewski K. "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. Macromolecules[J],1995,28: 7572-7573.
    [28]Wang J S and Matyjaszewski K. Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(Ⅰ)/Cu(Ⅱ) Redox Process. Macromolecules[J],1995,28:7901-7910.
    [29]Curran D P. The design and application of free radical chain reactions in organic synthesis. Part 2. Synthesis-Stuttgart[J],1988:489-513.
    [30]Matyjaszewski K, Ziegler M J, Arehart S V, Greszta D, and Pakula T. Gradient copolymers by atom transfer radical copolymerization. Journal of Physical Organic Chemistry[J],2000,13:775-786.
    [31]Greszta D and Matyjaszewski K. Living radical polymerization:Kinetic results-Comments. Macromolecules[J],1996,29:5239-5240.
    [32]Percec V, Guliashvili T, Ladislaw J S, Wistrand A, Stjerndahl A, J M, Sienkowska, Monteiro M J, and Sahoo S. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25 ℃. Journal of the American Chemical Society[J],2006,128:14156-14165.
    [33]Guliashvili T and Percec V. A Comparative Computational Study of the Homolytic and Heterolytic Bond Dissociation Energies Involved in the Activation Step of ATRP and SET-LRP of Vinyl Monomers. Journal of Polymer Science Part a-Polymer Chemistry[J],2007,45:1607-1618.
    [34]Coelho J F J, Silva A M F P, Popov A V, Percec V, Abreu M V, Goncalves P M O F, and Gil M H. Synthesis of Poly(vinyl chloride)-b-Poly(n-butyl acrylate)-b-Poly(vinyl chloride) by the Competitive Single-Electron-Transfer/Degenerative-Chain-Transfer-Mediated Living Radical Polymerization in Water. Journal of Polymer Science Part a-Polymer Chemistry[J],2006,44:3001-3008.
    [35]Lligadas G and Percec V. Ultrafast SET-LRP of Methyl Acrylate at 25 ℃ in Alcohols. Journal of Polymer Science Part a-Polymer Chemistry[J],2008,46: 2745-2754.
    [36]Lligadas G, Rosen B M, Bell C A, Monteiro M J, and Percec V. Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25 ℃. Macromolecules[J],2008,41:8365-8371.
    [37]Subramanian S H, Babu R P, and Dhamodharan R. Ambient Temperature Polymerization of Styrene by Single Electron Transfer Initiation, Followed by Reversible Addition Fragmentation Chain Transfer Control. Macromolecules[J], 2008,41:262-265.
    [38]Liu C, Zhang Y, and Huang J. Well-Defined Star Polymers with Mixed-Arms by Sequential Polymerization of Atom Transfer Radical Polymerization and Reverse Addition-Fragmentation Chain Transfer on a Hyperbranched Polyglycerol Core. Macromolecules[J],2008,41:325-331.
    [39]Rowe M D, Hammer B A G, and Boyes S G. Synthesis of Surface-Initiated Stimuli-Responsive Diblock Copolymer Brushes Utilizing a Combination of ATRP and RAFT Polymerization Techniques. Macromolecules[J],2008,41: 4147-4157.
    [40]Tang W and Matyjaszewski K. Effects of Initiator Structure on Activation Rate Constants in ATRP. Macromolecules[J],2007,40:1858-1863.
    [41]Tong Y, Dong Y, Du F, and Li Z. Synthesis of Well-Defined Poly(vinyl acetate)-b-Polystyrene by Combination of ATRP and RAFT Polymerization. Macromolecules[J],2008,41:7339-7346.
    [42]Nicolay R, Kwak Y, and Matyjaszewski K. Dibromotrithiocarbonate Iniferter for Concurrent ATRP and RAFT Polymerization. Effect of Monomer, Catalyst, and Chain Transfer Agent Structure on the Polymerization Mechanism. Macromolecules[J],2008,41:4585-4596.
    [43]Kolb H C, Finn M G, and Sharpless K B. Click Chemistry:Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie-International Edition[J],2001,40:2004-2021.
    [44]Wu P, Feldman A K, Nugent A K, Hawker C J, Scheel A, Voit B, Pyun J, Frechet J M J, Sharpless K B, and Fokin V V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(Ⅰ)-Catalyzed Ligation of Azides and Alkynes. Angewandte Chemie-International Edition[J], 2004,43:3928-3932.
    [45]Tsarevsky N V, Sumerlin B S, and Matyjaszewski K. Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. Macromolecules[J],2005,38:3558-3561.
    [46]Gao H and Matyjaszewski K. Synthesis of Star Polymers by a Combination of ATRP and the "Click" Coupling Method. Macromolecules[J],2006,39: 4960-4965.
    [47]Laurent B A and Grayson S M. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization. Journal of the American Chemical Society[J], 2006,128:4238-4239.
    [48]Tsarevsky N V, Bencherif S A, and Matyjaszewski K. Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions. Macromolecules[J],2007,40:4439-4445.
    [49]Malkoch M, Schleicher K, Drockenmuller E, Hawker C J, Russell T P, Wu P, and Fokin V V. Structurally Diverse Dendritic Libraries:A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules[J],2005,38: 3663-3678.
    [50]Altintas O, Hizal G, and Tunca U. ABC-Type Hetero-Arm Star Terpolymers Through "Click" Chemistry. Journal of Polymer Science Part a-Polymer Chemistry[J],2006,44:5699-5707.
    [51]O'Reilly R K, Joralemon M J, Wooley K L, and Hawker C J. Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry. Chemistry of Materials[J],2005,17:5976-5988.
    [52]O'Reilly R K, Joralemon M J, Hawker C J, and Wooley K L. Fluorogenic 1,3-Dipolar Cycloaddition within the Hydrophobic Core of a Shell Cross-LinkedNanoparticle. Chemistry-a European Journal[J],2006,12: 6776-6786.
    [53]Binder W H and Kluger C. Combining Ring-Opening Metathesis Polymerization (ROMP) with Sharpless-Type "Click" Reactions:An Easy Method for the Preparation of Side Chain Functionalized Poly(oxynorbornenes). Macromolecules[J],2004,37:9321-9330.
    [54]Durmaz H, Karatas F. Tunca U, and Hizal G. Preparation of ABC Miktoarm Star Terpolymer Containing Poly(ethylene glycol), Polystyrene, and Poly(tert-butylacrylate) Arms by Combining Diels-Alder Reaction, Atom Transfer Radical, and Stable Free Radical Polymerization Routes. Journal of Polymer Science Part a-Polymer Chemistry[J],2006,44:499-509.
    [55]Gacal B, Durmaz H, Tasdelen M A, G. Hizal, Tunca U, Yagci Y. and Demirel A L Anthracene-Maleimide-Based Diels-Alder "Click Chemistry" as a Novel Route to Graft Copolymers. Macromolecules[J],2006,39:5330-5336.
    [56]Glaser C. Beitrage zur Kenntniss des Acetenylbenzols. Berichte der deutschen chemischen Gesellschaft[J],1869,2:421-422.
    [57]Gungor E, Hizal G, and Tunca U. A2B2 Type Miktoarm Star Copolymers via Alkyne Homocoupling Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J],2008,46:6703-6711.
    [58]Duxbury C J, Cummins D, and Heise A. Glaser Coupling of Polymers: Side-Reaction in Huisgens "Click" Coupling Reaction and Opportunity for Polymers with Focal Diacetylene Units in Combination with ATRP. Journal of Polymer Science Part a-Polymer Chemistry[J],2009,47:3795-3802.
    [59]Wang G W, Hu B, and Huang J L. Synthesis of 4u-PS2PtBA2,4u-PI2PtBA2, and 4u-Pl2PS2 Star-Shaped Copolymers by Combination of Glaser Coupling with Living Anionic Polymerization and ATRP. Macromolecules[J],2010,43: 6939-6942.
    [60]Wang G W, Fan X S, and Huang J L. Synthesis of 4u-PS2PEO2,4u-PS2PCL2,4 u-PI2PEO2, and 4u-PI2PCL? Star-Shaped Copolymers by the Combination of Glaser Coupling with Living Anionic Polymerization and Ring-Opening Polymerization. Journal of Polymer Science Part a-Polymer Chemistry[J],2010, 48:5313-5321.
    [61]Siemsen P, Livingston R C, and Diederich F. Acetylenic coupling:A powerful tool in molecular construction. Angewandte Chemie-International Edition[J], 2000,39:2633-2657.
    [62]Morgan C R, Magnotta F, and Ketley A D. Thiol/ene photocurable polymers. Journal of Polymer Science Part a-Polymer Chemistry[J],1977,15:627-645.
    [63]Killops K L, Campos L M, and Hawker C J. Robust, Efficient, and Orthogonal Synthesis of Dendrimers via Thiol-ene "Click" Chemistry. Journal of the American Chemical Society[J],2008,130:5062-5064.
    [64]Campos L M, Killops K L, Sakai R, Paulusse J M J, Denis]Damiron, Drockenmuller E, Messmore B W, and Hawker C J. Development of Thermal and Photochemical Strategies for Thiol-Ene Click Polymer Functionalization. Macromolecules[J],2008,41:7063-7070.
    [65]Lutz J F and Schlaad H. Modular chemical tools for advanced macromolecular engineering. Polymer[J],2008,49:817-824.
    [66]Hoyle C E, Lee T Y, and Roper T. Thiol-Enes:Chemistry of the Past with Promise for the Future. Journal of Polymer Science Part a-Polymer Chemistry[J], 2004,42:5301-5338.
    [67]Brummelhuis N t, Diehl C, and Schlaad H. Thiol-Ene Modification of 1,2-Polybutadiene Using UV Light or Sunlight. Macromolecules[J],2008,41: 9946-9947.
    [68]Campos L M, Meinel I, Guino R G, Schierhorn M, Gupta N, Stucky G D, and Hawker C J. Highly Versatile and Robust Materials for Soft Imprint Lithography Based on Thiol-ene Click Chemistry. Advanced Materials[J],2008,20: 3728-3733.
    [69]Dondoni A. The Emergence of Thiol-Ene Coupling as a Click Process for Materials and Bioorganic Chemistry. Ange-wandte Chemie-International Edition[J],2008,47:8995-8997
    [70]Phillips J P, Mackey N M, Confait B S, Heaps D T, Deng X, Todd M L, Stevenson S, Zhou H, and Hoyle C E. Dispersion of Gold Nanoparticles in UV-Cured, Thiol-Ene Films by Precomplexation of Gold-Thiol. Chemistry of Materials[J],2008,20:5240-5245.
    [71]Connal L A, Kinnane C R, Zelikin A N, and Caruso F. Stabilization and Functionalization of Polymer Multilayers and Capsules via Thiol-Ene Click Chemistry. Chemistry of Materials[J],2009,21:576-578.
    [72]Fairbanks B D, Scott T F, Kloxin C J, Anseth K S, and Bowman C N. Thiol-Yne Photopolymerizations:Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks. Macromolecules[J],2009,42:211-217.
    [73]Yu B, Chan J W, Hoyle C E, and Lowe A B. Sequential Thiol-Ene/Thiol-Ene and Thiol-Ene/Thiol-Yne Reactions as a Route to Well-Defined Mono and Bis End-Functionalized Poly(N-isopropylacrylamide). Journal of Polymer Science Part a-Polymer Chemistry[J],2009,47:3544-3557.
    [74]Rosen B M, Lligadas G, Hahn C, and Percec V. Synthesis of Dendrimers Through Divergent Iterative Thio-Bromo "Click" Chemistry. Journal of Polymer Science Part a-Polymer Chemistry[J],2009.47:3931-3939.
    [75]Rosen B M, Lligadas G, Hahn C. and Percec V. Synthesis of Dendritic Macromolecules Through Divergent Iterative Thio-Bromo "Click" Chemistry and SET-LRP. Journal of Polymer Science Part a-Polymer Chemistry[J],2009,47: 3940-3948.
    [76]Xu J T, Tao L, Boyer C, Lowe A B, and Davis T P. Combining Thio-Bromo "Click" Chemistry and RAFT Polymerization:A Powerful Tool for Preparing Functionalized Multiblock and Hyperbranched Polymers. Macromolecules[J], 2010,43:20-24.
    [77]Fu Q, Lin W C, and Huang J L. A new strategy for preparation of graft copolymers via "Graft onto" by atom transfer nitroxide radical coupling chemistry:Preparation of poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl-co-ethylene oxide)-graft-polystyrene and poly(tert-butyl acrylate). Macromolecules[J],2008, 41:2381-2387.
    [78]Fu Q, Liu C, Lin W C, and Huang J L. One-Pot Synthesis of Heterograft Copolymers via "Graft Onto" by Atom Transfer Nitroxide Radical Coupling Chemistry. Journal of Polymer Science Part a-Polymer Chemistry[J],2008,46: 6770-6779.
    [79]Jing R K, Wang G W, and Huang J L. One-Pot Preparation of ABA-Type Block-Graft Copolymers via a Combination of "Click" Chemistry with Atom Transfer Nitroxide Radical Coupling Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J],2010,48:5430-5438.
    [80]Li Y G, Zhang Y Q, Yang D, Li Y J, Hu J H, Feng C, Zhai S J, Lu G L, and Huang X Y. PAA-g-PPO Amphiphilic Graft Copolymer:Synthesis and Diverse Micellar Morphologies. Macromolecules[J],2010,43:262-270.
    [81]Fu Q, Wang G W, Lin W C, and Huang J L. One-Pot Preparation of 3-Miktoarm Star Terpolymers via "Click Chemistry" and Atom Transfer Nitroxide Radical Coupling Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J], 2009,47:986-990.
    [82]Li Y G, Zhang Y Q, Yang D, Hu J H, Lu G L, and Huang X Y. Star-Like PAA-g-PPO Well-Defined Amphiphilic Graft Copolymer Synthesized by ATNRC and SET-NRC Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J],2010,48:2084-2097.
    [83]Nicolay R, Marx L, Hemery P, and Matyjaszewski K. Synthesis of multisegmented degradable polymers by atom transfer radical cross-coupling. Macromolecules[J],2007,40:9217-9223.
    [84]Sun R M, Wang G W, Liu C, and Huang J L. Preparation of Comb-Like Copolymers with Amphiphilic Poly(ethylene oxide)-b-polystyrene Graft Chains by Combination of "Graft From" and "Graft Onto" Strategies. Journal of Polymer Science Part a-Polymer Chemistry[J],2009,47:1930-1938.
    [85]Wang G W, Zhang Y N, and Huang J L. Effects of Br Connected Groups on Atom Transfer Nitroxide Radical Coupling Reaction and Its Application in the Synthesis of Comb-Like Block Copolymers. Journal of Polymer Science Part a-Polymer Chemistry[J],2010,48:1633-1640.
    [86]Liu C, Pan M G, Zhang Y, and Huang J L. Preparation of Star Block Copolymers with Polystyrene-block-Poly(ethylene oxide) as Side Chains on Hyperbranched Polyglycerol Core by Combination of ATRP with Atom Transfer Nitroxide Radical Coupling Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J],2008,46:6754-6761.
    [87]Sui K Y, Yang C J, Gao S, Shan X, Xia Y Z, and Zheng Q. A Novel Route for Well-Defined Polystyrene-Grafted Multiwalled Carbon Nanotubes Via the Radical Coupling Reaction. Journal of Applied Polymer Science[J],2009,114: 1914-1920.
    [88]Fu Q, Zhang Z N, Lin W C, and Huang J L. Single-Electron-Transfer Nitroxide-Radical-Coupling Reaction at Ambient Temperature:Application in the Synthesis of Block Copolymers. Macromolecules[J],2009,42:4381-4383.
    [89]Kulis J, Bell C A, Micallef A S, and Monteiro M J. Ultrafast and Reversible Multiblock Formation by the SET-Nitroxide Radical Coupling Reaction. Australian Journal of Chemistry[J],2010,63:1227-1236.
    [90]Zhang C Y and Wang Q. Degradable Multisegmented Polymers Synthesized by Consecutive Radical Addition-Coupling Reaction of alpha,omega-Macrobiradicals and Nitroso Compound. Journal of Polymer Science Part a-Polymer Chemistry[J],2011,49:612-618.
    [91]Li Y G, Zhang Y Q, Zhai S J, Deng Y Xiong H M, Lu G L, and Huang X Y. Synthesis of Starlike PtBA-g-PEO Amphiphilic Graft Copolymer via Highly Efficient Cu-Catalyzed SET-NRC Reaction at Ambient Temperature. Journal of Polymer Science Part a-Polymer Chemistry[J].2011.49:23-34.
    [92]Kulis J, Bell C A. Micallef A S, Jia Z F, and Monteiro M J. Rapid, Selective, and Reversible Nitroxide Radical Coupling (NRC) Reactions at Amibient Temperature. Macromolecules[J],2009,42:8218-8227.
    [93]Nicolay R and Matyjaszewski K. Synthesis of Cyclic (Co)polymers by Atom Transfer Radical Cross-Coupling and Ring Expansion by Nitroxide-Mediated Polymerization. Macromolecules[J],2011,44:240-247.
    [94]Kulis J, Bell C A, Micallef A S, and Monteiro M J. Kinetic Analysis of Nitroxide Radical Coupling Reactions Mediated by CuBr. Journal of Polymer Science Part a-Polymer Chemistry[J],2010,48:2214-2223.
    [95]Shefelbine T A, Vigild M E, Matsen M W, Hajduk D A, Hillmyer M A, Cussler E L, and Bates F S. Core-shell gyroid morphology in a poly(isoprene-block-styrene-block-dimethylsiloxane) triblock copolymer. Journal of the American Chemical Society[J],1999,121:8457-8465.
    [96]Brinkmann S, Stadler R, and Thomas E L. New structural motif in hexagonally ordered cylindrical ternary (ABC) block copolymer microdomains. Macromolecules[J],1998,31:6566-6572.
    [97]Krappe U, Stadler R, and Voigtmartin I. Chiral assembly in amorphous ABC triblock copolymers-formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) bolck copolymers. Macromolecules[J],1995,28:4558-4561.
    [98]Kopchick J G, Storey R F, Beyer F L, and Mauritz K A. Poly acrylic acid-b-styrene-b-i sobutylene-b-styrene-b-acrylic acid pentablock terpolymers:1. Morphological characterization. Polymer[J],2007,48:3739-3748.
    [99]Balsamo V, de Navarro C U, and Gil G. Microphase separation vs crystallization in polystyrene-b-polybutadiene-b-poly(epsilon-caprolactone) ABC triblock copolymers. Macromolecules[J],2003,36:4507-4514.
    [100]Balsamo V, Gil G, de Navarro C U, Hamley I W, von Gyldenfeldt F, Abetz V, and Canizales E. Morphological behavior of thermally treated polystyrene-b-polybutadiene-b-poly(epsilon-caprolactone) ABC triblock copolymers. Macromolecules[J],2003,36:4515-4525.
    [101]Germack D S and Wooley K L. RAFT-based synthesis and characterization of ABC versus ACB triblock copolymers containing tert-butyl acrylate, isoprene, and styrene blocks(a). Macromolecular Chemistry and Physics[J],2007,208: 2481-2491.
    [102]Jiang X Z, Luo S Z, Armes S P, Shi W F, and Liu S Y. UV irradiation-induced shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules[J],2006,39:5987-5994.
    [103]Tunca U, Erdogan T, and Hizal G. Synthesis and characterization of well-defined ABC-type triblock copolymers via atom transfer radical polymerization and stable free-radical polymerization. Journal of Polymer Science Part a-Polymer Chemistry[J],2002,40:2025-2032.
    [104]Wang K, Liang L Y, Lin S L, and He X H. Synthesis of well-defined ABC triblock copolymers with polypeptide segments by ATRP and click reactions. European Polymer Journal[J],2008,44:3370-3376.
    [105]Sun L, Shen L J, Zhu M Q, Dong C M, and Wei Y. Synthesis, Self-Assembly, Drug-Release Behavior, and Cytotoxicity of Triblock and Pentablock Copolymers Composed of Poly(epsilon-caprolactone), Poly(L-lactide), and Poly(ethylene glycol). Journal of Polymer Science Part a-Polymer Chemistry[J], 2010,48:4583-4593.
    [1]Fu Q. Lin W C, and Huang J L. A new strategy for preparation of graft copolymers via "Graft onto" by atom transfer nitroxide radical coupling chemistry:Preparation of poly(4-glycidyloxy-2,2.6,6-tetramethylpiperidine-1-oxyl-co-ethylene oxide)-graft-polystyrene and poly(tert-butyl acrylate). Macromolecules[J],2008, 41:2381-2387.
    [2]Fu Q, Liu C, Lin W C, and Huang J L. One-Pot Synthesis of Heterograft Copolymers via "Graft Onto" by Atom Transfer Nitroxide Radical Coupling Chemistry. Journal of Polymer Science Part a-Polymer Chemistry[J],2008,46: 6770-6779.
    [3]Fu Q, Wang G W, Lin W C, and Huang J L. One-Pot Preparation of 3-Miktoarm Star Terpolymers via "Click Chemistry" and Atom Transfer Nitroxide Radical Coupling Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J], 2009,47:986-990.
    [4]Jing R K, Wang G W, and Huang J L. One-Pot Preparation of ABA-Type Block-Graft Copolymers via a Combination of "Click" Chemistry with Atom Transfer Nitroxide Radical Coupling Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J],2010,48:5430-5438.
    [5]Liu C, Pan M G, Zhang Y, and Huang J L. Preparation of Star Block Copolymers with Polystyrene-block-Poly(ethylene oxide) as Side Chains on Hyperbranched Polyglycerol Core by Combination of ATRP with Atom Transfer Nitroxide Radical Coupling Reaction. Journal of Polymer Science Part a-Polymer Chemistry[J],2008,46:6754-6761.
    [6]Sun R M, Wang G W, Liu C, and Huang J L. Preparation of Comb-Like Copolymers with Amphiphilic Poly(ethylene oxide)-b-polystyrene Graft Chains by Combination of "Graft From" and "Graft Onto" Strategies. Journal of Polymer Science Part a-Polymer Chemistry[J],2009,47:1930-1938.
    [7]Wang G W, Zhang Y N, and Huang J L. Effects of Br Connected Groups on Atom Transfer Nitroxide Radical Coupling Reaction and Its Application in the Synthesis of Comb-Like Block Copolymers. Journal of Polymer Science Part a-Polymer Chemistry[J],2010.48:1633-1640.
    [8]Fu Q, Zhang Z N, Lin W C, and Huang J L. Single-Electron-Transfer Nitroxide-Radical-Coupling Reaction at Ambient Temperature:Application in the Synthesis of Block Copolymers. Macromolecules[J],2009,42:4381-4383.
    [9]Lutz J F and Matyjaszewski K. Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene. Journal of Polymer Science Part a-Polymer Chemistry[J],2005,43:897-910.
    [10]Jakubowski W, Kirci-Denizli B, Gil R R, and Matyjaszewski K. Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP. Macromolecular Chemistry and Physics[J],2008,209:32-39.
    [11]Dubois P, Barakat I, Jerome R, and Teyssie P. Macromolecular engineering of polylactones and polylactides.12. Study of the depolymerization reactions of poly(epsilon-caprolactone) with functional aluminum alkoxide end-groups. Macromolecules[J],1993,26:4407-4412.
    [12]Guliashvili T and Percec V. A comparative computational study of the homolytic and heterolytic bond dissociation energies involved in the activation step of ATRP and SET-LRP of vinyl monomers. Journal of Polymer Science Part a-Polymer Chemistry[J],2007,45:1607-1618.
    [13]Nguyen N H, Rosen B M, Lligadas G, and Percec V. Surface-Dependent Kinetics of Cu(0)-Wire-Catalyzed Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in DMSO at 25 degrees C. Macromolecules[J],2009,42: 2379-2386.
    [14]Percec V, Guliashvili T, Ladislaw J S, Wistrand A, Stjerndahl A, Sienkowska M J, Monteiro M J, and Sahoo S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 degrees C. Journal of the American Chemical Society[J],2006,128:14156-14165.
    [15]Kulis J, Bell C A, Micallef A S, Jia Z F, and Monteiro M J. Rapid, Selective, and Reversible Nitroxide Radical Coupling (NRC) Reactions at Amibient Temperature. Macromolecules[J],2009,42:8218-8227.
    [16]Nicolay R, Marx L, Hemery P, and Matyjaszewski K. Synthesis of multisegmented degradable polymers by atom transfer radical cross-coupling. Macromolecules[J].2007,40:9217-9223.
    [17]Li H Y. Riva R, Jerome R, and Lecomte P. Combination of ring-opening polymerization and "click" chemistry for the synthesis of an amphiphilic tadpole-shaped poly(epsilon-caprolactone) grafted by PEO. Macromolecules[J], 2007.40:824-831.
    [18]Burguiere C, Dourges M A, Charleux B, and Vairon J P. Synthesis and characterization of omega-unsaturated poly(styrene-b-n-butyl methacrylate) block copolymers using TEMPO-mediated controlled radical polymerization. Macromolecules[J],1999,32:3883-3890.
    [19]Schellekens M A J, de Wit F. and Klumperman B. Effect of the copper counterion on the activation rate parameter in atom transfer radical polymerization. Macromolecules[J],2001,34:7961-7966.
    [1]Durmaz H, Dag A, Altintas O, Erdogan T, Hizal G, and Tunca U. One-pot synthesis of ABC type triblock copolymers via in situ click 3+2 and Diels-Alder 4+2 reactions. Macromolecules[J],2007,40:191-198.
    [2]Zhang Y, Lin W C, Jing R K, and Huang J L. Effect of Block Sequence on the Self-Assembly of ABC Terpolymers in Selective Solvent. Journal of Physical Chemistry B[J],2008,112:16455-16460.
    [3]Jia Z F, Fu Q, and Huang J L. Synthesis of poly(ethylene oxide) with pending 2,2,6,6-tetramethylpiperidine-l-oxyl groups and its further initiation of the grafting polymerization of styrene. Journal of Polymer Science Part a-Polymer Chemistry[J],2006,44:3836-3842.
    [4]Kowalski A, Duda A, and Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate,1 Polymerization of epsilon-caprolactone. Macromolecular Rapid Communications[J],1998,19: 567-572.
    [5]Dubois P, Barakat I, Jerome R, and Teyssie P. Macromolecular engineering of polylactones and polylactides.12. Study of the depolymerization reactions of poly(epsilon-caprolactone) with functional aluminum alkoxide end-groups. Macromolecules[J],1993,26:4407-4412.
    [6]Bogdanov B, Vidts A, Van Den Bulcke A, Verbeeck R, and Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers. Polymer[J],1998,39:1631-1636.
    [7]Zhang X Q, Yang H, Liu Q W, Zheng Y, Xie H F, Wang Z L, and Cheng R S. Synthesis and characterization of biodegradable triblock copolymers based on bacteria] poly (R)-3-hydroxybutyrate by atom transfer radical polymerization. Journal of Polymer Science Part a-Polymer Chemistry[J],2005,43:4857-4869.
    [8]Yoshida E and Osagawa Y. Synthesis of poly(epsilon-caprolactone) with a stable nitroxyl radical as an end-functional group and its application to a counter radical for living radical polymerization. Macromolecules[J],1998,31:1446-1453.
    [1]Wei J and Huang J L. Synthesis of an amphiphilic star triblock copolymer of polystyrene, poly(ethylene oxide), and polyisoprene using lysine as core molecule. Macromolecules[J],2005,38:1107-1113.
    [2]Percec V, Guliashvili T, Ladislaw J S, Wistrand A, Stjerndahl A, Sienkowska M J, Monteiro M J, and Sahoo S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 degrees C. Journal of the American Chemical Society[J],2006,128:14156-14165.
    [3]Lligadas G, Rosen B M, Monteiro M J, and Percec V. Solvent Choice Differentiates SET-LRP and Cu-Mediated Radical Polymerization with Non-First-Order Kinetics. Macromolecules[J],2008,41:8360-8364.
    [4]Lligadas G, Rosen B M, Bell C A, Monteiro M J, and Percec V. Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25 degrees C. Macromolecules[J],2008,41: 8365-8371.
    [5]Matyjaszewski K, Tsarevsky N V, Braunecker W A, Dong H, Huang J, Jakubowski W, Kwak Y, Nicolay R, Tang W, and Yoon J A. Role of Cu-0 in controlled/"living" radical polymerization. Macromolecules[J],2007,40: 7795-7806.
    [6]Jiang X, Rosen B M, and Percec V. Mimicking "Nascent" Cu(0) Mediated SET-LRP of Methyl Acrylate in DMSO Leads to Complete Conversion in Several Minutes. Journal of Polymer Science Part a-Polymer Chemistry[J],2010, 48:403-409.
    [7]Nguyen N H, Rosen B M, Lligadas G, and Percec V. Surface-Dependent Kinetics of Cu(0)-Wire-Catalyzed Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in DMSO at 25 degrees C. Macromolecules[J],2009,42: 2379-2386.
    [8]Rosen B M and Percec V. Single-Electron Transfer and Single-Electron Transfer Degenerative Chain Transfer Living Radical Polymerization. Chemical Reviews[J],2009,109:5069-5119.
    [9]Nguyen N H and Percec V. Dramatic Acceleration of SET-LRP of Methyl Acrylate During Catalysis with Activated Cu(0) Wire. Journal of Polymer Science Part a-Polymer Chemistry[J],2010,48:5109-5119.
    [10]Fleischmann S and Percec V. SET-LRP of Methyl Methacrylate Initiated with CC14 in the Presence and Absence of Air. Journal of Polymer Science Part a-Polymer Chemistry[J],2010,48:2243-2250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700