聚(DL—乳酸)的改性及体外降解和细胞相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从优化聚(DL-乳酸)(PDLLA)的制备工艺,制备超高分子量PDLLA入手,用马来酸酐(MAH)、乙二胺和Ⅰ型胶原对PDLLA进行整体(而不是表面)化学改性,制得了一系列改性聚乳酸,旨在开发一种基于超高分子量PDLLA的降解产物不呈酸性、降解速率可调、具有优良细胞相容性和生物特异性的生物医用材料,尽可能多地满足人体的需求。用化学分析、FTIR、1H-NMR、13C-NMR和荧光标记表征了它们的化学结构,用DSC表征了它们的热学性能,用Instron1011万能材料试验机测试了它们的力学性能,并考查了其亲疏水性、体外生物降解和细胞相容性。主要研究内容和结论如下:
    (1)以DL-丙交酯为原料,辛酸亚锡为引发剂,采用熔融开环聚合方法制备PDLLA,考查了DL-丙交酯的纯度、聚合时间、聚合温度和引发剂(辛酸亚锡)用量等因素对PDLLA分子量的影响,优化出了一套制备超高分子量PDLLA(粘均分子量高达220万)的制备工艺,并测试了超高分子量PDLLA的脆化温度、拉抻(压缩)强度和模量。结果表明:
    ① 丙交酯的纯度是影响PDLLA分子量的一个重要因素,高纯丙交酯是制备高分子量PDLLA的必备条件;以纯度>99.8%、熔点为126.3-126.4℃的DL-丙交酯为原料,在160℃下聚合36h,可制得粘均分子量高达220万的超高分子量PDLLA。
    ② 超高分子量PDLLA相对于低分子量PDLLA(粘均分子量为80万),其拉伸(压缩)强度和模量、韧性及延展性都已大大提高,表现为韧性断裂,而低分子量PDLLA表现为脆性断裂,从而使超高分子量PDLLA可望在各医学领域如作为骨螺钉、手术缝合线、组织工程支架材料和通用完全可降解塑料方面得到广泛的应用。
    (2)采用溶液混合、自由基聚合技术将MAH共价接枝到PDLLA骨架上,制得马来酸酐改性PDLLA(MPLA),旨在向PDLLA中引入高反应活性的酸酐键,为进一步化学改性奠定化学基础。
    ① FTIR、13C-NMR和DSC分析结果表明,MAH已成功地共价接枝到PDLLA骨架上;MPLA只有一个玻璃化转移峰值温度41.7℃,且低于PDLLA的玻璃化转移峰值温度56.5℃,提示MAH已对PDLLA成功改性,且采用本研究所述之分离提纯技术可得到纯净的MPLA。
    ② 化学滴定分析结果表明,MAH投料量为PDLLA质量的5%和10%时,MAH接枝率分别为1.86%和2.36%。
    (3)用乙二胺对MPLA进行化学改性制得二胺改性PDLLA(DMPLA),旨
    
    在通过碱性二胺的共价引入克服PDLLA和MPLA降解产物的酸性,改变PDLLA和MPLA的酸致自催化降解特点,开发出一种降解产物不呈酸性且具有良好亲水性的生物医用材料DMPLA,且DMPLA中的反应活性基团-COOH和-NH2为进一步引入胶原和多肽等生物活性分子,制备具有生物特异性和全面生理功能的生物医用材料奠定了化学基础。通过MPLA中高反应活性酸酐键的N-酰化开环将乙二胺共价引入到MPLA中,建立了一套二胺改性MPLA的改性技术。
    ① 化学滴定分析结果表明,MPLA中的酸酐键能完全与二胺反应;
    ② FTIR、13C-NMR、1H-NMR和DSC分析结果表明,二胺已被成功地共价引入到MPLA中;DMPLA的玻璃化转移峰值温度为59.5℃,高于PDLLA和MPLA的玻璃化转移峰值温度,可能是DMPLA中的伯胺与羧基形成内盐所致;唯一的玻璃化转移温度提示,按本研究所述之分离技术能得到纯净的DMPLA。
    (4)以二环己基碳二亚胺(DCC)为缩合剂用Ⅰ型胶原对DMPLA进行整体(而不是表面)化学改性制得了胶原改性聚乳酸(CPLA),旨在开发一种降解产物不呈酸性且具有良好生物相容性、生物特异性的生物医用材料,并建立一套适用于多肽或蛋白质对DMPLA进行整体化学改性的制备工艺,为制备具有全面生理功能的组织材料奠定技术基础。异硫氰酸荧光素(FITC)标记测定结果表明,采用本研究所述之制备和提纯工艺能成功地将Ⅰ型胶原共价引入到DMPLA整体中获得纯净的CPLA。
    (5)用吸水率和静态水接触角表征了PDLLA、MPLA、DMPLA和CPLA的亲疏水性。结果表明,DMPLA和CPLA的亲水性相对于PDLLA已大大提高,CPLA具有最好的亲水性,DMPLA略次之,提示DMPLA和CPLA都可望成为一种具有良好亲水性和细胞亲和性的生物医用材料。
    (6)考查了PDLLA、MPLA、DMPLA在降解过程中的pH值变化(介质pH=6.45蒸馏水,温度37.0±0.5℃)以及分子量和失重率变化(介质:0.1M PBS溶液,pH=7.4;温度37.0±0.5℃)。在整个降解实验中始终不更换介质。结果表明:
    ① MPLA在降解过程酸性增加最快,酸致自催化程度最大,由此而引起的降解速率最快,失重率也最大,比PDLLA呈现更严重的整体溶蚀降解,即体型降解特点。因此,尽管MPLA在水解后其亲水性已较PDLLA有较大改善,但仍不适于单独用作生物医用材料。
    DMPLA已基本克服了降解过程中的酸性增强;其降解速率较PDLLA和MPLA均匀,不呈现PDLLA和MPLA的体型降解特征,且随二胺含量的增加,其降解速率逐渐减小;尽管DMPLA在前6周的失重率略高于PDLLA和MPLA,但经12周降解,其失重率不到50%,低于PDLLA和MPLA,且随二胺含量增加,失重也减少。上述结果提示,DMPLA是一种降解产物不呈现酸性、降解速率可调
    
    ② 且降解过程不呈现体型降解特征的生物材料。
    (7)采用细胞形态学观察法和细胞增殖法,以玻璃为对照,初步考查了P
Poly(DL-lactic acid) (PDLLA) with ultra-high molecular weight was prepared and a series of bulk modifications (non-surface modifications) of PDLLA were carried out with maleic anhydride(MAH), ethylenediamine and collagen type Ⅰ, aiming to develop an ideal PDLLA-based tissue engineering biomaterial with controlled degrading rate, excellent cell compatibility and biospecificty and whole physiological functions, whose degrading products are not of acidity. Their chemical structures were characterized by means of chemical analysis, FTIR (Fourier Transform Infred), 1H-NMR (Nuclear Magnetic Resonance), 13C-NMR and fluorescence labeling, their thermal properties done by DSC (Differential Scanning Calorimeter) and the mechanical properties by Instron 1011. Thereafter, the hydrophilicity, degradation and cell compatibility of PDLLA and those modified PDLLAs were investigated. The main works and conclusions are included as follows:
    (1) PDLLA was prepared from DL-lactide by melt ring-opening polymerization. The effects of DL-lactide purity, polymerization time, temperature and the percent of initiator in lactide were investigated in detail, resulting in an optimum condition to synthesize PDLLA with 2200000 of viscosity-average molecular weight (Mv). The obtained results show that:
    ① The DL-lactide purity has significant influence on PDLLA's Mv. Ultrahigh molecular weight PDLLA with 2200000 of Mv could be obtained from lactide with purity of more than 99.8% and melting point of 126.3~126.4℃ at 160℃ for 36h.
    ② The stretching (compressing) strength and module, tenacity and elongation of ultrahigh PDLLA are significantly improved compared to PDLLA with 800000 of Mv, suggesting its potentially wide applications in medical areas as bone screw, surgical suture and tissue scaffolds and in general plastics as full degradable plastics.
    (2) MAH modified PDLLA (MPLA) was synthesized by solution blending and subsequent free radical polymerization, attempting to introduce highly reactive anhydride into PDLLA backbone and providing chemical basis for further chemical modification.
    FTIR, 13C-NMR and DSC analysis showed the successful covalent grafting of MAH into PDLLA. Furthermore, the unique Tg of 41.7℃ for MPLA and the greater Tg of 56.5℃ for PDLLA indicated in DSC proved that the purification method in this
    
    ① study was efficient enough to produce pure MPLA.
    ② The results of chemical titration showed that MAH grafting ratio in MPLA was 1.86% and 2.36% respectively when the percentage of fed MAH in PDLLA was 5% and 10% in weight.
    (3) Diamine modified PDLLA (DMPLA) from ethylenediamine and MPLA was synthesized and its preparing technique well established. The modification of PDLLA with diamine is to eliminate or weaken acidity of degraded products from PDLLA and MPLA with the help of basic diamines and change the acid catalyzed auto-accelerating degradation, developing a new family of biomaterials with no acidic degrading products. Furthermore, DMPLA could provide reactive groups -COOH and -NH2 for further bulk modification with collagen, peptides or growth factors to obtain biospecific biomaterial with whole physiological functions.
    ① The chemical titration indicated the bonds in anhydride had thoroughly reacted with diamine.
    ② FTIR, 1H-NMR, 13C-NMR and DSC analysis exhibited the successful covalent introduction of daimine into MPLA. Furthermore, the unique Tg of 59.5℃ for DMPLA proved the efficiency of the purification method for DMPLA. The Tg of DMPLA is much greater than those of both PDLLA and MPLA. It maybe lie in the formation of inner salt between -NH2 and -COOH in DMPLA.
    (4) The bulk-modification of PDLLA (CPLA) was carried out from collagen type Ⅰ and DMPLA with dicyclohexylcarbodiimide (DCC) as condensating agent, and a solution reaction technique suitable to the reaction between collagen or peptide or protein and DMPLA was well established. The purpose of bulk modification of DMPLA with collagen, peptides or proteins are to obtain a biomaterial with no acidic degrading products but exce
引文
[1] 魏世成,郑谦,赵宗林等. 超高分子量聚D,L乳酸小夹板螺钉的组织反应与降解动物实验研究. 华西口腔医学杂志. 1999. 17(1). 66-68
    [2] B?stman O, Pihlajam?ki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000. 21(24). 2615-2621
    [3] 王勤,路岩,张娟. 以聚乳酸为载体的药物释放及动物疗效学的研究. 中国生物医学工程学报. 1995. 14(1). 11-14
    [4] Zhang X C, McAuley K B, Goosen M F A. Towards predication of release profiles of antibiotics from coated poly(D,L-lactide) cylinders. J Control Release. 1995. 34(2). 175-179
    [5] Cima L G, Vacanti J P, Vacanti C, et al. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomed Eng. 1991. 113. 143-148
    [6] Meinig R P, Rahn B, Perren S M, et al. Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide)membrane. A pilot study. J Orthop Trauma. 1996. 10. 178-184
    [7] 王远亮,潘君,蔡绍晳. 组织工程研究的进展. 生物化学与生物物理进展. 2000. 27(4). 365-367
    [8] Kulkarni R K, Pani K C, Neuman C, et al. Polylactic acid for surgical implants. Arch Surg. 1966. 93. 839-843
    [9] 王远亮,赵建华. 生物可降解聚乳酸骨科材料研究进展. 功能材料. 1995. 26. 567-571
    [10] Bergsma J E, Rozema F R, Bos R M, et al. Biocompatibility and degradation mechanisms of predegraded and non-predegraded poly(lactide) implants: an animal study. J Mater Sci: Mater Med. 1995. 6. 715-724
    [11] Vert M. Biomedical polymers from chiral lactide and functional lactones properties and applications. Makromol Chem. 1986. 6. 109-122
    [12] Jin S, Gonsalves K E. Functionalized copolymers and their composites with polylactide and hydroxyapatite. J Mater Sci: Mater Med. 1999. 10. 363-368
    [13] Bakker J, Gkote J. Advances in biomaterials, clinical implant materials. Edn 1. London. Elsevier Science. 1990. 9. 99-104
    [14] 高长有, 李 安, 封麟先. 促进组织生长的聚合物骨架工程材料. 功能高分子学报. 1998. 11(9). 408-414
    [15] 全大萍,李香亮. 高分子量聚乳酸的合成条件及可重复性研究. 96中国材料研讨会论文集(生物及环境材料). 北京. 1996. 北京. 化学工业出版社. 1997.09.00. 91-95
    
    
    [16] Xu K T, Kozluca A, Denkbas E B, et al. Synthesis of PDLLA homopolymers with different molecular weight. J Appl Polym Sci. 1996. 59. 561-563
    [17] 成都迪康中科生物医学材料有限公司(熊成东). DL-聚乳酸制成的可吸收内固定棒. 中国. 00132001.7. 2002年6月19日. 1-1
    [18] 俞耀庭,张兴栋. 生物医用材料. 第一版. 天津. 天津大学出版社. 2000. 54-55
    [19] 蔡晴,贝建中,王身国等. 乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究. 功能高分子学报. 2000. 13(3). 249-254
    [20] Ara M, Watanabe M, Imai Y. Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials. 2002. 23. 2479-2483
    [21] Higashi S. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials. 1986. 7. 183-187
    [22] 郭晓东,郑启新,杜靖远等. 可吸收羟基磷灰石/聚DL-乳酸骨折内固定材料机械强度和生物降解性研究. 中国生物医学工程学报. 2001. 20(1). 23-28
    [23] Hutmacher D W. Scaffold design and fabrication technologies for engineering tissues―state of the art and future perspectives. J Biomater Sci: Polymer Edn. 2001. 12(1). 107-124
    [24] Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory's experience. Acc Chem Res. 2000. 33(2). 94-101
    [25] Barrera D A, Zylstra E, Lansbury P T,Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer system: poly(lactic acid-co-lysine) . J Am Chem Soc. 1993. 115. 11010-11011
    [26] Cook A D, Hrkach J S, Gao N N, et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res. 1997. 35. 513-516
    [27] Han D K, Hubbell J A. Lactide-Based Poly(ethylene glycol) Polymer Networks for Scaffolds in Tissue Engineering. Macromol. 1996. 29. 5233-5235
    [28] Han D K, Hubblell J A. Synthesis of Polymer Network Scaffolds from L-Lactide and Poly(ethylene glycol) and Their Interaction with Cells. Macromol. 1997. 30. 6077-6083
    [29] Zheng J, S. Nothrup R, Hornsby P J. Modification of materials formed from poly(L-lactic acid) to enable covalent binding of biopolymers: Application to high-density three-dimensional cell culture in foams with attached collagen. In Vitro Cell Dev Biol-animal. 1998. 34. 679-684
    [30] Kimura Y, Shirotani K, Yamane H, et al. Ring-opening polymerization of 3-(S)-[(benzyloxycarbonyl) methyl]-1,4-dioxane-2,5-dione and L-lactide: a new route to a poly(α-hydroxyl acid) with pendant carboxyl groups. Macromol. 1988. 21. 3338-3340
    Kimura Y, Shirotani K, Yamane H, et al. Copolymerization of 3-(S)-[(benzyloxycarbonyl)
    
    [31] methyl]-1,4-dioxane-2,5-dione and L-lactide: a facile synthetic method for functionalized bioabsorbable polymer. Polymer. 1993. 34(8). 1741-1748
    [32] 曹雪波. 马来酸酐改性聚乳酸的研究[学位论文]. 重庆. 重庆大学. 2001
    [33] 傅杰, 卓仁禧, 范昌烈. 新型生物可降解医用高分子材料—聚酸酐.功能高分子学报. 1998. 11(2). 302-310
    [34] Domb A J, Maniar M. Absorbale biopolymers derived from dimmer fatty acids. J Polym Sci. Part A: Polym Chem. 1993. 31(5). 1275-1285
    [35] Domb A J, Nudelman R. Biodegradable polymers derived from natural fatty acids. J Polym Sci. Part A: Polym Chem. 1995. 33(4). 717-725
    [36] 曹雪波,王远亮,潘君等. 马来酸酐改性聚乳酸的力学性能研究. 高分子材料科学与工程. 2002. 18(1). 115-118
    [37] 潘君,王远亮,曹雪波等. 大鼠成骨细胞在聚乳酸和马来酸酐改性聚乳酸上粘附性能研究. 生物化学与生物物理进展. 2001. 28(5). 688-690
    [38] 吕策华,吕立波,陈明生等. 乙二胺对人体影响的调查分析. 齐齐哈尔医学院学报. 2001. 22(1). 88-89
    [39] 李忠,林瑞存,王敬钦等. 乙二胺所致哮喘(附14例临床分析). 中国工业医学杂志. 1988. 1(1). 16-17
    [40] 周书经. 玻璃钢生产过程中的皮炎. 中国工业医学杂志. 1989. 2(2). 60-62
    [41] Eriksenk. Sensitization capacity of ethylenediamine in the gninca pig and induction of unresponsiveness. Contact Dermatitis. 1979. 5. 293-296
    [42] 沈同,王镜岩. 生物化学(下). 第二版. 北京. 高等教育出版社. 2000. 253-254
    [43] Drumheller P D, Hubbell J A. Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Analytical Chem. 1994. 222. 380-388
    [44] Drumheller P D, Ebert D L, Hubbell J A. Multifunctional poly(ethyleneglycol) semi-interpenetrating polymer networks as highly selective adhesive substrates for bioadhesive peptide grafting. Biotech and Bioeng. 1994. 43. 772-780
    [45] Tramada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res. 1994. 28. 783-789
    [46] Massia S P, Hubbell J A. human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymetric biomaterials. J Biomed Mater Res. 1991. 25. 223-242
    [47] Brandly B, Schnaar R. Covalent attachment of an Arg-Gly-Asp sequence peptide to derivatizable polyacrylamide surfaces: Support of fibroblast adhesion and long-term growth. Analytical Biochem. 1988. 172. 270-278
    
    
    [48] Matsuda T, Kondo A, Makino K, et al. Development of a novel artificial matrix with cell adhesion peptide for cell culture and artificial and hybrid organs. Transactions of the American Society for artificial Internal Organs. 1989. 35. 677-679
    [49] Barrera D A, Zylstra E, Lansbury P T, et al. Synthesis and RGD peptide modification of a new biodegradable copolymer: Poly(lactic acid-co-lysine). J Am Chem Soc. 1993. 115. 11010-11011
    [50] 汪多仁. 现代高分子材料生产及应用手册. 第一版. 北京. 中国石化出版社. 2002. 392-396
    [51] Middleton J C, Tipton A J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000. 21. 2335-2346
    [52] 全大萍, 袁润章. 高分子量聚DL-丙交酯的合成及热降解. 应用化学. 2000. 17(3). 268-271
    [53] 张倩, 梁海林. 生物降解材料聚丙交酯的合成. 塑料工业. 2002. 30(2). 10-12
    [54] 梁兵. 聚乳酸单体的合成及聚合反应研究[学位论文]. 兰州. 兰州大学. 1996. 4-20
    [55] 罗华云. D,L-丙交酯及其聚合物的合成研究[学位论文]. 广西. 广西大学. 1999. 21-32
    [56] 熊振东. 超高分子量聚-DL-乳酸及其骨折内固定系统的研究进展. 材料导报. 2001. 15(2). 49-50
    [57] 翁世伟,陈松茂. 化工产品实用手册(二). 第一版. 上海. 上海交通大学出版社. 1989. 271-274
    [58] Sinctair R G, Gynn G M. Preparation and evaluation of glycolic and lactic acid-based polymers for implant devices used in management of maxillofacial trauma. NITS AD-A 748411. 1972
    [59] 何永吉,夏淑贞,吴蒙等. 医用聚乳酸的合成及其管型材料性能的测定. 高分子材料科学与工程. 1993. 2. 24-28
    [60] 张贞浴,苏义华,张艳红. 生物降解材料聚丙交酯的研究(Ⅱ):丙交酯单体纯化方法的研究. 黑龙江大学自然科学学报. 1998. 15(1). 110-113
    [61] 祖国瑞,王振荣,宋克祥等. 生物降解材料聚丙交酯的研究-丙交酯单体的合成方法研究. 黑龙江大学自然科学学报. 1999. 16(2). 96-98
    [62] Muller M, Hess J. Meso-lactide. US. 5214159. 1993.5.25. 5-6
    [63] 王远亮, 赵建华. 高纯丙交酯的合成研究. 重庆大学学报(自然科学版). 1996. 19(1). 112-117
    [64] 徐溢,柳胜春. 合成骨中间体-丙交酯的定量测定. 重庆大学学报. 1994. 17(6). 103-107
    [65] 李汝珍,苏涛. 丙交酯中残存乳酸与水份的定量测定. 化学世界. 2000(2). 102-105
    [66] Muller M, Hess J, Schenell W G. Meso-lactide, processes for preparing it and polymers and coplolymers produced therefrom. US. 4983745. 1991.1.8. 8-8
    [67] Vion J. M., Jerome R., Teyssie P., et al. Macromol. 1986. 19. 1828
    
    
    [68] 刘斌才. 高聚物的结构与物理性质. 第一版. 北京. 科学出版社. 1989. 370-371
    [69] 何曼君,陈维孝,董西侠. 高分子物理. 第一版. 上海. 复旦大学出版社. 1993. 303-305
    [70] 刘斌才. 高聚物的结构与物理性质. 第一版. 北京. 科学出版社. 1989. 310-311
    [71] Leong K W, Brott B C, Langer R. Bioerodible plyanhydrides as drug- carrier matrices: Ⅰ. Characterization, biodegradation and release characteristics. J Biomed Mater Res. 1985. 19. 941-955
    [72] Leong K W, D'Amore P, Marletta M, Langer R. Bioeradible plyanhydrides as drug- carrier matrices: Ⅱ. Biocompatibility and chemical reactivity. J Biomed Mater Res. 1986. 20. 51-64
    [73] Domb A, Langer R. Polyanhydrides: Ⅰ. Preparation of high molecular weight polyanhydrides. J Polym Sci. 1987. 25. 3373-3386
    [74] Laurencin C, Domb A, Morris C, et al. Ply(anhydride) admistration in high doses in vivo: studies of biocompatibility and toxicology. J Biomed Mater Res. 1990. 24(11). 1463-1481
    [75] Burkoth A K, Anseth K S. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials. 2000. 21(23). 2395-2404
    [76] 李润卿. 有机结构波谱分析. 第一版. 天津. 天津大学出版社. 2002. 280-281
    [77] 薛奇. 高分子结构研究中的光谱方法. 第二版. 北京. 高等教育出版社. 1995. 214-214
    [78] 宁永成. 有机化合物结构鉴定与有机波谱学. 第二版. 北京. 科学出版社. 2000. 115-116
    [79] 俞耀庭,张兴栋. 生物医用材料. 第一版. 天津. 天津大学出版社. 2000. 58-59
    [80] 张亮,靳安民,郭志民. 三维多孔骨修复材料DL-PLA及β-TCP/DL-PLA的体外降解研究. 骨与关节损伤杂志. 2001. 16(3). 184-186
    [81] Spinu M, Wilmington, Del. Alternating (ABA)N polylactide block copolymers. US. 005202413A. 1993.04.13. 1-5
    [82] 唐培堃. 精细有机合成化学及工艺学. 第一版. 天津. 天津大学出版社. 1997. 258-260
    [83] 张龙翔,张庭芳,李令缓. 生物实验方法与技术. 第一版. 北京. 人民教育出版社. 1982. 160-162
    [84] Korhonen H, Helminen A, Sepp?l? J V. Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups. Polymer. 2001. 42. 7541-7549
    [85] Helminen A, Korhonen H, Sepp?l? J V. Biodegradable crosslinked polymers based on triethoxysilane terminated polylactide oligomers. Polymer. 2001. 42. 3345-3353
    [86] Wang L, Ma W, Gross R A. Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone). Polymer Degradation and Stability. 1998. 59. 161-168
    [87] Rimoli M G, Avallone L, de Caprariis P, et al. Synthesis and characterization of poly(D,L-lactic acid)-idoxuridine conjugate. J Controlled Release. 1999. 58. 61-68
    Maglio G, Miglizzi A, Palumbo R. Thermal properties of di- and triblock copolymers of
    
    [88] poly(L-lactide) with poly(oxyethylene) or poly(ε-caprolactone). Polymer. 44. 2003. 369-375
    [89] 李润卿. 有机结构波谱分析. 第一版. 天津. 天津大学出版社. 2002. 225-225
    [90] 俞耀庭,张兴栋. 生物医用材料. 第一版. 天津. 天津大学出版社. 2000. 220-222
    [91] Horbett T A, Schway M. Correlations between mouse 3T3 cell spreading and serum fibronextin adsorption on glass and hydroxyethymethacrylate-ethymethacrylate copolymers. J Biomed Mater Res. 1988. 22. 763-793
    [92] Pettit D K, Hoffman A S, Horbett T A. Correlation between corneal epithelial cell outgrowth and monoclonal antibody binding to the cell binding domain of adsorbed fibronectin. J Biomed Mater Sci. 1994. 28. 685-691
    [93] Chinn J, Horbeet T, Ratner B, et al. Enhancement of serum fibronectin adsorption and the clonal plating efficiencies of swiss mouse 3T3 fibroblast and MM14 mouse myoblast cells on polymer substrates modified by radiofrequency plasma deposition. J Colloid and Interface Sci. 1989. 127. 67-87
    [94] DiMilla P A, Stone J A, Quinn J A. Maximal migration of human smooth muscle cells on fibronectin and type Ⅳ collagen occurs at an intermediate attachment strength. J Cell Biology. 1993. 122. 729-737
    [95] Calof A L, Lander A D. Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti-adhesive. J Cell Biology. 1991. 115(3). 779-794
    [96] Pierschbacher M D, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984. 309. 30-33
    [97] 黄惟德,陈常庆. 多肽合成. 第一版. 北京. 科学出版社. 1985. 102-104
    [98] http://www.37c.com.cn/literature/library/theory/102/1020302.html
    [99] http://www.jingmei.com/site/site/exp_file/exp42.htm
    [100] Brenda K M, Annabel T T, Tmothy S B, et al. Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials. 1999. 20. 2281-2286
    [101] Jiang H L, Zhu K J. Synthesis, characterization and in vitro degradation of a new family of alternative poly(ester-anhydrides) based on aliphatic and aromatic diacids. Biomaterials. 2001. 22. 211-218
    [102] 程侣柏,胡家振,姚蒙正等. 精细化工产品的合成及应用. 第二版. 大连. 大连理工大学出版社. 1992. 118-121
    [103] 杨子彬. 基础医学卷——生物医学工程学. 第一版. 黑龙江. 黑龙江科学技术出版社. 2000. 396-397
    Wu X S, Wang N. Synthesis, characterization, biodegradation, and drug delivery
    
    [104] application of biodegradable lactic/glycolic acid polymers. Part Ⅱ: Biodegradation. J Biomater Sci: Polymer Edn. 2001. 12(1). 21-34
    [105] Rozema F R, Bergsma J E, Bos R R M et al. Late degradation simulation of poly(L-lactide). J Mater Sci: Mater Med. 1994. 5. 575-581
    [106] Nagata M, Okano F, Sakai W et al. Separation and enzymatic degradation of blend films of poly(l-lactic acid) and cellulose. J Polym sci. Part A: poly chem. 1998. 36. 1861-1864
    [107] Gazzetti P, Laaaerini G. Degradation products of poly(ester-ether-ester) block copolymers do not alter endothelial metabolism in vitro. J Mater Sci: Mater Med. 1995. 6. 824-828
    [108] F.奥斯伯,R E 金斯顿,J G赛德曼等著. 颜子颖,王海林译. 精编分子生物学实验指南. 第一版. 北京. 科学出版社. 1998. 700-701
    [109] Claudia F. Does UV irradiation affect polymer properties relevant to tissue engineering? Surface science. 2001. 491. 333-345
    [110] Huamin J, Ci Z, Hui S et al. Determination of pretransplant viability of Leydig cells by MTT Colorimetric assay. Transplantation Proceedings. 2002. 34. 3419-3421
    [111] 王洪复. 骨细胞图谱与骨细胞体外培养技术. 第一版. 上海. 上海科学技术出版社. 2001. 60-63
    [112] 杨晓芳. 生物材料生物相容性评价研究进展. 生物医学工程学杂志. 2001. 18(1). 123-128
    [113] 陈宝林. 组织工程材料的细胞相容性研究. 呼伦贝儿学院学报. 2000. 8(4). 54-56
    [114] Zhang X C, Macdonald D A, Goosen M F A, et al. Mechanism for lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances. J Polym Sci. Part A: Polym Chem. 1994. 32. 2965-2970
    [115] Barrera D A, Zylstra E, Lansbury P T, et al. Copolymerization and degradation of poly(lactic acid-co-lysine). Macromol. 1995. 28. 425-432
    [116] Steffens G C M, Nothdurft L, Busea G, et al. High density binding of proteins and peptides to poly(d,l-lactide) grafted with polyacrylic acid. Biomaterials. 2002. 23. 3523–3531
    [117] Suzuki M, Kishida A, Iwata H, et al. Graft copolymerization of acrylamide onto polyethylene surface pretreated with glowcharge. Macromol. 1986. 19. 1804–1808
    [118] Volcker N, Klee D, Hocker H, et al. Functionalization of silicone rubber for the covalent immobilization of bronectin. J Mater Sci: Mater Med. 2001. 12. 111–119
    [119] 姚芳莲,孟继红,毛君淑等. 组织工程用聚乳酸系生物可降解高分子材料修饰研究进展. http://hxtb.icas.ac.cn/col/2001/c01031.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700