活体双模板法合成碱土/稀土金属草酸盐微/纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的仿生合成,是近年来材料化学研究领域的前沿和热点之一,本论文在生物矿化思想的启发下,运用活体生物模板进行纳米材料的仿生合成。选择碱土族草酸盐作为研究对象,采用与之相适应的仿生合成体系,成功合成出了碱土/稀土金属草酸盐微/纳米材料。
     首先,采用活性生物膜豆芽作为反应器,对碱土族草酸盐的结晶进行了研究,成功得到了纳米超结构材料。同时,又引入有机小分子作为晶体生长的修饰剂,得到了树枝状、哑铃状、棒状等不同形貌的纳米亚结构组装成的超结构材料,产物用SEM、XRD和FTIR等方法进行了表征,发现了同步合成不同结构纳米材料的活性生物双模板法。
     其次,在对碱土草酸盐研究的基础上,用同样的反应体系,对稀土草酸盐草酸钆的合成进行了探索,和碱土草酸盐的生长情况进行了比较,发现了活性生物双模板法制备纳米材料的一些规律。
     最后,还对豆芽双模板的结构进行了研究,发现了其双模板的特点,可以同步合成具有不同形貌的产物,另外还对可能的反应机理进行了初步的探索,为将来的继续研究做了准备。因为草酸钙是尿结石的主要成分,所以草酸盐在活体生物膜内的矿化探索对尿结石的研究也会有一定的帮助。
In recent years, the biomimetic synthesis of nano-materials becomes more and more popular in Materials Chemistry field. Inspired by the biological concept, nano-materials were prepared by bio-template. We use alkaline earth oxalate as our research object and select corresponding biomimetic synthesis system. And we explore the synthesis of rare earth oxalate.
     Firstly, the crystallization and morphology control of alkaline oxalate were investigated in living template, mung bean sprouts (MBS). The result prove that the MBS has a very clearly selectivity of the polymoph of calcium oxalate. Alkaline oxalate superstructure can be readily generated in a normal condition. Some interesting morphologies including elaborate piny dendritic, flowerlike, rods were also be prepared by using SDS or EDTA as cooperation modifiers in the mineralization process. These morphologies were assembled by some elaborate substructure, just like nano-wire and featherlike crystals. The products are respectively characterized by SEM, XRD and FTIR. A new method of simultaneous synthesis of different nano-structure materials by living bi-template was given.
     Secondly, on the basis of the research of alkaline oxalate, we explore the synthesis of gadolinium oxalate by the same system and compare with the synthesis of alkaline oxalate, some rules of the living bi-template was discovered.
     Finally, the structure of MBS bi-template was investigated, and we found that the inside and outside of MBS has different structure. So the morphology of products are also different. And different morphology products can be got simultaneously. Additionally, the reaction mechanism was preliminary explored. We think that our work is benefit for the application of the synthesis of nano-materials. As calcium oxalate is the main ingredient of urine stone, our research will be helpful for the study of urine stone.
引文
铩颷1]Feynman R P.There's Plenty of Room at the Bottom.In Annual Meeting of the AmericanPhysical Society.Caltech:Pasadena,1959
    [2]L.Vayssieres,K.Keis,A.Hagfeldt,S.Lindquist.Three-Dimensional Array of HighlyOriented Crystalline ZnO Microtubes.Chem.Mater.2001,13(12):4395-4398;
    [3]Z.R.Tian,J.A.Voigt,J.Lin,B.Mckenzie,M.J.Mcdermott.Biomimetic Arrays of OrientedHelical ZnO Nanorods and Columns.J.Am.Chem.Soc.2002,124(44):12954-12955.
    [4]B.Liu,H.C.Zeng.Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50inn.J.Am.Chem.Soc.2003,125(15):4430-4431.
    [5]J.Zhang,I,Sun,J.Yin,H.Su,C.Liao,C.Yan.Control of ZnO Morphology via a SimpleSolution Route.Chem.Mater.2002,14(10):4172-4177.
    [6]Slavkin H and Price P.Chmistry and biology of mineralized tissues.Excerpa Medica,1992:158-162
    [7]Douglas T.A bright bio-inspired future,Science,2003,299(5610):1192-1193
    [8]Mann S.Biominerzlization:Principles and Concepts in Bioinorganic Materials Chemistry.Oxford:Oxford University Press,2001
    [9]戴永定等著.生物矿物学.北京:石油工业出版社.1998
    [10]冯庆玲.生物与今生材料的研究现状及展望.清华大学学报.1999,399(6738):761-763
    [11]Marsh M E.Regulation of CaCO_3 formation in coccolithophores.Comp.Biochem.Physiol.B,2004,136(4):743-754
    [12]Falini G,Albeck S,Weiner S,et al.Control of Aragonite or Calcite Polymorphism byMollusk Shell Macromolecules.Science.1996,271:67-69
    [13]Zaremba C M,Belcher AM,Fritz M,et al.Critical Transitions in the Biofabrication ofAbalone Shells and Flat Pearls.Chem.Mater.,1996,8(3):679-690
    [14]Lakshminarayanan R,Kini R M,Valiyaveettil S.Investigation of the role of ansocalcin inthe biomineralization in goose eggshell matrix.PNAS,2002,99(8):5155-5159
    [15]Cusack M,Fraser A C.Eggshell Membrane Removal for Subsequent Extraction ofIntermineral and Intramineral Proteins.Cryst.Growth Des.2002,2(6):529-532
    [16]Chave K E.Aspects of the biochemistry of maguesium,(1)calcareous marine organisms.J.Geol.1954,62(3):266-283
    [17]Raz S,Weiner S,Addadi L.Formation of High-Magnesian Calcites via an AmorphousPrecursor Phase:Possible Biological Implicat,ous.Adv.Mater.2000,12(1):38-42
    [18]Mann S,Mann H,Fyfe W S.Intracellular Aragonite Crystals in the Fresh Water AlgaSpirogyra sp.Min.Mag.1988,52:241-245
    [19]Sollner C,Burghammer M,Busch-Nentwich E,et el.Control of Crystal Size and LatticeFormation by Starmaker in Otolith Biomineralization.Science.2003,302(5643):282-286
    [20]Lowenstam H A,Abbott D P.Vaterite:a mineralization product of the hard tissues of a marine organism(Ascidiacea).Science.1975,188(4186):363-365
    铩颷21]Aizenberg J,Lambert G,Weiner S,et al.Factors Involved in the Formation of Amorphousand Crystalline Calcium Carbonate:A Study of an Ascidian Skeleton.J.Am.Chem.Soc.2002,124(1):32-39
    [22]Addadi L,Raz S,Weiner S.Taking Advantage of Disorder:Amorphous Calcium Carbonateand Its Roles in Biomineralization.Adv.Mater.2003,15(12):959-970
    [23]Taylor M G,Simkiss K,Greaves G N,et al.An X-ray Absorption Spectroscopy Study of theStructure and Transformation of Amorphous Calcium Carbonate from Plant Cystoliths.Proc.R.Soc.Lend.B.1993,252:75-80
    [24]Fratzl P,Groschner M,Vogl G,et al.Mineral crystals in calcified tissues:A comparativestudy by SAXS.J.Bone Miner.Res.1992,7(3):329-334
    [25]Bigi A,Gandolfi M,Koch M H J,et al.X-ray diffraction study of in vitro calcification oftendon collagen.Biomaterials.1996,17(12):1195-1201
    [26]Ikoma T,Kobayashi H,Tanaka J,et al.Miorostructure,mechanical,and biomimeticproperties of fish scales from Pagrus major.J.Struot.Biol.2003,142(3):327-333
    [27]Bigi A,Burghammer M,Falconi R,et al.Twisted plywood pattern of collagen fibrils inteleost scales:an X-ray diffraction investigation.J.Struct.Biol.2001,136(2):137-143
    [28]Leveque I,Cusack M,Davis S A,et al.Promotion of Fluorapatite Crystallization bySoluble-Matrix Proteins from Lingula Anatina Shells.Angew.Chem.Int.Ed.2004,43(7):885-888
    [29]Susuki O,Yagishita H,Amano T,et al.Reversible structural changes of octacalciumphosphate and labile acid phosphate.J.Dental Res.1995,74(11):1764-1769
    [30]Lowenstam H A,Weiner S.Transformation of amouphous calcium phosphate to crystallinedahllite in the radular teeth of chitons.Science.1985,227(4682):51-53
    [31]Franceschi V,Homer H.Calcium oxalate crystals in plants.Bot.Rev.1980,46(4):361-427
    [32]Bouropoulos N,Weiner S,Addadi L.Calcium Oxalate Crystals in Tomato and TobaccoPlants:Morphology and in Vitro Interactions of Crystal-Associated Maoromolecules.Chem.Eur.J.2001,7(9):1881-1888
    [33]Horridge G A.Ultrastructural observations on prey capture and digestion in thescyphomedusa.Aurelia Aurita.Mar.Biol.(Berl.)1956,96:391-400
    [34]Braithwaite C J R,Whitton B A.Gypsum and halite associated with the cyanbacteriumEntophysalis.Geomicrobiology J.1987,5(1):43-56
    [35]Fritz L W,Ragone L M,Lute RA,et al.Biomineralization of barite in the shell of thefresh-water asitic clam corbicula-fluminea(Mollusca,Bivalvia).Limnol.Oceanogr.1990,35(3):756-762
    [36]De Deckker P.On the celestite-secreting Acantharia and their effect on seawater strontiumto calcium ratios.Hydrobiologia.2004,517(1-3):1-18
    [37]Hartman W D.Form and distribution of silica in sponges.In:Simpson T L,Volcani B E,eds.Silicon and siliceous structures in biological systems.New York:Springer.1981.453-493
    铩颷38]N.Sumper M.The biochemistry of silica formation in diatoms.In:Baeuerlein E,ed.Biomineralization:from biology to biotechnology and medical application.Weinheim:Wiley-VCH.2000.151-170
    [39]Konhauser K O,Phoenix V K,Bottrell S H,et al.Microbial-silica interactions in Icelandichot spring sinter:possible analogues for some Preoambrian siliceous stromatolites.Sedimentology.2001,48(2):415-433
    [40]Sangster A G,Parry D W.Ultrastructure of silica deposits in higher plants.In:Simpson T L,Volcani B E,eds.Silicon and siliceous structures in biological systems.New York:Springer.1981.383-407
    [41]Gorby Y A,Beveridge T J,Blakemore R P.Characterization of the bacterial magnetosomemembrane.J.Bacteriol.1988,170(2):834-841
    [42]Lowenstam H A.Magnetite in denticle capping in recent chitons(Polyplacophora).Bull.Geol.Soc.Am.1962,73(4):435-438
    [43]Etheredge J A,Perez S M,Taylor O R,et al.Monarch butterflies(Danans plexippus L.)usea magnetic compass for navigation.PNAS.1999,96(24):13845-13846
    [44]Mann S,Sparks N H C,Walker M M,et al.Ultrastructure,Morphology and Organization ofBiogenic Magnetite from Sockeye Salmon,Oncorhyncus nerka:Implications forMagnetoreception.J.Exptl,Biol.1988,140:35-49
    [45]Kirschvink J L,Kobayashi-Kirschvink A,Woodford B J.Magnetite Biomineralization inthe Human Brain.PNAS.1992,89(16):7683-7687
    [46]Lowenatam HA.Goethite in radular teeth of recent marine gastropods.Science.1962,137(3526):279-280
    [47]Chatellier X,Fortin D,West M M,et al.Effect of the presence of bacterial surfaces duringthe synthesis of Fe oxidas by oxidation of ferrous ions.Eur.J.Mineral.2001,13(4):705-714
    [48]Mann H,Tazaki K,Fyfe W S,et al.Cellular lepidocrocite precipitation and heavy-metalsorption in Euglena sp(unicellular alga)- implications for biomineralization.Chem.Geol.,1987,63(1-2):39-43
    [49]Sawicki J A,Brown D A,Beveridg T J.Microbial precipitation of siderite andproteferrihydrite in a biofilm.Can.Mineral.1995,33:1-6
    [50]Mann S,Sparks N H C,Frankel R B,et al.Biomineralization of ferrimagnetic greigite(Fe_3S_4)and iron pyrite(FeS_2)in a magnetotactic bacterium.Nature.1990,343(6255):258-261
    [51]Posfai M,Buseck P R,Bazylinski D A,et al.Iron sulfides from magnetotactic bacteria:Structure,composition,and phase transitions.Am.Mineral.1998,83(11-12):1469-1481
    [52]Mann S,Sparks N H C,Scott G H E,et al.Oxidation of Manganese and Formation ofMn_3O_4(Hausmannite)by Spore Coats of a Bacillus.Appl.Environ.Microbiol.1988,54:2140-2143
    [53]Wolber P K.Bacterial ice-nucleation protein.Trends Biol.Sci.1989,14:179
    [54]Lichtenegger H C,Schoberl T,Bartl M H,et al.High Abrasion Resistance with Sparse Mineralization:Copper Biomineral in Worm Jaws.Science.2002,298(5592):389-392
    铩颷55]Baeuerlein E.Biomineralization of Unicellular Organisms:An Unusual MembraneBiochemistry for the Production of Inorganic Nano- and Microstruotures.Angew.Chem.Int.Ed.2003,42(6):614-641
    [56]Dameron C T,Reese R N,Mehra R K,et al.Biosynthesis of cadmium sulphide quantum
    [57]Rautaray D,Kumar P S,Wadgaonkar P P,et al.Highly Versatile Free-Standing Nano-GoldMembranes as Scaffolds for the Growth of Calcium Carbonate Crystals.Chem.Mater.2004,16(6):988-993
    [58]Ariga K,Hill JP,Ji QM.Layer-by-layer assembly as a versatile bottom-up nanofabrioationtechnique for exploratory research and realistic application.Phys.Chem.Chem.Phys.2007,9:2319-2340
    [59]Aizenberg J.,Black A.J.,Whitesides G.M.Control of crystal nucleation by patternedself-assembled monolayers.Nature.1999,398(6227):495-498
    [60]Zhang X,Chen H,Zhang HY.Layer-by-layer assembly:from conventional tounconventional methods.Chem.Commun.2007,14:1395-1405
    [61]White D J,Cox E R.Factors contributing to dental calculus formation and prevention.ACSSymposium Series.1991,444:177-185
    [62]Pritzker K P H.Calcium pyrophosphate crystal arthropathy - a biomineralization disorder.Human Pathology.1986,17(6):543-545
    [63]Fasano J M,Khan S R.Intratubular crystallization of calcium oxalate in the presence ofmembrane vesicles:An in vitro study.Kidney Int.2001,59(1):169-178
    [64]Donley G E,Fitzpatrick L A.Noncollagenous matrix proteins controlling mineralization:Possible role in pathologic calcification of vascular tissue.Trends Cardiovascular Medicine.1998,8(5):199-206
    [65]Mann S.Biomineralization and Biomimetic Materials Chemistry.J.Mater.Chem.1995,5(7):935-946
    [66]McLean R J C,Fortin D,Brown D A.Microbial metal-binding mechanisms and theirrelation to nuclear waste disposal.Can.J.Microbiology.1996,42(4):392-400
    [67]Young J R,Davis S A,Bown P R,etal.Coccolith ultrastructure and biomineralisation.J.Struct.Biol.1999,126(3):195-215
    [68]Belcher AM,Wu X H,Christensen R J,et al.Control of crystal phase switching andorientation by soluble mollusc-shell proteins.Nature.1996,381:56-58
    [69]Mann S.Molecular recognition in biomineralization.Nature,1988,332(6160):119-124
    [70]Mann S.Biomineralization:the Hard Part of Bioinorganic Chemistry.J.Chem.Soc.,Dalton Trans.1993,(1):1-9
    [71]Addadi L,Weiner S.Interactions between acidic proteins and crystah - stereochemicalrequirements in biomineralization.PNAS.1985,82(12):4110-4114
    [72]Heuer A H,Fink D J,Laraia V J,et al.Innovative Materials Processing Strategies:ABiomimetic Approach.Science.1992,255(5048):1098-1105
    [73]Groeger C,Lutz K,Brunner E.Biomolecular self-assembly and its relevance in silica biomineralization.Cell Biochemistry and Biophysics.2008,50(1):23-29
    铩颷74]Kroger N,Sumper M.The biochemistry of silica formation in diatoms.In:Baeuerlein E,ed.Biomineralization:from biology to biotechnology and medical application.Weinheim:Wiley-VCH,2000.151-170
    [75]Wealthall RJ,Brooker LR,Macey DJ,et al.Fine structure of the mineralized teeth of theohiton Acanthopleura echinata(Mollusca:Polyplacophora).J.Morphol.2005,265(2):165-175
    [76]Frankel,R B,Blakemore R P.Iron Biominerals.New York:Plenum Press,1991
    [77]Baconnier S,Lang SB,Polomska M,et al.Calcite microcrystals in the pineal gland of thehuman brain:First physioal and chemical studies.Bioelectromagnetics.2002,23(7):488-495
    [78]Muller WEG,Li JH,Schroder HC,et al.The unique skeleton of siliceous sponges(Porifera;Hexactinellida and Demospongiae)that evolved first from the Urmetazoa during theProterozoic.Biogeosciences.2007,4(2):219-232
    [79]Nakata PA,MoConn MM,Calcium oxalate content affects the nutritional availability ofcalcium from Medicago truncatula leaves.Plant Science.2007,172(5):958-961
    [80]Braga-Vilela AS,Pimentel ER,Marangoni S,et al.Extracellular matrix of porcinepericardium:Biochemistry and collagen architecture.J.Membrane Biol.2008,221(1):15-25
    [81]Dong Q,Su HL,Xu JQ,et al.Synthesis of biomorphio ZnO interwoven microfibers usingeggshell membrane as the biotemplate.Mater.Lett.2007,61(13):2714-2717
    [82]Weiner S,Wagner H D.The material bone:Structure mechanical function relations.Annu.Rev.Mater.Scl.1998,28:271-298
    [83]Devouard B,Posfai M,Hua X,et al.Magnetite from magnetotactic baocteria:Sizedistributions and twinning.Am.Mineral.1998,83(11-12):1387-1398
    [84]Descles J,Vartanian M,El Harrak A,et al.New tools for labeling silica in living diatoms.New Phytologist.2008,177(3):822-829
    [85]Fresnel J,Probert I.The ultrastruoture and life cycle of the coastal coccolithophoridOchrosphaera neapolitana(Prymnesiophyceae).Eur.J.Phycol.2005,40(1):105-122
    [86]薛中会,武超,戴树玺等.生物矿化研究进展.河南大学学报.2003,33(3):21-25.
    [87]张刚生,谢先德.CaCO_3生物矿化的研究进展-有机质的控制作用 地球科学进展,2000,15(2):204-209.
    [88]Didymus J M,Young J R,Mann S.Construction and morphogenesis of the chiralultrastructure of coccoliths from the marine alga Emiliania huxleyi.Proc R Soc:London B.1994,258:237-245.
    [89]van der Wal P,de Jong E W,Westbroek P,et al.Polysaccharide localisation,coccolithformation,and golgi dynamics in the coccolithophorid Hymenomonas carterae.J.Ultrastruot.Res.1983,85:139-158
    [90]崔福斋,郑传林.仿生材料,化学工业出版社.2004年5月第一版.
    [91]Yu SH,Colfen H,Tauer K,et al.Tectonic arrangement of BaCO_3 nanocrystals into helicesinduced by a racemic block copolymer.Nature Mater.2005,4(1):51
    铩颷92]Rautaray D,,Banpurkar A.,Sainkar S.R.,et al.,BaSO4 Crystals Grown at an ExpandingLiquid-Liquid Interface in a Radial Hele-Shaw Cell Show Spontaneous Large-ScaleAssembly into Filaments Cryst.Growth Des.2003,3(4):449-452
    [93]Rautaray D.,Kumar A.,Reddy S.,et al.,Morphology of BaSO_4 Crystals Crown onTemplates of Varying Dimensionality:The Case of Cysteine-Capped Gold Nanoparticles(0-D),DNA(1-D),and Lipid Bilayer Stacks(2-D)Cryst.Growth Des.2002,2(3):197-203
    [94]Davis S.A.,Breulmann M.,Rhodes K.H.,Zhang B.,Mann S.Template-DirectedAssembly Using Nanoparticle Building Blocks:A Hanotectonic Approach to OrganizedMaterials.Chem.Mater.2001,13(10):3218-3226
    [95]Miyaji F.,Davis S.A.,Charmant J.P.H.,Mann S.Organic Crystal Templating of HollowSilica Fibers.Chem.Mater.1999,11(11):3021-3024.
    [96]Dujardin E.,Peet C.,Stubbs G.,Culver J.N.,Mann S.Organization of MetallicNanoparticles Using Tobacco Mosaic Virus Templates.Nano Lett.2003,3(3):413-417.
    [97]Ma Y.,Qi L.,Ma J.,Cheng H.,Shen W.Synthesis of Submicrometer-Sized CdS HollowSpheres in Aqueous Solutions of a Triblock Copolymer.Langmuir.2003,19(21):9079-9085.
    [98]Ma Y.,Qi L.,Ma,J.,Cheng,H.Facile Synthesis of Hollow ZnS Nanospheres in BlockCopolymer Solutions.Langmuir.2003,19(9):4040-4042
    [99]Yu SH,Colfen H,Xu AW,Dong W,Complex Spherioal BaCO_3 SuperstructuresSelf-Assembled by a Facile Mineralization Process under Control of SimplePolyelectrolytes.Cryst.Growth Des.2004,4(1):33-37.
    [100]Yu SH,Antonietti M,Colfen H.,Hartmann J.Growth and Self-Assembly of BaCrO4 andBaSO_4 Nanofibers toward Hierarchical and Repetitive Superstructures byPolymer-Controlled Mineralization Reactions.Nano Lett.2003,3(3):379-382.
    [101]Terada T.,Yamabi S.,Imai H.Formation process of sheets and helical forms consisting ofstrontium oarbonate.brous crystals with silicate,J.Cryst.Growth.2003,253:35-44
    [102]Guo XH,Yu SH,Cai GB.Crystallization in a mixture of solvents by using a crystalmodifier:morphology control in the synthasis of highly monodisperse CaCO_3 microspheres.Angew.Chem.Ed.2006,45:3977-3981
    [103]Jinku Liu,Qingsheng Wu,and Yaping Ding.Controlled Synthesis of DifferentMorphologies of BaWO_4Crystals through Biomembrane/Organic-Addition SupramoleculeTemplates.Cryst.Growth Des.2005,5:445-449
    [104]刘金库.锌铜族硫化物及碱土族含氧酸盐纳米/微米材料的活性膜模板法控制合成及其性能研究,[博士学位论文].上海:同济大学,2004
    [105]张克从.近代晶体学基础.科学出版社
    [106]钱逸泰.结晶化学导论.中国科技大学出版社,2002年9月第二版
    [107]Hartman P.and Perdok,W.G.,On the relations between structure and morphology ofcrystals.Ⅱ.Acta Cryst.1955,8(9):521-524
    [108]罗谷风.结晶学导论.地质出版社
    [109]Shenton W.,Douglas T.,Young M.et al.Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus.Adv.Mater.1999,11(3):253.
    铩颷110]Mann S.Materials that naturally assemble themselves.Chem.Commun.,2004,(1):1-4
    [111]余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社,第2版.1998,307-319
    [112]Wei S-H,Mahuli S K,Agnihotri R,et al.High Surface Area Calcium Carbonate:PoreStructural Properties and Sulfation Charaoteristics.Ind.Eng.Chem.Res.,1997,36(6):2141-2148
    [113]Chandrasekhar S,Narsihmulu C,Chandrashekar G,et al.Pd/CaCO_3 in liquid poly(ethyleneglycol)(PEG):an easy and efficient recycle system for partial reduction of alkynes toois-olefins under a hydrogen atmosphere.Tetrahedron Lett.2004,45(11):2421-2423
    [114]Keysar S,Hasson D,Semiat R,et al.Corrosion Protection of Mild Steel by a Caloite Layer.Ind.Eng.Chem.Res.1997,36(8):2903-2909
    [115]孙彦彬,邱关明,陈永杰,耿秀娟,代少俊.稀土发光材料的合成方法.稀土.2003,24(1):43-48。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700