新型功能化聚乙烯醇的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯醇是一种化学性质稳定,有良好的耐酸、耐碱、耐干热性能,溶于水但几乎不溶于有机溶剂的用途相当广泛的水溶性高分子聚合物,性能介于塑料和橡胶之间,它的用途可分为纤维和非纤维两大用途。近年来,由于PVA的产量急剧扩大,加上煤,电,石油等资源的日趋紧张,主要原料价格持续高涨,产品利润率逐渐降低。因此,只有加强PVA产品的应用开发,拓宽应用领域,研发科技含量高,附加价值高的下游产品,延长产品链,聚乙烯醇生产企业才能提高核心竞争能力,实现行业的可持续发展。
     本文简述了聚乙烯醇的基本特性及在传统领域中的应用;并综述了近年来在新领域中的拓宽及功能化,在此基础上提出了两种有效的功能化途径:一是通过和无机物复合形成新的高性能纳米复合材料;另外是通过利用聚乙烯醇本身的特性,进行功能化后运用于固相有机合成。在此思路的指导下,制备了四种新型的功能化聚乙烯醇材料,并研究了其性质,主要结论如下:
     一、通过和硅烷偶联剂乙烯基三乙氧基的偶联反应,成功地对纳米二氧化硅进行了表面乙烯基化,并研究了此反应的可控性,通过不同的反应条件,可以使乙烯基含量达到1.956到8.922 mmol/g之间;通过醋酸乙烯酯和乙烯基化后的纳米二氧化硅共聚,并直接进行醇解反应,FT-IR及聚合物中硅元素分析证明成功的制备了聚乙烯醇/二氧化硅纳米复合材料;特性粘度及醇解度的研究表明,少量二氧化硅的引入影响了聚乙烯醇的一些特征性能;热性能和机械性能的研究表明,通过共价键和聚合物连接,少量的纳米二氧化硅就能很大程度的提高了聚合物的热性能和机械性能。复合物的起始热分解温度从250.1℃上升至261.1℃;玻璃化转变温度从71.0℃上升到91.2℃:而在800℃时的残留率从3.53%增加到16.72%。同时,杨氏模量从36.3MPa上升至52MPa,拉伸强度从16.4MPa上升至30.2MPa。
     二、用DMSO插层的高岭土作为中间体,成功地通过客体置换法使得醋酸乙烯酯单体进入高岭土层间,经DMSO插层后,高岭土的层间距由原来的0.72 nm增大为1.13 nm,经过醋酸乙烯酯插层后,其层间距进一步增大为1.44 nm。DMSO和醋酸乙烯酯的插层率分别为72%和78.6%;通过经典的自由基溶液聚合,合成了聚醋酸乙烯酯/高岭土插层聚合物,该聚合物通过直接醇解后到了聚乙烯醇/高岭土插层聚合物:FT-IR和XRD表征证明了这个结果,所得聚乙烯醇/高岭土插层聚合物的热性能较纯的聚合物有了很大的提高,复合物的起始热分解温度从240.1℃上升至262.5℃;玻璃化转变温度从61.2℃上升到81.5℃;而在800℃时的残留率从3.68%增加到22.72%。
     三、成功的应用悬浮交联的方法从线性的聚乙烯醇出发制备了交联的PVA小球,然后用阴离子聚合的方法,以环氧乙烷为单体,使得PVA表面接枝上了PEG链段,制备了新型的PVA-g-PEG树脂,并用FT-IR,NMR表征了其结构;用SEM,光学显微镜研究了PVA小球和PVA-g-PEG树脂的形貌特征,用DSC和TGA研究了其热性能;在不同溶剂中的溶胀性能的研究表明,PVA-g-PEG树脂在溶胀性方面具有广泛的溶剂适用性,其在各种不同性质的溶剂中的溶胀指数都优于现在普遍使用的固相载体;更为重要的是,这种载体本身具有的官能团的含量很高,是现在使用树脂的几倍乃至十几倍,所以该树脂具有很好的应用前景,为了给以后的工业化生产给予一定得理论指导,通过实验室的对悬浮交联过程和阴离子聚合过程的放大,初步摸索了放大实验的影响因素。
     四、通过上升聚合法制备尺寸均一的聚醋酸乙烯酯小球,其直径为1.8 mm;然后通过传统的醇解反应,我们把所得的聚醋酸乙烯酯小球成功地转化为聚乙烯醇小球,其醇解度达到85%,聚乙烯醇小球上的羟基含量为18 mmol/g;通过元素分析,CP/MAS ~(13)C NMR和FT-IR表征,我们确定了所得聚醋酸乙烯酯及聚乙烯醇小球的结构,并且得出实验结果和理论值是相符合的。
Poly(vinyl alcohol)(PVA) is a kind of water-soluble polymer,which possess excellent chemical stability,acid resistance,base resistance,dry heat resistance, soluble in water and insoluble in most organic solvents and widely used in many fields.It's properties is between plastic and rubber and usually used as fiber and non-fibrous matters.Recently,because of increasing amount and decreasing profit of PVA,it is very urgent to discover novel functional PVA matters to make PVA sustainable development.
     This paper summarizes basic properties and conventional applications in every fields and give an introduction of novel functionalized PVA in recent years.Based on this,we propose that two methods to functionalize PVA are possible.The first way is to combine PVA and inorganic materials to form new PVA nano-composites to improve properties.The other is to use PVA as solid-phase synthesis support because PVA is very stability.Guided by this,four novel functional PVA matters were prepared in this paper and their properties was studied.The main conclusion is following:
     1.Firstly,silica nanoparticles were modified by vinyltriethoxysilane(VTEOS) and the amount of vinyl group was controllable by changing reaction conditions.The amount of vinyl group was up to 8.922 mmol/g.Secondly,these modified silica nanoparticles were copolymerized with vinyl acetate to form PVAc/silica nano-composites.Finally,PVA/silica nano-composites could be obtained by alcoholysis of PVAc/silica nano-composites.FT-IR and silica analysis were used to characterize PVAc/silica nano-composites.The properties of PVAc/silica nano-composites such as intrinsic viscosity and alcoholysis degree were changed even the amount of silica nanoparticles introduced into polymer was very small.At the same time,the thermal and mechanical properties of PVAc/silica nano-composites were improve greatly because of introduction of silica nanoparticles.For example,the onset of the thermal degradation temperature was shifted from 250.1℃to 261.1℃ and the glass transition temperature was improved from 71.0℃to 91.2℃.The Young's modulus increased from 36.3MPa to 52MPa and the tensile strength changed from 16.4MPa to 30.2MPa.
     2.Vinyl acetate was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite(Kao-DMSO) as the intermediate.The d(001) spacing of Kao-DMSO increased to 1.13 nm and Kao-VAc demonstrated the d(001) spacing was further enlarged to 1.44 nm.he intercalation rates(IR) of Kao-VAc was increased from 72%of Kao-DMSO to 78%.After,PVAc/kaolinite nano-composites was prepared via in situ free radical polymerization and PVA/kaolinite nano-compositeds was successfully obtianed by alcoholysis of PVAc/kaolinite nano-composites.The materials were characterized by FT-IR and XRD.The onset of the thermal degradation temperature was shifted from 240.1℃to 262.5℃and the glass transition temperature was improved from 61.2℃to 81.5℃.
     3.Firstly,highly crosslinked PVA beads were prepared by suspension crosslinking of linear PVA and epichlorohydrin.Then,ethylene oxide was grafted onto the PVA beads by anionic polymerization to form PVA-g-PEG resins.These resins were characterized by NMR,FT-IR,SEM,microscopy,DSC and TGA.All results indicated that this novel resin possess good solubility both in polar and no-polar solvents.At the same time,the functional group is up to 10 fold comparing to Tentagel and Argogel, which were popularly used in many fields.Last,scaling-up was carried out in the lab because this novel resin is so promising.
     4.The uniform PVAc beads with diameter between 1.8 mm and 2.0 mm were prepared via ascension polymerization and corresponding uniform PVA beads were obtained by methanolysis.The alcoholysis degree is up to 85%and the amount of hydroxyl group is 18 mmol/g.These beads were characterized by elements analysis, CP/MAS ~(13)C NMR and FT-IR.
引文
[1]张韵慧,李宁,许建辰,等.聚乙烯醇在中药新剂型中的应用.中国中药杂志,2004,29:101-103
    [2]聚乙烯醇的性质和应用,北京有机化工研究所编译,纺织工业出版社,1979.
    [3]樱田,细野;高分子化学,2,151(1945)
    [4]樱田,坂口,伊藤;高分子化学,14,141(1957)
    [5]S.N.Timasheff.J.Am.Chem.Soc,1951,73:389
    [6]G.F.Biehn,M.L.Erusberger.Ind.Eng.Chem.1951,43:1108
    [7]林,中野,本山;高分子化学,21,300(1964)
    [8]猪狩,井本,丰岛;第52回报告(1976)
    [9]严瑞蠹。水溶性高分子。北京:化学工业出版社,2000
    [10]许令,顾逸平,李小平。环保型建筑粘结剂的研究.化学建材,2002,5:37
    [11]田仁主,刘跃进。加强聚乙烯醇应用开发.江苏化工调研报告,2005,4
    [12]陈应钦。新型建筑材料的生产与应用.广东科技出版社,1993
    [13]金日光,华幼卿,高分子物理,化学工业出版社,1991.
    [14]P.B.Messersmith,E.P.Giannelies.Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites.Chem.Mater,1994,6:1791-1795
    [15]熊传溪,闻荻江.超微细Al_2O_3增韧增强聚苯乙烯的研究.高分子材料科学与工程.1994.4:69-73.
    [16]Y.Kurokawa,H.Yasuda,M.Kashiwagi,A.Oyo.Structure and properties of a montmorillonite/polypropylene nanocomposites.J.Mater.Sci.Lett,1996,16:1670-1672.
    [17]K.E.Gonsaleves,X.H.Chen.Polyimide-AIN Nanocomposites:Synthesis and Characterization.Polym.Mater.Sci.Eng,1997,71:512-521.
    [18]L.G.Yu,S.R.Yang,H.T.Wang,Q.J.Xue.An Investigation of the Friction and Wear Behaviors of Micromater Copper Particle-and Nanometer Copper Particle-Filled Polyoxymethylene Composites.J.Appl.Polym.Sci,2000,77:2404-2410
    [19]Y.Wang,A.Suna,W.Maher,R.Kasowski.PbS in Polymers.From moleculers to bulk solid.J.Chem.Phys,1987,87:7315-7322.
    [20]R.Gangopadhyay,A.De.Conducting Polymer Nanocomposites:A Brief Overview.Chem.Mater,2000,12:608-622
    [21]周克省,黄克龙,孔德明,尹荔松.纳米无机物/聚合物复合吸啵功能材料.高分子材料科学与工程.
    [22]J.W.Gilman,C.L.Jackson,A.B.Morgan,R.H.Jr.Flammability Properties of Polymer-Layered-Silicate Nanocomposites.Polypropylene and Polystyrene Nanocomposites.Chem.Mater,2000,12:1866-1873.
    [23]M.D.Butterworth,D.Guzin,M.Lambie.Synthesis of Poly(pyrrol)-Silica-Magnetitte Nanocomposite Particles.J..Chem.Soc.,Chem.Commun,1994,18:2129-2130.
    [24]Irr.Warr,K.G.K.,An.Ikumar.R.G.M.Densification of mullite-SiC nanocomposite sol-gel precursors by pressureless sintering.Materials Chemistry and Physics,2001,67:263-266
    [25]洪从胜,黄海龙,徐春祥等.聚对苯撑亚乙烯/SiO_2块状溶胶-凝胶非线性光学材料的研究.光学学报,2002,23:62-63
    [26]王旭,黄锐.聚合物基纳米复合材料的研究进展.塑料,2000,29:25.
    [27]吴人洁,复合材料.天津:天津大学出版社,2000:193-227.
    [28]张成卯,高永建,张治军等.TiO_2/聚丙烯酸丁酯纳米复合膜的制备及摩擦性能.应用化学,2002,19:914-917.
    [29]龙威,顾嫒娟.碳纳米管的力学性能及聚合物/碳纳米管复合材料.材料导报,2002,16:54-58.
    [30]李玲,龚克成.超声波在纳米材料合成中的应用.材料导报,1998,4:18-20.
    [31]Mson.T.J.;Lor.Imer.J.P.;Pan.Iwnyk.K.L.et.al.Ultrasound starts quiet revolution in materials science.Materials World,1999,7:167-175.
    [32]李春喜,王子镐.超声技术在纳米材料制备中的应用.化学通报,2001,5:268-271.
    [33]敖宁建,陈美,周慧玲,等.红粘土/天然橡胶纳米复合材料的结构与性能研究.电子显微学报,2001,21:204.
    [34]王丽萍,洪广言.无机—有机纳米复合材料.功能材料,1998,29:343-347
    [35]X,Zhao.;,J Fondler.Study of local molecular ordering in layered surfactantsilicate mesophale composites.Journal ofphysical chemistry B,2003,107:443-450.
    [36]Mansur.Herman S,Orefice.Rodrigo L,P Mansur.Alexandra A.Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy.Polymer,2004;45:7193
    [37]Yano S,Kurita K,Iwata K,Furukawa T,Kodomari M.Structure and properties of poly(vinyl alcohol)/tungsten trioxide hybrids.Polymer,2003;44:3515
    [38]G Kicklbick.Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale.Prog Polym Sci,2003;28:83
    [39]L Matejka,Dukho,D Hlavata.Block Copolymer Organic-Inorganic Networks.Formation and Structure Ordering.Macromolecules,2003;36:7977
    [40]HS Mansur,WL Vasconcelos,R Orefice,Sol-gel silica based networks with controlled chemical properties.J Non-cryst Solides,2000;273:109
    [41]VHV Sarmento,K Dahmouche,CV Santilli,SH Pulcinelli,AF Craievich.Small-angle X-ray and nuclear-magnetic resonance study of siloxane-PMMA hybrids prepared by the sol-gel process.J Appl Cryst,2003;36:473
    [42]R Ricciaedi,F Auriemma,C De Rosa,F Laupretre.X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels,Obtained by Freezing and Thawing Techniques.Macromolecules,2004;37:1921
    [43]Changlu Shao,Hak-Yong Kim,Jian Gong,Bin Ding,Douk-Rae Lee,Soo-Jin Park.Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning.Mater let,2003;57:1579
    [44]S.Wonorahardjo,G.Ball,J.Hook,G.Moran.NMR relaxation studies of porous sol-gel glasses.Magn Reson Imag,1998;16:511
    [45]Ana Paula Viana Pereira,Wander Luise Vasconcelis,Rodrigo Lambert Orefice.Novel multicomponent silicate-poly(vinyl alcohol) hybrids with controlled reactivity.J Non-cryst Solides,2000;273:180
    [46]Xu Chert,Shaojun Dong.Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor.Biosens.Bioelectron,2003;18:999
    [47]Koji Nakane,Tomonori Yamashita,Kenji Iwakura,Fumio Suzuki.Properties and Structure of Poly(vinyl alcohol)/Silica Composites.J Appl Polm Sci,1999;74;133
    [48]Farid El-Tantawy,K.M.Abdel-Kader,F.Kaneko,Y.K.Sung.Physical Properties of CdS-poly(vinyl alcohol) nanoconducting composite synthesized by organosol techniques and novel application potential.Eur.Polym.J,2004;40;415
    [49]Yuan-Hsiang Yu,Ching-Yi Lin,Jui-Ming Yeh,Wei-Hsing Lin.Preparation and properties of poly(vinyl alcohol) clay nanocomposite materials.Polymer,2003;44:3553
    [50]K.E.Strawhecker,E.Manias.Structure and Properties of Poly(vinyl aleohol)/Na~+ Montmorillonite Nanocomposites.Chem.Mater,2000;12:2943
    [51]JiaYan Xu,Yuan Hua,Lei Song.Thermal analysis of poly(vinyl alcohol)/graphite oxide intercalated composites.Polym.Degrad.Stab,2001;73:29
    [52]Baoguang Li,Yuan Hu,Rui Zhang.Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocomposite.Mater.Res.Bul,l 2003;38:1567
    [53]Yi Lin,Bing Zhou,K.A.Shiral Fernando,Ping Lith Lawrence F.Allard,Ya-Ping Sun.Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer.Macromolecules,2003;36:7199
    [54]M.C.Paiva,B.Zhou,K.A.S.Femando,Y.Lin,J.M.Kennedy,Y.-P.Sun.Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes.Carbon,2004;42:2849
    [55]R.Vijaya Kumar,O.Palchik.Sonochemical systhesis and characterization of AgS/PVA and CuS/PVA nanocomposite.Ultrasonics Sonochemistry,2002;9:65
    [56]Zheng Peng,L.X.Kong,Si-Dong Li.Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite.Polymer,2005;46;1949
    [57]V.I.Lozinsky and F.M.Plieva.Poly(vinyl alcohol) cryogels employed as matrices forcell immobilization.3.Overview of recent research and developments.Enzyme and microbialtechnology,1998,23:227-242
    [58]俞毓馨等.环境工程微生物检验手册,中国环境科学出版社,1990.
    [59]王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究及进展.工业微生物1998,28:35-39
    [60]李彤,俞毓馨等.廉价包埋剂聚乙烯醇的研究.环境科技,1990,11:41-44
    [61]吴李国,章悦庭等.冷冻-解冻法制聚乙烯醇水凝胶研究进展.化工新材料,2001,29:18-21
    [62]李娜,刘忠洲,续曙光.冷冻-解冻法制聚乙烯醇水凝胶研究进展.膜科技术,1999,19:1-7
    [63]胡晓华,平郑骅,朱清等.PVA/PVP互穿网络膜的渗透蒸发分离性质.高等学校化学学报,1998,19:647-651
    [64]周继青,叶匀分,胡晓华.PVA/PVP互穿网络膜的渗透蒸发性质.席等学校化学学报,2000,21:301-302
    [65]刘庆林,张志炳等.PVA-Zr(Ⅳ)催化膜制备及其性能.高等化学工程学报,1999,13:73-77
    [66]Toshihiro,公开特许02-211872
    [67]Kyoyuki,公开特许01-129787
    [68]党见章,郑雄敏等.PVA包埋产延胡索酸酶的黄色短杆菌的固定化研究.南昌大学学按,1995,19:380-384
    [69]童义群,陈坚等.PVA-卡拉胶混合载体固定化大肠杆菌-酵母菌混合体系生产谷胱甘肽.工业微生物,2000,30(4):1-5
    [70]王磊,兰淑澄.固定化硝化菌去除氨氮的研究,环境科学,1997,1:18-22
    [71]张克胜,孙君坦,何炳林等.交联聚乙烯醇水凝胶对胆红素的吸附性能研究.离子交换与吸附,1998,14:204-209
    [72]张克胜,孙君坦,何炳林等.含牛磺酸交联聚乙烯醇的合成及其对甘油三脂吸附性能.高等学校化学学报,1999,20:965-968
    [73]徐建宽,何炳林.一种新型低密度脂蛋白吸附剂的制备.高等学校化学学报,2002,23:1421-1424
    [74]许立忠,马建标等.以交联聚乙烯醇为载体的离子交换剂对蛋白质的分离性能.离子交换与吸附,1996,12:114-118
    [75]贾永会,孔德领,俞耀庭等.固定化血红蛋白氧载体的研究 Ⅰ.聚乙烯醇包埋血红蛋白.功能高分子学报,1998,11:379-384
    [76]Mariateresa Giuliano,Chiara Schiraldi,Carmelina Maresca,etc.Immobilized Proteus mirabilis in poly(vinyl alcohol) cryogels for L(-)-carnitine production.Enzyme and Microbial Technology,2003,35:507-512
    [77]张宏兴,王丁刚等.ATP再生系统与固定化酵母细胞偶联制备1,6—二磷酸果糖的研究.药物生物技术,1995,2:50-52
    [78]余龙江,李为,刘幸福等.中国红豆杉悬浮细胞固定化培养生产紫杉醇.华中理工大学学报,1998,26:1-4
    [79]Masaki Okazaki,Tosihiro Hamada,Hiro-aki Fujii.Development of Poly(vinyl alcohol) Hydrogel for Waste Water Cleaning.Ⅱ.Treatment of N,N-Dimethiylformamide in Waste Water with Poly(vinyl alcohol)Gel with Immobilized Microorganism.Journal of Applied Polymer Science,1995,58:2243-2249
    [80]Guo-min Cao,Qing-xiang Zhao,Xian-bo Sun.Characterization of nitrifying and denitrifying bacteria co-immobilized in PVA and kinetics model of biological nitrogen removal by co-immobilized cells.Enzyme and Microbial Technology,2002,30:49-55
    [81]赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究.环境科学,1999,20.39-42
    [82]袁林江.聚乙烯醇固定化反硝化菌的脱氮试验研究.西安建筑科技大学学报,1997,29:257-262
    [83]Hisashi Nagadomi,Takako Hiromitsu,Ken-ji Takeno,etc.Treatment of Aquarium Water by Denitrifying Photosynthetic Bacteria Using Immobilized Polyvinyl Alcohol Beads.Journal of Bioscience and Bioengeering.1999,87:189-193
    [84]Kuo-Cheng Chen,Shu-Juan Chen.Simultaneous carbonnitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms.Enzyme and Microbial Technology,1996,18:502-506
    [85]曹国民,赵庆祥,孙贤波等.固定化细胞膜的制备及其特性研究.中国环境科学,2001,21:207-211
    [86]曹国民,赵庆祥,孙贤波等.固定化细胞膜的制备及其特性研究.环境科学,2002,23:65-68
    [87]康莹.活性污泥PVA膜状固定及净化污水效.环境保护科学.2000,29.16-
    [88]邱运仁,方惠会,熊日华.金属-改性PVA复合亲水分相膜处理含油乳化废水.膜科学与技术,2001,21:16-20
    [89]Kuo-Cheng Chen,Jane-Yii Wu,Yu-Min Liang.Decolorization of azo dye using PVA-immobilized microorganisms.Journal of biotechnology,2003,101:241-245
    [90]K.M.Khoo and Y.P.Ting.Biosorption of gold by immobilized fungal biomass.Biochemical Engineering Journal,2001,8:51-59
    [91]盛良全,程学会,刘少民等.聚苯胺/聚乙烯醇载体尼古丁膜电极的研究.功能高分子学报,1998,11:271-274
    [92]Jianlong Wang,Ping Liu and Yi Qian.Biodegradation of phthalic acid esters by immobilized microbial cells.Evironment International,1997,23:775-782
    [93]Osamu Ariga,Hisashi Toyofuku,Ikuo Minegishi.Efficient Production of Recombinant Enzymes Using PVA-Encapsulated Bacteria.Journal of Fermentation and Bioengineering,1997,84:553-557
    [94]Mirosawa,SzczsnaAntczak,Tadeusz Antczak,Magorzata Rzyska.Catalytic properties of membrane-bound Mucor lipase immobilized in a hydrophilic carrier.Journal of Molecular Catalysis B:Enzymatic,2002,19-20:261-268
    [95]刘健平,钟英长.固定化增殖细胞快速发酵生产酱油.中山大学学报,1997,36(增刊2):26-30
    [96]高放,秦克亮,赵玉秀,范秋昱等.固定化黑曲霉细胞与固定化葡萄糖异构酶生产高含量低聚果糖.中国生化药物杂志,2000,21:286-289
    [97]Vladimir I.Lozinsky,Alexander L.Zubov and Elena F.Titova.Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization.2.Entrapped cells resemble porous fillers in their effects on the properties of PVA cryogel carrier.Enzyme and MicrobialTechnology,1997,20:182-190
    [98]Christian Vogelsang,Asbj(?)m Husby,and Kjetill(?)tgaard.Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SBQ/alginate gel entrapment.Water Research,1997,31:1659-1664
    [99]RB Merrifield.Solid Phase Peptide Synthesis.Ⅰ.The Synthesis of a Tetrapeptide. J.Am Chem Soc,1963,85,2149
    [100]K.S.Lam,S.E.Salmon,E.M.Hersh.A new type of synthetic peptide library for identifying ligand-binding activity.Nature,1991,354,82
    [101]M.T.Burger,P.A.Bartlett.Polymer-Supported Formation of an Analog of the Trypsin Inhibitor A90720A:A Screening Strategy for Macrocyclic Peptidase Irthibitors.J.Am.Chem.Soc,1997,119,12697
    [102]J.Rademann,M.Grotli,M.Meldal,K.Book.A Resin for Solid-Phase Organic Chemistry and Enzymatic Reactions on Solid Phase.J.Am.Chem.Soc,1999,121,5459
    [103]M.Benaglia,A.Puglisi,F.Cozzi.Polymer-Supported Organic Catalysts.Chem.Rev,2003,103,3401
    [104]T.J.Dickerson,N.N.Reed,K.D.Janda.Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents.Chem.Rev,2002,102,3325
    [105]M.Grotli,C.H.Gotfredsen,J.Rademann,J.Buchardt,Physical Properties of Poly(ethylene glycol)(PEG)-Based Resins for Combinatorial Solid Phase Organic Chemistry:A Comparison of PEG-Cross-Linked and PEG-Grafted Resins.J.Comb.Chem,2000,2,108
    [106]Y Wan,WQ Huang,X.X Zhu.Preparation and characterization of high loading porous crosslinked poly(vinyl alcohol) resins.Polymer,2004,45,71
    [107]Zh Wang,JT Luo,X.X Zhu.J.Functionalized cross-linked poly(vinyl alcohol)resins as reaction scavengers and as supports for solid phase synthesis.Comb.Chem.2004,6,961
    [108]J.W.Kim,Y.G.Joe,;K.-D,Suh.Poly(methyl methacrylate) Hollow Particles by Water-in-Oil-in-Water Emulsion Polymerization.Colloid Polym.Sci.1999,277,252-256.
    [109]R,Arshady.Susponsion,emulsion,and dispersion polymerization:A methodological survey.Colloid Polym.Sci.1992,270,717-732.
    [110]P.J.Dowding,;B,Vincent.Suspension polymerization to form polymer beads.Colloids Surf.A 2000,161,259-269.
    [111]M.Okubo;Y.Iwasaki;Y,Yamamoto.Preparation of micron-size monodisperse polymer microspheres having cationic groups.Colloid Polym.Sci.1992,270,733-737.
    [112]W.H.Li,and H.D.H.Stover.2000,Monodisperse Cross-Linked Core-Shell Polymer Microspheres by Precipitation Polymerization.Macromolecules,33,4354
    [113]K.S Lam;T.Sroka;M.L.Chen;Y.Zhao;Q.Lou;J.Wu;Z.G.Zhao.Application of "one-bead one-compound" combinatorial library methods in signal transduction research.Life Sci.1998,62,1577-1583.
    [114]J.J.Pastor;I.Fernandez;F.Rabanal;E.Frialt.A New Method for the Preparation of Unprotected Peptides on Biocompatible Resins with Application in Combinatorial Chemistry.Org.Lett.2002,4,3831-3833.
    [115]Nad,S.;Breinbauer,R.Solid-Phase Organic Synthesis in the Presence of Compressed Carbon Dioxide.Angew.Chem.,Int.Ed.2004,43,2297-2299.
    [116]Eli Ruckenstein et al.Preparation and characteristics of polymer-based large adsorbent particles.Polymer.1995,36:2857
    [117]H.Zhang;A.I.Cooper.Synthesis of Porous Emulsion-Templated Polymers Using High Internal Phase CO2-in-Water Emulsions.Chem.Mater.2002,14,4017-4020.
    [118]H.Zhang;G.C.Hardy;M.J.Rosseinsky;A.I Cooper.Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity.AdV.Mater.2003,15,78-81.
    [119]H.Zhang;A.I.Cooper.Compressed Fluid Sedimentation Polymerization.Macromolecules 2003,36,5061-5064.
    [120]X.X.Zhu et al.Large uniform-sized polymer beads for use as solid phase supports prepared by ascension polymerization.J.Comb.Chem.2006,8:79-84
    [1]Herman S.Mansur,Rodrigo L.Orefice,Alexandra A.P.Mansur.Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy.Polymer,2004;45:7193
    [2]Yano S,Kurita K,Iwata K,Furukawa T,Kodomari M.Structure and properties of poly(vinyl alcohol)/tungsten trioxide hybrids.Polymer,2003;44:3515
    [3]Kicklbick G.Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale.Prog Polym Sci,2003;28:83
    [4]Matejka L,Dukho,Hlavata D.Block Copolymer Organic-Inorganic Networks.Formation and Structure Ordering.Macromolecules,2003;36:7977
    [5]Mansur HS,Vasconcelos WL,Orefice,R.Sol-gel silica based networks with controlled chemical properties.J Non-cryst Solides,2000;273:109
    [6]Sarmento VHV,Dahmouche K,Santilli CV,Pulcinelli SH,Craievich AF.Small-angle X-ray and nuclear-magnetic resonance study of siloxane-PMMA hybrids prepared by the sol-gel process.J Appl Cryst,2003;36:473
    [7]Ricciaedi R,Auriemma F,De Rosa C,Laupretre F.X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels,Obtained by Freezing and Thawing Techniques.Macromoleeules,2004;37:1921
    [8]Changlu Shao,Hak-Yong Kim,Jian Gong,Bin Ding,Douk-Rae Lee,Soo-Jin Park.Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning.Mater let,2003;57:1579
    [9]S.Wonorahardjo,G Ball,J.Hook,G.Moran.NMR relaxation studies of porous sol-gel glasses.Magn Reson Imag,1998;16:511
    [10]Ana Paula Viana Pereira,Wander Luise Vasconcelis,Rodrigo Lambert Orefice.Novel multicomponent silicate-poly(vinyl alcohol) hybrids with controlled reactivity.J Non-cryst SoIides,2000;273:180
    [11]Xu Chert,Shaojun Dong.Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor.Biosens.Bioelectron,2003;18:999
    [12]Koji Nakane,Tomonori Yamashita,Kenji Iwakura,Fumio Suzuki.Properties and Structure of Poly(vinyl alcohol)/Silica Composites.J Appl Polym Sci,1999;74;133
    [13]Farid El-Tantawy,K.M.Abdel-Kader,F.Kaneko,Y.K.Sung.Physical Properties of CdS-poly(vinyl alcohol) nanoconducting composite synthesized by organosol techniques and novel application potential.Eur.Polym.J,2004;40;415
    [14]Yuan-Hsiang Yu,Ching-Yi Lin,Jui-Ming Yeh,Wei-Hsing Lin.Preparation and properties of poly(vinyl alcohol) clay nanocomposite materials.Polymer,2003;44:3553
    [15]K.E.Strawhecker,E.Manias.Structure and Properties of Poly(vinyl alcohol)/Na~+ Montmonllonite Nanocomposites.Chem.Mater,2000;12:2943
    [16]JiaYan Xu,Yuan Hua,Lei Song.Thermal analysis of poly(vinyl alcohol)/graphite oxide intercalated composites.Polym.Degrad.Stab,2001;73:29
    [17]Baoguang Li,Yuan Hu,Rui Zhang.Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocomposite.Mater.Res.Bull,2003;38:1567
    [18]Yi Lin,Bing Zhou,K.A.Shiral Femando,Ping Liu,Lawrence F.Allard,Ya-Ping Sun.Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer.Macromolecules,2003;36:7199
    [19]M.C.Paiva,B.Zhou,K.A.S.Fernando,Y.Lin,J.M.Kennedy,Y.-P.Sun.Mechanical and morphological characterization of polymer-carbon nanoeomposites from functionalized carbon nanotubes.Carbon,2004;42:2849
    [20]徐国才,纳米复合材料,化学工业出版社,2002.
    [21]刘鹏,纳米氧化硅表面接枝聚合物研究(中科院兰州化学物理研究所博士后出站报告),2003.
    [22]R.Vijaya Kumar,O.Palchik.Sonochemical systhesis and characterization of AgS/PVA and CuS/PVA nanocomposite.Ultrasonics Sonochemistry,2002;9:65
    [23]Zheng Peng,L.X.Kong,Si-Dong Li.Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite.Polymer,2005;46;1949
    [24]P.Liu,J.Tian,W.M.Liu,Q.J.Xue.Surface Graft Polymerization of Styrene onto Nano-Sized Silica with a One-Pot Method.Polym.J,2003;35:379
    [1]Michael Alexandre,Philippe Dubois.Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials.Materials Science and Engineering,2000;28:1
    [2]T.Lan,P.D.Kaviratna,T.J.Pirmavaia.On the Nature of Polyimide-Clay Hybrid Composites.Chem.Mater,1994,6:573
    [3]H.-L.Tyan,Y.-C.Liu,K.-H.Wei.Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay.Chem.Mater,1999,11:1942.
    [4]J.W.Gilman,C.L.Jackson,A.B.Morgan,R.Hayyis Jr.,E.Manias,E.P.Giarmelis,M.Wuthenow,D.Hilton,S.H.Philips.Flammability Properties of Polymer-Layered-Silicate Nanocomposites.Polypropylene and Polystyrene Nanocomposites.Chem.Mater,2000,12:1866
    [5]Z.Wang,T.J.Pinnavaia.Nanolayer Reinforcement of Elastomeric Polyurethane.Chem.Mater,1998,10:3769
    [6]J.-M.Yeh,S.-J.Liou,C.-Y.Lai,P.-C.Wu,T.-Y.Tsai.Enhancement of Corrosion Protection Effect in Polyaniline via the Formation of Polyaniline-Clay Nanocomposite Materials,Chem.Mater,2001,13:1131.
    [7]J.-M.Yeh,C.-L.Chen,Y.-C.Chen,C.-Y.Ma,K.-R.Lee,Y.Wei,S.Li.Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials,Polymer,2002,43:2729.
    [8]J.-M.Yeh,S.-J.Liou,C.-Y.Lin,C.-L.Chen,Y.-W.Chang,K.-R.Lee.Anticorrosively Enhanced PMMA-Clay Nanocomposite Materials with Quaternary Alkylphosphonium Salt as an Intercalating Agent,Chem.Mater,2002, 14:154.
    [9]Y.-H.Yu,C.-Y.Lin,J.-M.Yeh,W.-H.Lin.Preparation and properties of poly(vinyl alcohol)-clay nanocomposite materials,Polymer,2003,44:3553.
    [10]K.E.Strawhecker,E.Manias.Structure and Properties of Poly(vinyl alcohol)/Na~+ Montmorillonite Nanocomposites,Chem.Mater,2000,12:2943.
    [11]J.Xu,Y.Hu,L.Song,Q.Wang,W.Fan,G.Liao,Z.Chen.Thermal analysis of poly(vinyl alcohol)/graphite oxide intercalated composites,Polym.Degrad.Stab,2001,73:29.
    [12]B.Li,Y.Hu,R.Zhang,Z.Chen,W.Fan.Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocomposite,Mater.Res.Bull,2003,38:1567.
    [13]J.E.Gardolinski,L.C.M.Carrera,M.P.Cantao,F.Wypych.Layered polymer-kaolinite nanocomposites,J.Mater Sci,2000,35:3113.
    [14]J.J.Tunney,C.Detellier,J.Mater.Sci.8(1996) 927.
    [15]T.Itagoki,Y.Komori,Y.Sugahara,K.Kuroda.Synthesis of a kaolinite-polyalanine intercalation compound,J.Mater.Chem,2001,11:3291.
    [16]T.Itagaki,A.Matsumuba,M.Kato,A.Usuki,K.Kuroda,J..Mater.Sci.Lett.20(2001) 1483.
    [17]T.Kyu,Z.L.Zhou,G.C.Zhu,Y.Tajuddin,S.Qutubuddin.Novel filled polymer composites prepared from in situ polymerization via a colloidal approach:Ⅰ.Kaolin/Nylon-6 in situ composites,J.Polym.Sci.:Part B:Polym.Phys.1996,34:1761.
    [18]Y.Komori,Y.Sugahara,K.Kuroda.Direct Intercalation of Poly(vinylpyrrolidone) into Kaolinite by a Refined Guest Displacement Method,Chem.Mater,1999,11:3.
    [19]Y.Sugahara,S.Satokawa,K.Kuroda.Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate,Clays Clay Miner,38,1990:137
    [20]Y.Sugahara,S.Satokawa,K.Kuroda,C.Kato,Clays Clay Miner.36(1988)343.
    [21]Y.Sugahara,T.Suglyama,T.Nagayama,K.Kuroda,C.Kato,J.Ceram.Soc.Jpn.100(1992) 413.
    [22]J.J.Tunney,C.Detellier.Aluminosilicate Nanocomposite Materials.Poly(ethylene glycol)-Kaolinite Intercalates,Chem.Mater,1996,8:927.
    [1]Merrifield RB.Solid Phase Peptide Synthesis.Ⅰ.The Synthesis of a Tetrapeptide.J.Am Chem Soc,1963,85,2149
    [2]K.S.Lain,S.E.Salmon,E.M.Hersh.A new type of synthetic peptide library for identifying ligand-binding activity.Nature,1991,354,82
    [3]M.T.Burger,P.A.Bartlett.Enzymatic,Polymer-Supported Formation of an Analog of the Trypsin Inhibitor A90720A:A Screening Strategy for Macrocyclic Peptidase Inhibitors.J.Am.Chem.Soc,1997,119,12697
    [4]J.Rademann,M.Grotli,M.Meldal,K.Bock.SPOCC:A Resin for Solid-Phase Organic Chemistry and Enzymatic Reactions on Solid Phase.J.Am.Chem.Soc,1999,121,5459
    [5]M.Benaglia,A.Puglisi,F.Polymer-Supported Organic Catalysts.Cozzi.Chem.Rev,,2003,103,3401
    [6]T.J.Dickerson,N.N.Reed,K.D.Janda.Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents.Chem.Rev,2002,102,3325
    [7]M.Grotli,C.H.Gotfredsen,J.Rademann,J.Buchardt,.Physical Properties of Poly(ethylene glycol)(PEG)-Based Resins for Combinatorial Solid Phase Organic Chemistry:A Comparison of PEG-Cross-Linked and PEG-Grafted Resins.J.Comb.Chem,2000,2,108
    [8]Wan Y,Huang WQ,Zhu X.X.Preparation and characterization of high loading porous crosslinked poly(vinyl alcohol) resins.Polymer,2004,45,71[9]Wang Zh,Luo JT,Zhu X.X.Functionalized cross-linked poly(vinyl alcohol)resins as reaction scavengers and as supports for solid phase synthesis.J.Comb.Chem.2004,6,961
    [10]Adams,J.H.;Cook,R.M.;Hudson,D.;Jammalamadaka,V.;Lyttle,M.H.;Songster,M.F.A.A Reinvestigation of the Preparation,Properties,and Applications of Aminomethyl and 4-Methylbenzhydrylamine Polystyrene Resins.J.Org.Chem.1998,63,3706-3716
    [11]Hellermann,H.;Lucas,H.W.;Maul,J.;Pillai,V.N.R.;Mutter,M.Makromol.Chem.1983,184,2603-2617
    [12]Kates,S.A.;McGuiness,B.F.;Blackburn,C.;Griffin,G.W.;Sole,N.A.;Barany,G.;Albericio,F.High-load polyethylene glycol-polystyrene(PEG-PS)graft supports for solid-phase synthesis.Biopolymer 1998,47,365-380.
    [13]Bayer,E.;Angew.Chem.,Int.Ed.Engl.1991,30,113-128.
    [14]Gooding,O.W.;Baudart,S.;Deegan,T.L.;Heisler,K.;Labadie,J.;Newcomb,W.S.;Porto,J.A.;Van Eikeren,P.J.On the Development of New Poly(styrene-oxyethylene) Graft Copolymer Resin Supports for Solid-Phase Organic Synthesis.Comb.Chem.1999,1,113-122.
    [15]Wright,P.;Lloyd,D.;Rapp,W.;Andrus,A.Large scale synthesis of oligonucleotides via phophoramidite nucleosides and a high-loaded polystyrene support.Tetrahedron Lett.1993,34,3373-3376.
    [16]Park,B.D.;Lee,H.I.;Ryoo,S.J.;Lee,Y.S.Convenient method for preparing polystyrene having β-hydroxy group:Its application to the synthesis of polyethylene glycol-grafted polystyrene resin.Tetrahedron Lett.1997,38, 591-594
    [17]王德兴,固相有机合成-原理及应用指南,化学工业出版社,2004.
    [1]Ruckenstein,E.;Sun,Y.J.Preparation and Characteristics of Polymer-Based large Adsorbent Particles.Appl.Polym.Sci.1996,61,1949-1956.
    [2]Svec,F.;Frechet,J.M.J.New designs of macroporous polymers and supports:from separation to biocatalysis.Science 1996,273,205-211.
    [3]Sherrington,D.C.Preparation structure and morphology of polymer supports.Chem.Commun.1998,2275-2286.
    [4]Kim,J.W.;Joe,Y.G.;Sub,K.-D.Poly(methyl methacrylate) Hollow Particles by Water-in-Oil-in-Water Emulsion Polymerization.Colloid Polym.Sci.1999,277,252-256.
    [5]Arshady,R.Susponsion,emulsion,and dispersion polymerization:A methodological survey.Colloid Polym.Sci.1992,270,717-732.
    [6]Dowding,P.J.;Vincent,B.Suspension polymerization to form polymer beads.Colloids Surf.A 2000,161,259-269.
    [7]Okubo,M.;Iwasaki,Y.;Yamamoto,Y.Preparation of micron-size monodisperse polymer microspheres having cationic groups Colloid Polym.Sci.1992,270,33-737.
    [8]Li,W.H.and H.D.H.Stover.2000,Monodisperse Cross-Linked Core-Shell Polymer Microspheres by Precipitation Polymerization.Macromolecules,33,4354
    [9]Lain,K.S.;Sroka,T.;Chen,M.L.;Zhao,Y.;Lou,Q.;Wu,J.;Zhao,Z.G.Application of "one-bead one-compound" combinatorial library methods in signal transduction research.Life Sci.1998,62,1577-1583.
    [10]Pastor,J.J.;Fernandez,I.;Rabanal,F.;Frialt,E.A New Method for the Preparation of Unprotected Peptides on Biocompatible Resins with Application in Combinatorial Chemistry.Org.Lett.2002,4,3831-3833.
    [11]Nad,S.;Breinbauer,R.Solid-Phase Organic Synthesis in the Presence of Compressed Carbon Dioxide.Angew.Chem.,Int.Ed.2004,43,2297-2299.
    [12]Eli Ruckenstein et al.Polymer.Preparation and characteristics of polymer-based large adsorbent particles.1995,36:2857
    [13]Zhang,H.;Cooper,A.I.Synthesis of Porous Emulsion-Templated Polymers Using High Internal Phase CO2-in-Water Emulsions.Chem.Mater.2002,14,4017-4020.
    [14]Zhang,H.;Hardy,G.C.;Rosseinsky,M.J.;Cooper,A.I.Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity AdV.Mater 2003,15,78-81.
    [15]Zhang,H.;Cooper,A.I.Compressed Fluid Sedimentation Polymerization.Macromolecules 2003,36,5061-5064.
    [16]X.X.Zhu et al.J.Comb.Chem.Large uniform-sized polymer beads for use as solid phase supports prepared by ascension polymerization.2006,8:79-84
    [17]Mingxian Li et al.Preparation of crosslinked chitosan/poly(vinyl alcohol) blend beads with high mechanical strength.Green Chem.2007,9,894
    [18]J.Ma et al.Synthesis of Crosslinked Poly(vinyl alcohol) with L-Proline Pendant as the Chiral Stationary Phase for Resolution of Amino Acid Enantiomers.Journal of Applied Polymer Science.1996,61:2029
    [19]Haitao Li et al.Synthesis and adsorption aspect of crosslinked PVA-based blood compatible adsorbents for LDL apheresis.Reactive & Functional Polymers.2004,58:53
    [20]Se Geun Lee et al.Preparation of Poly(vinyl acetate) Microspheres with Narrow Particle Size Distributions by Low Temperature Suspension Polymerization of Vinyl Acetate.Journal of Applied Polymer Science.2006,101:4064

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700