GFP标记的干酪乳杆菌口服免疫后在小鼠肠道内定植及抗体水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于大部分病原体是由黏膜进入机体,黏膜免疫对机体防御病原体的入侵有着十分重要的作用。为了避免传统注射疫苗的缺点,人们正在研制开发一种新型的黏膜疫苗。黏膜疫苗价格相对低廉且能够诱导机体产生局部和系统免疫应答,可以有效地阻止病原体入侵机体。乳酸菌是一种安全的微生物,可作为口服疫苗活载体将抗原传递到黏膜表面。
     本研究将PCR扩增的绿色荧光蛋白(Green Fluorescent Protein,GFP)基因分别克隆到可在大肠杆菌和乳酸菌中表达的穿梭质粒载体pLA和pLA-A上,构建出重组质粒pLA-GFP和pLA-A-GFP,电转化至Lactobacillus casei(L.casei)中,利用多聚谷氨酸跨膜蛋白pgsA基因锚定在细胞表面,使得外源抗原获得稳定高效的表达。经过SDS-PAGE、Western blot检测,约有69 KDa和79 KDa的融合蛋白得到表达,蛋白大小与理论值相符合。荧光观察和流式细胞术的结果表明,pgsA成功的将融合蛋白展示在菌体表面。将重组菌pLA-GFP/L.casei.口服免疫SPF级BALB/c小鼠,重组菌能在肠道黏膜的不同部位以一定的比例存活并附着在肠黏膜表面,口服6 d后达到定植高峰期。7 d后,在十二指肠、空肠、回肠和盲肠定植率分别占第1天的16.49%、25.08%、47.71%、41.03%。研究结果为口服免疫程序的制定奠定了基础,并为其提供了具有一定参考价值的试验数据。
     将重组菌pLA-A-GFP/L.casei口服免疫SPF级BALB/c小鼠,免疫后不同时间采集血液样品、肺部、肠道冲洗液及粪便样品,利用间接ELISA方法测定小鼠血清中IgG抗体水平和肺部、肠道冲洗液及粪便样品中特异性sIgA抗体水平的动态规律。结果表明重组pLA-A-GFP/L.casei口服免疫小鼠后能够产生特异性抗体,不但检测到高水平血清IgG,而且在肠道冲洗液及粪便样品均可产生sIgA抗体,连续口服免疫5天所产生的抗体水平高于其它试验组。该结果证明了重组菌pLA-A-GFP/L.casei可以刺激动物机体产生系统免疫应答和黏膜免疫应答,为动物免疫机理的进一步研究和乳酸菌黏膜疫苗的研制奠定了基础。
As many parasitic pathogens enter the body via mucosal surfaces, mucosa immunization was very important to protect organisms from infection of these pathogens. New vaccination strategies have been developed in order to avoid disadvantages associated with parenterally administeration vaccines. Oral vaccination applied on a large scale,is relatively inexpensive and frequently induces both local and systemic immune responses, resulting in an effective blocking the route of pathogens in entry and infection site. Lactic acid bacteria (LAB) are considered to be safe organisms and advocated for use as live antigen delivery vehicles to mucosal sites.
     In this study, Green Fluorescent Protein (GFP) was cloned into the expression vectors pLA and pLA-A, which can shuttle and express in E.coli and Lactobacillus casei (L.casei), and transformed into the host cells L.casei by electroporation to generate recombinant becteria pLA-GFP/ L.casei. and pLA-A-GFP/ L.casei. The recombinant fusion proteins were stable expressed on cell surface using the poly-r-glutamic acid synthetase A protein (pgsA) as an anchoring matrix. The molecular weight of the recombinant protein was about 69 kDa and 79 kDa in the result of Western blot. The GFP fusion protein on the cell surface was confirmed by fluorescence microscopy and flow cytometric analysis. We orally dosed up six-week-old female SPF BALB/c mice with the recombinant L.casei of approximately 109. Groups of at least three mice per condition were sacrificed at 1.5 h, 3 h, 12 h, 1 d, 3 d, 5 d, 6 d, 7 d, and its duodenum, jejunum, ileum, caecum intestinal tract rinse solution was sampled separately. The recombinant bacteria in intestinal tracts were examined by the method of plate culture count. The ratio of the seventh day to the first day of the recombinant L.casei adhered to the intestinal mucosa in the duodenum, jejunum, ileum, and caecum was 16.49%, 25.08%, 47.71%, and 41.03%, respectively. Our findings indicated that L.casei used as a deliver vector in oral vaccine is feasible.
     Oral immunization of SPF BALB/c mice was performed with the recombinant strain L.casei harboring pLA-A-GFP. Specific anti-TGEV IgG antibody in the serum and specific anti-TGEV secret immunoglobulin A (sIgA) antibody in the lung intestines fluid and feces of mice were detected by indirect ELISA. The results showed that the mice immunized with recombinant bacteria produced high level of anti-TEGV IgG in the serum and high level of sIgA antibodies were detected in the vaccinated group. The results of five consecutive days oral immunization group have higher level of antibody than others. These results indicated that the recombinant pLA-A-GFP/L.casei could induce serum IgG responses as well as specific mucosal IgA responses, and evoked both system immune and mucosal immune responses against TGEV.
引文
[1]王春凤.乳酸菌在畜牧业中的应用[M].长春:吉林科学技术出版社,2005,1-5.
    [2]杨洁彬,郭兴华,傅晓丽,等编著.乳酸菌——生物学基础及应用[M].北京:中国轻工业出版社,1996,4:178-180.
    [3]郭兴华.益生菌基础与应用[M].北京:北京科学技术出版社,2002,9-11.
    [4] Hanniffy S, Wiedermann U, Repa A, et al. Potential and opportunities for use of recombinant lactic acid bacteria in human health[J]. Advances in Applied Microbiology, 2004, 56:1-64.
    [5] Medina M, Villena J, Vintini E, et al. Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice[J]. Infection and Immunity, 2008, 76:2696-2705.
    [6] Robinson K, Chamberlain LM, Schofield K, et al. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis[J]. Nature Biotechnology, 1997, 15:653-657.
    [7] Wells JM, Robinson LM, Chamberlain LM, et al. Lactic acid bacteria as vaccine delivery vehicles[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1996, 70:317-330.
    [8]周鼎年译.生物技术在饲料工业中的应用[M].北京:农业出版社,1995,39.
    [9] Savage DC. Mechanisms by which indigenous microorganisms colonize gastrointestinal epithelial surfaces[J]. Progress in Food & Nutrition Science, 1983, 7(3-4):65-74.
    [10] Overdahl BJ, Zottola EA. Relationship Between Bile Tolerance and the Presence of a Ruthenium Red Staining Layer on Strains of Lactobacillus acidophilus[J]. Journal of Dairy Science, 1991, 74:1196-1200.
    [11] Perdigón G, Macias ME, Alvarez S, et al. Systemic augmentation of the immune response in mice by feeding fermented milk with Lactobacillus casei and Lactobacillus acidophilas[J]. Immunology, 1998, 63:17-23.
    [12] Yassui H, Nagaoka N, Hayakawa K, et al. Augmentation of anti-influenza virus hemagglutinin antibady production by Peyer’s patch cells Bifidobacterium breve YIT4064[J]. Clinical and Diagnostic Laboratory Immunology, 1994, 1(2):244-246.
    [13] Goldin BR, Swenson L, Dwyer J, et al. Effect of Lactobacillus acidophillus supplements on human fecal bacterial enzymes[J]. Journal of the National Cancer Institute, 1980, 64(2):255-261.
    [14] Shimomura O. Structure of the chromophore of Aequorea green fluorescent protein[J]. Febs Letters, 1979, 104:220-222.
    [15] Prasher D, Echenrode V, Wand W, et al. Primary structure of the Aequores victoria green fluorescent protein[J]. Gene, 1992, 111:229-233.
    [16] Ormo M, Cubitt AB, Kattio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein[J]. Science, 1996, 273(5280):1392-1395.
    [17] Inorye S, Tsulji FI. Aequorea green fluorescent protein: Expression of the gene and fluorescent characteristics of the recombinant protein[J]. Febs Letters, 1994, 341:277-280.
    [18]薛启汉.绿色荧光蛋白(GFP)的特性及其在分子生物学研究中的应用[J].江苏农业科学学报,1999,15(1):52-58.
    [19]汪恒英,周守标,常志州,等.绿色荧光蛋白研究进展[J].生物技术,2004,14(3):70-73.
    [20] Kaether C, Gerdes HH. Visualization of protein transport along the secretory pathway using green fluorescent protein[J]. Febs Letters, 1995, 369:267-271.
    [21] Takada T , Lida K, Awajj T, et al. Selectyve production of transgenic mice using fluorescent protein as a marker[J]. Nature Biotechnology, 1997, 15:458-461.
    [22]孙明军,赵晨,沙金,等.鸡输卵管组织特异性分泌表达载体的构建和表达[J].农业生物技术学报,2003,11(1):75-78.
    [23]刘艳红,肖调义,苏建明,等.用显微注射法将绿色荧光蛋白基因导入金鱼受精卵中表达[J].上海水产大学学报,2002,11(2):102-105. [24 ]刘志毅,相建海,周国瑛,等.用基因枪将外源DNA导入中国对虾[J].科学通报,2000,45(23):2539-2544.
    [25] Sheen J, Hwang S, Niwa Y, et al. Green-fluorescent protein as a new vital marker in plant cells[J]. Plant Journal, 1995, 8(5):777-784.
    [26] Niedz EP, Sussman MR, Satterlee JS. Greenfluorescent protein:an invivo reporter of plant gene expression[J]. Plant Cell Reports, 1995, 14:403-406
    [27] Liu S, Bugos RC, Dharmasiri N, et al. Green fluorescent protein as a secretory reporter and a tool for process optimization in transgenic plant cell cultures[J]. Journal Biotechnology, 2001, 87(l):l-16.
    [28] Vain P, Worland B, Kohli A, et al. The green fluorescent protein (GFP) as a vital screenable marker in rice ransformation[J]. Theoretical and Applied Genetics, 1998, 96:164-169.
    [29] Mattingly CJ, McLachlan JA, Toscano WA. Green Fluorescent Protein (GFP) as a Marker of Aryl Hydrocarbon Receptor (AhR) Function in Developing Zebrafish (Danio rerio)[J]. Environmental Health Perspectives, 2001, 109(8):845-849.
    [30] Feilmeier BJ, Iseminger G, Schroeder D, et al. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli[J]. Jounral of Bacteriology, 2000, 182(14):4068-4076.
    [31]余林辉,姚伟,段真珍,等.绿色荧光蛋白及其在农作物研究中的应用[J].安徽农业科学,2008,36(36):15788-15790.
    [32] White J, Stelzer E. Photobleaching GFP reveals protein dynamics inside live cells[J]. Trends in Cell Biology, 1999, 9(2):61-65.
    [33] Chalfie M, Ta Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 26:802-805.
    [34]董越梅,安千里,李久蒂,等.利用GFP和抗性双类型标记监测联合固氮菌在玉米根际的定殖[J].应用与环境生物学报,2000,6 (1):61-65.
    [35] Casper SJ, Holt CA. Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector[J]. Gene, 1996, 173:69-73.
    [36] Cashion LM, Bare LA, Harvey S, et al. Use of enhanced green fiuorescent protein to optimize and quantitate infection of target cells with recombinant retroviruses[J]. Biotechniques, 1999, 26(5):924-930.
    [37] Katz JB, Henderson IM, Recombination in vivo of pseudorabies vaccine strains to produce new virus strains[J]. Vaccine, 1990, 8(3):286-288.
    [38]范书才.兽用基因工程生物制品的安全问题[J].中国兽药杂志,2000,34(6):39-42.
    [39]吴艳涛,刘秀梵.新城疫基因工程疫苗研究[J].中国兽药杂志,2001,35(4):56-59.
    [40]赵丹.基因工程乳酸菌保护效果检测及其在雏鸡盲肠内定植研究[D].长春:吉林农业大学,2007.
    [41]张振中,陈秀珠,贾士芳,等.乳酸菌食品级基因表达系统[J].生物工程报,2002,7:516-519.
    [42] Platteeuw C, Van A, Boerrigter IJ, et al. Food-grade cloning and expression system for Lactococcus lactis[J]. Applied and Environmental Microbiology, 1996, 62:1008-1013.
    [43] Maccormick CA, Griffin HG, Gasson MJ. Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon[J]. Fems Microbiology Letters, 1995, 127(1?2):105-109.
    [44] Takala M, Saris J, Tynkkynen H. Food-grade host /vector expression system for Lactobacillus casei based on complementation of Plasmid-associated phosphor-beta-galactosidase gene lacG[J]. Applied and Environmental Microbiology, 2003, 60(5):564-570.
    [45] Leenhouts K, Bolhuis A, Venema G, et al. Construction of a food-grade multiple-copy integration system for Lactococcus lactis[J]. Applied and Environmental Microbiology, 1998, 49(4):417-423.
    [46] Posno M, Heuvelmans PT, Giezen MJ, et al. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus[J]. Applied and Environmental Microbiology, 1991, 57 (9):2764-2766.
    [47] Pinter K, Davisson VJ, Santi DV. Cloning sequencing and expression of the Lactobacillus casei thymidylate synthase gene[J]. DNA, 1998, 7(4):235-241.
    [48]王春凤.共生乳酸杆菌非抗性表达载体的构建及柔嫩艾美耳球虫SO7基因的表达[D].北京:中国农业大学,2001.
    [49] Takala TM, Saris PE. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI[J]. Applied Microbiology and Biotechnology, 2002, 59(4-5):467-471.
    [50] Allison GE, Klaenhammer TR. Functional analysis of the gene encoding immunity to lactacin F, laf, and its use as a Lactobacillus-specific, food-grade genetic marker[J]. Applied and Environmental Microbiology, 1996, 62(12):4450-4460.
    [51] Liu CQ, Charoechai P, Khunajakr N, et al. Genetic and transcriptional analysis of a novel plasmid2 encoded copper resistance operon from Lactococcus lactis[J]. Gene, 2002, 297(122):241-247.
    [52] Malin M, Suomalainen H, Saxelin M, et al. Promotion of IgA immune response in patients with Crohn's disease by oral bacteriotherapy with Lactobacillus GG[J]. Annals of Nutrition and Metabolism, 1996, 40(3):137-145.
    [53] Chang TLY, Chang CH, Simpson DA, et al. Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express funetional two-domain CD4[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20):11672-11677.
    [54] Rychter J, Minnen L, Verheem A, et al. Pretreatment but not treatment with probiotics abolishes mouse intestinal barrier dysfunction in acute pancreatitis[J]. Surgery, 2009, 145(2):157-167.
    [55] Cano PG, Perdigon G. Probiotics induce resistance to enteropathogens in a re-nourished mouse model[J]. Journal of Dairy Research, 2003, 70(4):433-440.
    [56]陈思维,钟瑾,还连栋.人胰岛素基因在乳酸菌中的表达及其对非肥胖糖尿病(NOD)小鼠的作用[J].微生物学报,2007,47(06):987-991.
    [57] Hazebrouck S, Pothelune L, Azevedo V. Efficient production and secretion of bovineβ-lactoglobulin by Lactobacillus casei[J]. Microbial Cell Factories, 2007, 6:12.
    [58] Ho PS, Kwang J, Lee YK. Intragastric administration of Lactobacillus casei expressiong transmissible gastroenteritis coronavirus spike glycoprote in induced specific antibody production[J]. Vaccine, 2005, 23(11):1335-1342.
    [59]Oliveira ML, Areas AP, Camposl, et al. Induction of systemic and mucosal immune response and decrease in Streptococcus pneumonia colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A[J]. Microbes and Infection, 2006, 8(4):16-24.
    [60] Li YG, Tian FL, Gao FS, et al. Immune responses generated by Lactobacillus as a carrier in DNA immunization against foot-and-mouth disease virus[J]. Vaccine, 2007, 25(5):902-911.
    [61] Reveneau N, Geoffroy MC, Locht C, et al. Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations[J]. Vaccine, 2002, 20(13-14):1769-1777.
    [62]庚庆华.绿色荧光蛋白在鸡源乳酸杆菌中的表达及该重组菌口服后在小肠中的分布[D].南京:南京农业大学.2006.
    [63] Geoffroy MC, Guyard C, Quatannens B, et al. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors[J]. Applied and Environmental Microbiology, 2000, 66(1):383-391.
    [64] O'Sullivan DJ, Klaenhammer TR. Rapid Mini-Prep Isolation of High-Quality Plasmid DNA from Lactococcus and Lactobacillus spp[J]. Applied and Environmental Microbiology, 1993, 59(8):2730-2733.
    [65] Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gun[J]. Science, 2005, 307(5717):1920-1925.
    [66] Mannam P, Jones KF, Geller BL. Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes[J]. Infection and Immunity, 2004, 72(6):3444-3450.
    [67] Alander M, Satokari R, Korpela R, et al. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption[J]. Applied and Environmental Microbiology, 1999, 65(1):351-354.
    [68] Wright A, Vilpponen-Salmela T, Llopis MP, et al. The Survival and colonic adhesion of Bifidobacterium infantis in patients with ulcerative colitis[J]. International Journal of Dairy Technology, 2002, 12(2-3):197-200.
    [69] Rinhinen M, Westermarck E, Salminens S, et al. Absence of hose specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus[J]. Veterinary Microbiology, 2003, 97(1-2):55-61.
    [70]邓一平,王跃,胡宏.双岐杆菌及表面分子对胃黏膜糖蛋白的黏附作用[J].中国微生态学杂志,2002,12 (4):193-195.
    [71] Jeffreyd G, Klaenhammer TR. Factors involved in adherence of lactobacilli to human CaCo-2colls[J]. Applied and Environmental Microbiology, 1994(60):4487-4494.
    [72]林雪彦,牛钟相.动物消化道乳酸菌黏附机制及影响因素研究进展[J].家畜生态学报,2006,27(3):109-112.
    [73] Lebeer S, Vanderleyden J, De Keersmaecker SCJ. Genes and Molecules of Lactobacilli Supporting Probiotic Action[J]. Microbiology and Molecular Biology, 2008, 72(4):728-764.
    [74]唐丽杰,徐毅刚,葛俊伟,等.乳酸乳球菌NZ9000在小鼠体内的定植研究[J].中国乳品工业,2001,35(7):11-12.
    [75]李平兰,张篪,郑海涛.乳酸菌及其生物工程研究新进展[J].中国乳品工业,2000,28 (4):50-53.
    [76] Marteau P, Pochart P, Bouhnik Y, et al. The fate and effects of transiting, nonpathogenic microorganisms in the human intestine[J]. World Review of Nurition and Dietetics, 1993,74: 1-21.
    [77] Pochart P, Marteau P, Bouhnik Y, et al. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion[J]. American Journal of Clinical Nutrition, 1992, 55:78-80.
    [78]李理.口服免疫机制及口服疫苗的研究进展[J].医学分子生物学杂志,2004,1(5):316-319.
    [79]李亚杰,赵献军.益生菌对肠道黏膜免疫的影响[J].动物医学进展,2006,27(7):38-41.
    [80] Liu JK, Hou XL, Wei CH, et al.Induction of Immune Responses in Mice after Oral Immunization with Recombinant Lactobaillus casei Strain Expressing Enterotoxigenic Escherichia coli F41 Fimbrial Protein[J]. Applied and Environmental Microbiology, 2009, 75(13):4491-4497.
    [81] Mueller C, Macpherson AJ. Layers of mutualism with commensal bacteria protect us from intestinal inflammation[J]. Gut, 2006, 55(2):276-284.
    [82] Smith KM, Eaton AD, Finlayson LM, et al. Oral tolerance[J]. American Journal of Respiratory and Crit ical Care Medicine, 2000, 162(4):175-178.
    [82] Seegers JF. Lactobacilli as live vaccine delivery vectors: progress and prospects[J]. Trends in Biotechnology, 2002, 20(12):508-515.
    [83]郭松林,阐南辉.黏膜免疫研究进展[J].预防兽医学进展,2000,2(3):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700