谷胱甘肽纳米硒复合物的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以谷胱甘肽(GSH)为还原剂还原亚硒酸钠(Na2Se03),在室温液相条件下,成功制备出了无定形的球型纳米硒复合物(GSH-nanoSe0),平均粒径为50 nm左右,分布范围较窄,体系稳定性良好,说明GSH对纳米硒的形貌和粒径分和存在一定程度的调控作用。从红外图谱可知,GSH-nanoSe0体系存在O-Se-O的键合作用,其中一部分-SH则转化成为-S-S-。GSH-nanoSe0体系在370 nm处有一明显紫外吸收峰。此制备方法无需加入任何的模板剂和修饰剂,在室温液相条件下进行,具有低污染、低能耗、简单易行等优点。
     以金电极为基底,将所制备的GSH-nano Se0复合物自组装48 h后,可得到致密稳定的谷胱甘肽纳米硒复合物自组装膜(GSH-nano Se0/SAMs)。考察了其电化学特性,并研究了其对过氧化氢(H2O2)电化学还原的催化作用。
     研究发现SeCys SAMs在Pb2+, Cu2+存在下,在静电作用和配位作用的共同协作下,形成了一条离子通道,其他离子比如Fe(CN)64/3-,Cd2+可以更容易通过,即出现了离子门效应。GSH/SAMs在阳离子活性剂HTAB的存在下,受静电作用的影响,探针离子Fe(CN)64/3-的电子传输能力明显提高,即具有离子门效应,而在GSH-nano Se0/SAMs上, Se原子与-COOH的配位作用使得复合物结构发生了变化,空间位阻增加,使得离子传输变得困难且对静电作用造成影响,离子门效应减弱。
     采用GSH-nano Se0/SAMs Au电极实现了对H2O2体系的电化学催化,在0.1M KNO3(pH=5.5)电解质中,H2O2的还原峰电位在-320 mV处,峰电流随H2O2增加而增加,并在2×10-5-6×10-3mol/L浓度范围内呈线性关系,检测下限为5×10-7mol/L,不同电极之间平行检测的RSD为2.4%,同一电极平行测定的RSD为2.2%,GSH-nano Se0复合膜电极具有良好的重现性和稳定性,使用寿命较长,可应用于H2O2的测定。
In this study, GSH-nano Se0 was prepared by GSH and Na2SeO3 under room temperature in liquid phase, and characterized by UV-Vis Spectra (UV), Transmission electron microscope (TEM), Scan electron microscope (SEM), Fourier transform infrared spectrometry (FTIR), nano-Zeta Sizer(nano-ZS). The results indicated that GSH-nano Se0 was spheres with the average diameter 50nm, nanoSe0 could coordinate with GSH as O-Se-O bond, and-SH turned into-S-S-. There was an ultraviolet absorption in GSH-nano Se0 system, which was attributed to nano Se0. The preparation method was green, simple, low energy consumption in the absence of any template or modifier.
     By taking GSH-nano Se0 system as research object, self-assemble (SAMs) technology was used to prepare GSH-nano Se0 SAMs/Au, which provided an interface to study the electrochemical characteristic and catalysis to the H2O2 system.
     In this paper, ion gate response of GSH-nano Se0/SAMs was studied, and also compared with SeCys SAMs and GSH SAMs. It was found that SeCys SAMs revealed ion-gate response in the presence of Cu2+or Pb2+. The electron-transfer ability of Fe(CN)64/3- was improved at SeCys SAMs/Au electrode, which results from the fact that the electrostatic interaction between the monolayer and charged ions Cu2+, Pb2+ changed the conformation of SeCys monolayer. GSH SAMs revealed ion-gate response in the presence of cationic surfactant HTAB. The electron-transfer ability of Fe(CN)64/3- was improved in the presence of HTAB at GSH SAMs/Au electrode, which results from the fact that the electrostatic interaction between GSH SAMs and HTAB changed the conformation of GSH monolayer. The ion-gate response at GSH-nanoSe0/SAMs Au electrode was less remarkable than GSH SAMs. The coordination of Se and-COOH resulted in the change of the conformation, which increased steric hindrance and also affect the electrostatic interaction between GSH-nano Se0 SAMs and HTAB.
     Differential pulse stripping voltammetry (DPV) determination of H2O2 using GSH-nano Se0/SAMs Au electrode was presented in 0.1 mol/L KNO3 (pH=5.5) electrolyte solution, an sensitive reduction peak was observed at-320 mV at cyclic voltammetry (CV). The peak current was in a linear relationship with the concentration of H2O2 in the range of 2×10-5-6×10-3 mol/L, and the determination limit was 5×10-7 mol/L. Relative standard deviation (RSD) of the determination results was 2.4% when using three modified electrodes prepared, and RSD was 2.2% when using same modified electrodes prepared at different times. GSH-nanoSe0 SAMs is stable with long using life, which could be applied in H2O2 determination.
引文
[1]A Jagminasa, R Juske'nasa, I Gailiute, et al. Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores[J]. Journal of Crystal Growth,2006,294:343-348.
    [2]Zhang S Y, Fang C X, Wei, J B, et al. Synthesis and Electrochemical Behavior of Crystalline Ag2Se Nanotubes [J]. The Journal of Physical Chemistry C,2007,111:4168-4174.
    [3]Zhang S Y, Fang C X, Tian Y P, et al. Synthesis and Characterization of Hexagonal CuSe Nanotubes by Templating against Trigonal Se Nanotubes [J]. Crystal Growth & Design,2006, 6:2809-2813.
    [4]O Melo, E M Larramendi, I M Bacho, et al. Growth of CdSe and CdTe crystals shaped by thick alumina membranes[J]. Journal of Crystal Growth,2008,311:26-31.
    [5]R T Moug, C Bradford, K A Prior. MBE growth of MgS nanowires characterized using AFM [J]. Journal of Crystal Growth,2007,301:289-292.
    [6]Zhang S Y, Fang C X, Wei, B K, et al. Synthesis and Electrochemical Behavior of Crystalline Ag2Se Nanotubes [J]. The Journal of Physical Chemistry C,2007,111:4168-4174.
    [7]C An, K Tang, Y Jin, et al. A simple method to synthesize PbE (E=S, SE) nanocrystals [J]. Journal of Crystal Growth,2003,253:467-471.
    [8]A. Jagminas, I. Valsi unas, G.P. Veronese, et al. Alumina template-assisted growth of bismuth selenide nanowire arrays [J]. Journal of Crystal Growth,2008, (310):428-433.
    [9]Zhang J S, Wang H L, Yan X X, et al. Comparison of short-term toxicity between Nano-Se and selenite in mice [J]. Life Sciences,2005,76:1099-1109.
    [10]Wang H L, Zhang J S, Yu H Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes:Comparison with selenomethionine in mice [J]. Free Radical Biology & Medicine,2007,42:1524-1533.
    [11]Zhang J S, Peng D G, Lu H J, et al. Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite[J]. Toxicology and Applied Pharmacology,2008,226:251-259.
    [12]Zhang J S, Gao X Y, Zhang L D, et al. Biological effect of a nano red element selenium [J]. Biofactor,2001,15:27-38.
    [13]Chen T F, Wong Y S, Zheng W J, et al. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells [J].Colloids and Surfaces B:Bio interfaces,2008,67:26-31.
    [14]Peng D G, Zhang J S, Liu Q L. et al. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity [J]. Journal of Inorganic Biochemistry,2007,101:1457-1463.
    [15]张洪顺,王纪孝.硒纳米线的制备[J].化学工业与工程,2007,24(2):117-120.
    [16]Li X M, Yan L, Li S Q, et al. Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process[J]. Crystal Growth & Design,2005,5 (3): 911-916.
    [17]Zhang H, Yang D, Ma X Y. Controllable growth of Se nanotubes and nanowires from different solvent during the sonochemical process [J]. Materials Letters,2009,63:1-4.
    [18]张旭,谢毅,徐芬,等.单晶硒纳米线的室温快速生长[J].无机化学学报,2003,19(1):77-80.
    [18]Zhang S G, Zhang J, Wang H Y, et al. Synthesis of selenium nanoparticles in the presence of polysaccharides[J]. Materials Letters,2004(58):2590-2594.
    [19]王红艳,张胜义,刘明珠等.壳聚糖模板法制备纳米硒[J].应用化学,2004,21(8):788-792.
    [20]李维嘉.液相中糖与纳米硒相互作用及其光谱研究,广州:暨南大学化学系,2004.
    [21]Xie Q, Zhou D, Huang W W, et al. Large-Scale Synthesis and Growth Mechanism of Single-Crystal Se Nanobelts [J]. Crystal Growth & Design,2006,6(6):1514-1517.
    [22]Chen M H, Gao L. Selenium nanotube synthesized via a facile template-free hydrothermal method[J]. Chemical Physics Letters,2006,417:132-136.
    [23]王自.液相中氨基酸对纳米硒的粒径调控和稳定化作用研究.广州:暨南大学化学系,2005.
    [25]洪作鹏.甘氨酸纳米硒及其制备方法.专利,2009,公开号:CNl101558826A.
    [26]Chen Z X, Shen Y H, Xie A J, et al. L-Cysteine-Assisted Controlled Synthesis of Selenium Nanospheres and Nanorods. Crystal Growth & Design,2009,9(3):1327-1333.
    [27]Li Q, Chen TF, Yang F, et al. Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine[J]. Materials Letters,2010,64:614-617.
    [28]Zhang J S, Wang H L, Bao Y P, et al. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice[J]. Life Sciences,2004, 75:237-244.
    [29]Gao X Y, Zhang J S, Zhang L. Hollow Sphere Selenium Nanoparticles:There In-Vitro Anti Hydroxyl Radical effect [J]. Advanced Materials,2002,4(14):290-293.
    [30]I S. Lim, D Mott, W Ip, et al. Interparticle Interactions in Glutathione Mediated Assembly of Gold Nanoparticles [J]. Langmuir,2008,24:8857-8863.
    [31]王玉东.纳米硒生物分子复合膜的形态与光谱分析及其应用[J].广州:暨南大学化学系,2008.
    [32]P Calvo-Marzal, K Y Chumbimuni-Torres, N Fenalti Hoehr, et al. Determination of reduced glutathione using an amperometric carbon paste electrode chemically modified with TTF-TCNQ [J]. Sensors and Actuators B.2004,100:333-340.
    [33]Liang S C, Wang H, Zhang Z M, et al. Direct spectrofluorimetric determination of glutathione in biological samples using 5-maleimidyl-2-(m-methylphenyl) benzoxazole [J]. Analytica Chimica Acta,2002,451:211-219.
    [34]金春英,崔京兰,崔胜云.氧化型谷胱甘肽对还原型谷胱甘肽清除自由基的协同作用[J].分析化学研究简报,2009,37(9):1349-1353.
    [35]Potesil D, Petrlova J, Adam V, et al. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.)kernels using high-performance liquid chromatography with electrochemical detection[J]. Journal of Chromatography A.2005,1084:134-144.
    [36]方程,栾政,张悟铭,等.Th-GSH单层膜修饰电极和多巴胺的准可逆响应[J].电化学,2002,8(3):301-305.
    [37]Wu Y H, Hu S S. Voltammetric investigation of cytochrome c on gold coated with a self-assembled glutathione monolayer[J]. Bioelectrochemistry,2006,68:105-112.
    [38]Lin J P, Tian J, You J F, et al. An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation[J]. Biochemical Engineering Journal,2004,21:19-25.
    [39]洪誉鹏,刘惊,唐科忠.自组装膜技术及其在电化学分析中的应用[J].表面技术,2009,3:72-76.
    [40]J N. Barbosa, P Madureira, M.A. Barbosa, et al. The attraction of Mac-1+ phagocytes during acute inflammation methyl-coated self-assembled monolayers[J].Biomaterials,2005, 26:3021-3027.
    [41]K. Takehara, M Aihara, Y Miura, et al. An ion-gate response of the cysteine-containing dipeptide monolayers formed on a gold electrode. The effects of alkaline earth ions[J]. Bioelectrochemistry and Bioenergetics,1996,39:135-138.
    [42]K Takehara, Y Ide, M Aihara, et al. An ion-gate Response of the glutathione monolayer assembly formed on a gold electrode:Part 1. The effect of pH, K+ and Ca2+ [J]. Bioelectrochemistry and Bioenergetics,1992,29:103-111.
    [43]Hepel M, Tewksbury E. Ion-gating phenomena of self-assembling glutathione films on gold piezoelectrodes [J]. Journal of Electroanalytical Chemistry,2003,552:291-305.
    [44]王俊,曾百肇,方程,等.表面活性剂作用下谷胱甘肽单分子膜的离子门响应[J].高等学校化学学报,2000,21:1552-1554.
    [45]吴娜,沈谦,蔡光明,等.巴马火麻仁木脂素酰胺类提取物的鉴定及清除自由基活性的研究[J].化学学报,2009,67(7):700-704.
    [46]Yang W W, Li Y C, Bai Y, et al. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film [J]. Sensors and Actuators B,2006,115:42-48.
    [47]Li W J, Yuan R, Chai Y Q, et al. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor [J]. Biochem. Biophys. Methods,2008,70:830-837.
    [48]李华刚,袁若,柴雅琴.HRP-纳米金/纳米硫化镉/聚天青I修饰玻碳电极的制备及用作过氧化氢生物传感器[J].理化检验化学分册,2008,44(8):701-721.
    [49]祝敬妥,张卉,徐静娟,等.辣根过氧化物酶在壳聚糖和无掺杂金刚石纳米粒子共沉积膜上的固定及其直接电化学[J].分析科学学报,2009,25(1):1-5.
    [50]肖寒,吴金玲,陈旭,等.辣根过氧化物酶在MnO2纳米片薄膜中的直接电化学与电催化行为[J].科学通报,2007,52(19):2255-2259.
    [51]Wang J W, Wang L P. Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor[J]. Talanta,2009,77: 1454-1459.
    [52]T K Tanin, P Chatchai, K Thippayawadee, et al. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan [J]. Biosensors and Bioelectronics.2007, 22:2071-2078.
    [53]Yang J, Pang F Y, Zhang R Y, et al. Electrochemistry and Electrocatalysis of Hemoglobin on 1-Pyrenebutanoic Acid Succinimidyl Ester/Multiwalled Carbon Nanotube and Au Nanoparticle Modified Electrode [J]. Electroanalysis,2008,19:2134-2140.
    [54]杨淦,袁若,柴雅琴.聚L-酪氨酸P半胱氨酸P纳米金修饰Pt电极固定血红蛋白测定H202[J].分析试验室,2008,27(6):9-12.
    [55]S Thiagarajan, B W Su, S M Chen. Nano TiO2-Au-KI film sensor for the electrocatalytic oxidation of hydrogen peroxide [J].Sensors and Actuators B.2009,136:464-471.
    [56]Yuan L, Yang M H, Qu F L, et al. Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors[J]. Electrochimica Acta,2008, 53:3559-3565.
    [57]Tseng K S, Chen L C, Ho K C, Amperometric detection of hydrogen peroxide at a Prussian Blue-modified FTO electrode[J]. Sensors and Actuators B,2005,108:738-745.
    [58]Zhang W, Wang L L, Zhang N, et al. Functionalization of Single-Walled Carbon Nanotubes with Cubic Prussian Blue and its application for Amperometric Sensing [J]. Electroanalysis, 2009,21:2325-2330.
    [59]杨祖彬,任建敏.生物纳米复合材料研究及其在包装领域的应用[J].功能材料,2009,8(40):1237-1240.
    [60]Zhang J S, Wang H L, Yan X X. Comparison of short-term toxicity between Nano-Se and selenite in mice [J]. Life Sciences,2005,76:1099-1109.
    [61]Wang H L, Zhang J S, Yu H Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes:Comparison with selenomethionine in mice[J]. Free Radical Biology & Medicine,2007,42:1524-1533.
    [62]Zhang J S, Peng D G, Lu H J, et al. Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite [J]. Toxicology and Applied Pharmacology,2008,226:251-259.
    [63]D R Mees, W Pysto, P J Tarcha. Formation of Selenium Colloids Using Sodium Ascorbate as the Reducing Agent Mees[J]. Journal of Colloid and Interface Science,1995,170:254-260.
    [64]J A Johnson, M L Saboungi, P Thiyagarajan, et al. Selenium Nanoparticles:A Small Angle Newtron Scattering Study [J]. The Journal of Physical Chemistry B,1999,103:59-63.
    [65]Zhang J S, Wang H L, Yan X X. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice[J]. Life Sciences,2004,75: 237-244.
    [66]Xiong S L, Xi B J, Wang W Z, et al. The Fabrication and Characterization of Single-Crystalline Selenium Nanoneedles[J]. Crystal Growth & Design,2006,6:1711-1716.
    [67]史洪伟,张胜义,王红艳,等.液-液界面软模板法制备纳米硒[J].同济大学学报:医学版,2006,27:74-77.
    [68]Chen Z X, Shen Y H, Xie A J, et al. L-Cysteine-Assisted Controlled Synthesis of Selenium Nanospheres and Nanorods [J]. Crystal Growth & Design,2009,9(3):1327-1333.
    [69]Li Q, Chen T F, Zheng W J. Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine[J]. Materials Letters,2010,64:614-617.
    [70]宋吉明,张胜义,史洪伟.液-液界面生长法制备一维纳米硒[J].化学通报,2006,6:434-437.
    [71]Zhang X Y, Cai Y, Miao J Y, et al. Formation and phase transformation of selenium nanowire arrays in anodicporous alumina templates[J]. Journal of Crystal Growth,2005, 276:674-679.
    [72]Zhang X Y, Xu L H, Dai J Y, et al. Synthesis and characterization of single crystalline selenium nanowire arrays [J]. Materials Research Bulletin,2006,41:1729-1734.
    [73]Chen Z X, Shen Y H, Xie A J, et.al. L-Cysteine-Assisted Controlled Synthesis of Selenium Nanospheres and Nanorods [J]. Crystal Growth & Design,2009,9:1327-1333.
    [74]K Mondal, P Roy, S K. Srivastava. Facile Biomolecule-Assisted Hydrothermal Synthesis of Trigonal Selenium Microrods [J]. Crystal Growth & Design,2008,8 (5):1580-1584.
    [75]Xi G C, Xiong K, Zhao Q B, et al. Nucleation-Dissolution-Recrystallization:A New Growth Mechanism for t-Selenium Nanotubes[J]. Crystal Growth & Design,2006,6(2):577-582. 117-120.
    [76]郑清川,吕绍武,赵勇山.GSH对两种谷胱甘肽过氧化物酶模拟物活性影响的研究[J].高等学校化学学报,2008,29(12):2337-2340.
    [77]铁梅,李闯,费金岩.富硒金针菇子实体中硒多糖的分离纯化技术及红外光谱研究[J].分析测试学报,2008,27:158-161.
    [78]徐辉碧,黄开勋.硒的化学、生物化学及其生物医学应用[M].武汉:华中理工大学出版社.1994.
    [79]V. Ganesh, S K Pal, S Kumar, V. Lakshminarayanan. Self-assembled monolayer (SAMs) of alkoxycyanobiphenyl thiols on gold surface using a lyotropic liquid crystalline medium[J]. Electrochima acta,2007,52:2987-2997.
    [80]J B Raoof, R Ojani, R N Sahar. Fabrication of a stable, switchable An/SAM-Au electrode with tunable electron-transfer and excellent electrochemical properties [J]. Electrochima acta, 2008,53:7261-7265.
    [81]K. Jans, B. Van Meerbergen, G. Reekmans, et al.Chemical and Biological Characterization of Thiol SAMs for Neuronal Cell Attachment [J]. Langmuir,2009,25:4564-4570.
    [82]赵玮,佟斌,支俊格,等.4-(2-(4’-吡啶)乙炔)苯基重氮盐的光化学反应动力学及其自组装单分子膜的表征[J].物理化学学报,2010,26(4):822-826.
    [83]K Takehara, H Takemura, M Aihara, et al. Charge-selectivity of the monolayer modified gold electrode for the electrochemical oxidation of catechol derivatives[J]. Journal of Electroanalytical Chemistry,1996,404:179-182.
    [84]颜晓丽.硒代胱氨酸自组装膜与无机离子相互作用的电化学研究,广州:暨南大学化学系,2006.
    [85]陈绪胄,李建平,俞建国.新型磁性纳米金修饰过氧化氢生物传感器的研制[J].分析测试学报,2008,27(4):396-400.
    [86]Lin J P, Tian J, You J F, et al. An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation[J]. Biochemical Engineering Journal,2004,21:19-25.
    [87]Zhang L H, Zhai Y M, Gao N, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochemistry Communications,2008,10:1524-1526.
    [88]Yuan L, Yang M H, Qu F L, et al. Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors[J]. Electrochimica Acta,2008, 53:3559-3565.
    [89]K Singh, M A Rahman, J I Son, et al. An amperometric immunosensor for osteoproteogerin based on gold nanoparticles deposited conducting polymer.Biosensors and Bioelectronics[J]. 2008,23:1595-1601.
    [90]Yan W, Feng X M, Chen X J, et al. A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material[J]. Biosensors and Bioelectronics,2008,23: 925-931.
    [91]李华刚,袁若,柴雅琴,等.HRP-纳米金/纳米硫化镉/聚天青Ⅰ修饰玻碳电极的制备及用作过氧化氢生物传感器[J].理化检验化学分册,2008,44(8):701-721.
    [92]祝敬妥,张卉,徐静娟,等.辣根过氧化物酶在壳聚糖和无掺杂金刚石纳米粒子共沉积膜上的固定及其直接电化学[J].分析科学学报,2009,25(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700