三种尿素衍生物的合成工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以尿素为主要原料,合成了三聚氰酸、铜酞菁和缩二脲。从反应物配比,反应温度,反应时间等方面研究了影响反应的因素和条件,并通过多种分析方法验证了产品纯度。
     1.利用尿素在微波反应条件下合成了三聚氰酸,通过观察使用不同微波功率,不同反应时间,以及反应物的配比变化,得到最佳反应条件:在微波反应条件下,尿素和助熔剂氯化铵以质量比36:1的配比混合,反应10min,精制后可得到工业标准的三聚氰酸,收率可达70%。进行了工业放大反应,得到与实验室小试相同的结果。
     2.在微波反应条件下合成了铜酞菁,得到的最佳反应条件为将尿素、苯酐、氯化亚铜以摩尔比15:5:1,钼酸铵的使用量为苯酐质量的4%,在微波反应条件下以高火(约700w)引发反应,后使用中火500W(约500w)反应5min,反应产率61.1%,产品纯度为90%。
     3.使用溶剂法合成缩二脲,考察了不同反应时间,温度以及溶剂使用量,得到最佳反应条件为尿素与乙二醇二丁醚以质量比1:1混合加热到145℃反应3.5h,可制得含量为64.1%缩二脲,产率为35.6%。
     根据尿素反应中放出大量氨的特点,提出了尿素反应与脱硫脱硝用氨的联产方法,在制备尿素衍生物的同时将放出的氨气经净化处理后直接用于脱硫脱硝。该工艺既可解决了液氨法在运输和储存上的危险问题,又可解决尿素制氨运行成本高的问题。
In this paper,three reaction products of urea have been studied:Cyanuric acid、Phthalocyanine blue and biuret.Influnence factors and reaction conditions of the synthesi reaction have been studied from the molar ratio of reactants,reaction temperature and reaction time. By a series of analysis and detection methods,the purity of ptoducts has been verified.
     1、The reaction that urea was heated by microwave to prepare cyanuric acid was chosen to investigate the effect of the mass ratio of reactants, power of microwave and reaction time on itself, through which came into being the best reaction condition that the mixture of urea and ammonium chloridethe, with the mass ratio of the former to the latter of 36:1, was heated by high power microwave for ten minutes and then refined by boiling in acid solution, with the productive rate of 70%. Industrial amplification reaction carried out the same results with the laboratory small scale, there is the potential for industrial scale.
     2、The reaction that reactants was heated by microwave to prepare CuPc was chosen to investigate the effect of the mass ratio of reactants, power of microwave and reaction time on itself, through which came into being the best reaction condition that the mixture of urea, phthalic anhydride and CuCl, Ammonium molybdatewith the malor ratio of the former to the latter of 15:5:1.The weight of ammonium molybdate was 15% of phthalic anhydride. Reaction triggered by the high fire,and then heated by high power microwave for 5 minutes.The reaction yield can reach 61.1%,and the product purity 90%.
     3、The reaction that urea was heated by solven to prepare biuret. The optimum reaction conditions of the reaction:the weight ratio of urea and ethylene glycol dimethyl ether was 1:1,the reaction temperature is 145℃,the time is 3.5h.The yield was 35.6%, and the product purity 64.1%.
     A new method was proposed to prepare the derivative of urea and simultaneously generate ammonia according to the characteristics of evolution of considerable ammonia in the preparaing of urea derivatives. The reaction of urea derivatives can replace the existing method of preparation of ammonia by ammonia or urea. The technology has solved the risk problem in transportation and storage of liquid ammonia,and the problem of high running costs of the method of urea.
引文
[1]刘镜远.大颗粒尿素的工艺技术[J].氮肥设计,199030(6):7-12
    [2]于经元,白术培,康仕芳.缓释化肥概况[J],化肥工业,1999,23(5):15-19
    [3]全国肥料和土壤调理机标准化技术委员会.尿素国家标准[M].北京:中国标准出版社,2000
    [4]陶谋鑫.涂硫尿素[J].氮肥设计,1992,32(6):8-12
    [5]谢宇.涂层尿素[J].安徽化工,1994,(3):9-10
    [6]刘传政.影响大颗粒尿素产品质量的原因及对策[J].大氮肥,1997,20(6):412-413
    [7]刘义新,韩移旺,于莉莎等.尿素后续产品现状及展望[J].大氮肥,2002,25(6):362-366
    [8]张文辉.一种直接以磷矿为磷源的粒状复合肥的生产方法[J].化肥设计,1998,36(6):7-10
    [9]陈明良,周志英,堵志文.熔体法制尿基NPK复混肥的工艺研究[J].化肥工业,1999,26(1):31-33
    [10]裘兆蓉,方志伟,承民联等.氰尿酸合成研究的进展[J].江苏石油化工学院学报,1999,11(3):56-60
    [11]汪多仁.脲醛树脂的生产与应用进展[J].建筑人造板,1998,(1):26-28
    [12]元玉新.大型尿素装置联产三聚氰胺[J].大氮肥,1998,21(3):166-167
    [13]殷彩霞,徐俊.尿囊素合成及其对植物的生化他感作用[J].云南大学学报(自然科学版),1999,21(4):327-328
    [14]Mengkai Lu;FaqingMeng,et al,Growth and characterization of urea-(d)-tartaric acid single crystal [J].Chinese Science Bulletin,1996,41(16):1392
    [15]Meng F.Q.M.K.Lu;Z.H.Yang;H.ZengThermal.Behavior of Urea(D)tartaric Acid and Urea-(DL) Tartaric Acid Crystals [J]. therma analysis and calorimetry,1998, 52(2)::609-613
    [16]李长海,张龙,饲料级缩二脲合成技术进展[J].吉林工学院学报,1999,6(2):24-26
    [17]崔小明.尿素衍生物的应用[J].四川化工,1998,(5):49-51.
    [18]郑学根.异丁叉二尿的合成与应用[J].湖北化工,1999,(2):24-26.
    [19]张文辉.复合尿素的应用[J].上海化工,1999,(5):12.
    [20]田改仓,王紫云,林家强等.尿素的主要衍生产品[J].化工中间体,2001,10:14-20.
    [21]化学工业部科学技术情报所.化工产品手册[M].北京:化学工业出版社,1985:576.
    [22]裘兆蓉,方志伟,承民联.氰尿酸合成研究的进展[J].江苏石油化工学院学报,1999,11(1):56-60.
    [23]张中信,李广玉.强氯精和优氯净与稳定性二氧化氯在循环水中应用比较[J]工业水处理,2000,20(11):36-38.
    [24]周玉鑫.氰尿酸的合成及应用[J].湖北化工,1995,2
    [25]张理平,付峰,张秀成.振动流化床中氰尿酸合成反应的试验研究[J].食品与机械,2006,22(5):77-79
    [26]王志峰.氰尿酸及其衍生物的现状分析[J].现代化工,1998,2
    [27]朱文明.固相和液相法合成氰尿酸的对比研究[J].精细化工中间体,2004,34(6):45-46
    [28]李铭新.氰尿酸合成新工艺[J].河南化工,1993,6:4-5.
    [29]PEDIREDDI V R, BELHEKAR DEEPALIA. Investigation of some layered structures of cyanuric acid [J]. Tetrahedron,2002,58:937-941
    [30]张秀成,陈立宇.生产三聚氰酸的新方法[J].现代化工,1995,8:23-25
    [31]刘鸿,张翠娥,林遵义等.混合溶剂法合成氰尿酸[J].化学世界,1997,3:140-141
    [32]杜建卫,刘键,陈蓝天等.振动流化床法生产三聚氰酸的工艺研究[J].新疆化工,2004,1:25-28
    [33]张秀成,陈立宇,张力平等.振动流化床生产三聚氰酸工艺[J].石油化工,2003,32(1):56-59
    [34]Mcketta J J, Cunnigngham W A.Encyclopedia of Chemical Processing and Design[M].Vol.14, NewYork:Marcel Dekkey,1977:52-60.
    [35]许静,倪传根,宜勇刚.氰尿酸及三氯异氰尿酸的研究进展及现状[J].山东化
    工,2003,1:17-19
    [36]邱玉娥,张存兰,刘爱珍.高纯度氰尿酸合成工艺研究[J].天津化工,2005,19(2):35-36
    [37]陈长章,高冬寿,林州斌等.溶剂诱导热解法制备氰尿酸[P].CN95103329.8
    [38]廖洪书,杜培松,吴燕妮等.高纯度三聚氰胺氰尿酸的制备方法[P].CN02128011.8
    [39]赵美法.重要的精细化工中间体--氰尿酸[J].化工中间体,2004,1:11-12.
    [40]杜培松.液相法氰尿酸合成新工艺[J].四川化工,2003,2:29-31
    [41]张永正.液相法合成异氰尿酸的方法[P].CN96116813.7
    [42]滕进丽.酞菁结构和电性的量子化学研究[J].山西化工,2008,28(6):43-45
    [43]殷焕顺,邓建成,周燕.酞菁化合物在高新技术领域中的应用[J].精细化工中间体,2003,33(5):12-16
    [44]NKobayashi,孙朝晖.酞菁化合物的设计、合成、结构及光谱和电化学性能[J].染料工业,2002,39(5):50.
    [45]蒲鸿汀,周侃,杨正龙.不对称酞菁光电功能材料研究的进展[J].高分子通报,2006,7:17-24.
    [46]邱文丰,刘云圻.不对称酞菁化合物的合成及研究进展[J].功能材料,2000,31,B05.
    [47]韩桂林,李兴民.激光静电复印机用酞菁铜-氧化铜体系有机感光体的研制[J].感光材料,1991,6:16-19.
    [48]沈美琴.酞菁化合物的新用途[J].染料工业,1989,4:50-51.
    [49]何智兵,黄永刚.酞菁铜的应用性能的应用研究进展[J].材料导报,2000,14(10):51-55.
    [50]刘向宏,韩笑非.铜酞菁的生产工艺及进展[J].沈阳化工,1996,2:35-38.
    [51]郑少琴.有机颜料酞菁蓝的合成及颜料化[J].染料与染色,2008,45(3):15-18
    [52]王志坚.酞菁蓝BGS的制备及应用[J].辽宁化工,1998,27(1):13-15
    [53]陈迪生.铜酞菁合成工艺条件改进[J].安徽化工,1996,83(2):29-32.
    [54]吴高楼.我国固相法生产铜酞菁的方法简介[J].染料工业,1991,28 (1):33-35
    [55]张天永,徐单,张友兰,李祥高.溶剂法合成β-及ε-型铜酞菁[J].精细化工2004,21(8):261-263.
    [56]三菱化学.Preparation of dihalogenotitanium phthalocyanine[P]. JP:09 165 572.1997-06-24.
    [57]东洋油墨.Manufacture ofε-type copper phthalocyanine as electrophotographic charge generation substance[P].JP:0 572776.1993-03-26.
    [58]夏道成,于书坤,马春雨等.溶剂热法直接合成酞菁铜晶体[J].高等学校化学学报,2008,29(2):244-246.
    [59]付蕾,袁新强,陈立贵.固相法合成铜酞菁及热稳定性分析[J].化工新型材料,2008,36(5):23-24.
    [60]周艳,陈英.料浆法制备铜酞菁[J].绵阳师范学院学报,2004,23(5):55-59.
    [61]邓建成,邓晓琴.固相法合成铜酞菁的研究[J].湘潭大学自然科学学报,1999,21(4):58-61.
    [62]川崎化成工业株式会社.铜酞菁的制备方法[P].CN96107122
    [63]刘建国,刘歆.一种简易可行的酞菁铜制造方法[P].CN92112674.3
    [64]张启.固相法生产粗铜酞菁蓝[P].CN85106326
    [65]城丸修,井出勇作,大芝敏男,小谷卓也.β型铜酞菁颜料的制造方法[P].CN200410042999
    [66]林瑞敏.溶剂法生产粗铜酞菁[P].CN90102981.5
    [67]从合成工艺论我国铜酞菁的产业现状[J].精细与专用化学品,1999,1
    [68]薛福连.缩二脲的生产与开发前景[J].上海化工,1999,22:42.
    [69]林红.缩二脲的生产技术与消费市场[J].化工设计通讯,2001,4:13.
    [70]王志峰.值得开发的几种尿素深加工产品[J].四川化工与腐蚀控制,1998,5:14-17.
    [71]李顺香.缩二脲的合成及应用[J].天津化工,1998,39(4):36-37.
    [72]李长海.饲料级缩二脲合成技术进展[J].吉林工学院学报,1999,(6):24-26
    [73]李富新.负压法制备缩二脲[J].粮食与饲料工业,1999,(2):28-29.
    [74]鞠仁昌,阎利,董忠礼.饲料级缩二脲生产技术[J].沈阳化工,1994,(3):22-23
    [75]Alvin F,John M. Process for preparation of urea autocondensation product [P].US,3928438,1981.
    [76]姚洁,王公应.溶剂法制备缩二脲[J].精细化工,1995,32(6):21~22.
    [77]张永正.液相法合成缩二脲的方法[P].CN11424901,1997.
    [78]金钦汉.微波化学[M].科学出版社,1999
    [79]王鹏.环境微波化学技术[M].化学工业出版社,2003
    [80]朱学文,廖列文,崔英德等.微波在化学中的应用及其进展[J].精细化工2001,18(5):295-299.
    [81]黄卡玛,刘永浦,唐敬贤,等.电磁波对化学反应非致热作用的实验研究[J].高等学校化学学报,1996,17(12):764.
    [82]苏桂发,李新生,曾建强.微波辐射相转移催化苯乙腈的烷基化反应[J].精细化工,2000,17(7):411-412.
    [83]宋林青,徐贤伦,谭干祖.微波辐射下双(2-苯并咪唑基)苯的合成[J].精细化工,2000,17(5):256-257.
    [84]Bose A K,Manhas M S,Ghosh M, et al. Microwave-induced organic rea ction enhancement chemistry.2. Simplified techniques [J]. Org Chem,1991 56:6968-6970.
    [85]喻爱明,张政朴,杨华铮,等.微波辅助固相有机反应[J].高等学校化学学报,1998,19(10):1608-1610.
    [86]汤勇铮,杨红,张文敏.微波制备均分散氧化铁纳米粒子[J].化学通报,1998,9:620-623.
    [87]高岐,张海燕.微波加热-密闭消解快速光度计测定土壤中的硫含量[J].化学通报,1997,11:43-45.
    [88]Zhao J P,Cundy I S,Plaisted R J, et al. The potential of microwave heating in [Al]ZSM-5 synthesis [J]. Proc Int Zeolite Conf,1998,12(3):1591-1594.
    [89]王真,邱晔,洪品杰,等.微波等离子体对聚乙烯材料的表面改性[J].高等学校化学学报,1998,19(3):486-488.
    [90]胡希明,黄剑,刘海洋等.金属酶模拟活性材料的微波诱导合成及性能研究[J].分子催化,1998,12(2):87-89.
    [91]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社,2007.
    [92]张庆刚.燃煤烟气氨法脱硫工艺探讨[J].环境科学与管理:2009,34(7):87-89
    [93]周良峰,田建,尹华强.氨法SCR烟气脱硝技术研究进展.[J].四川化工,2007,3(10):38-42.
    [94]Javed M T, Naseem Irfan, Gibbs B M. Control of combustiongenerated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management,2007,83(3):251-289.
    [95]Sang Wook Bae, Seon Ah Roh, Sang Done Kim. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process[J]. Chemosphere,2006,65(1):170-175.
    [96]沈伯雄,韩永富,刘亭.氨选择性非催化还原烟气脱硝研究进展[J].化工进展,2008,29(9):1323-1327.
    [97].何根然.燃煤烟气脱硫脱硝技术标准实用手册[M].北京:中国科技文化出版社,2001.
    [98]汪建光.燃煤电站SCR脱硝技术中尿素热解和水解制氨技术对比[J].能源与环境,2008,4:59-60
    [99]Vincenzo Lagana;Milan;Felix E;Costa Mesa. Method and Apparatus for Pollution control in Exhaust Gas Streams from Fossil Fuel Burning Facilities[P]. US6093380.
    [100]B.H.Cooper;Herbert W;Spencer; Valencia. Method for the production of ammonia from urea and/or biuret,and uses for NOx and/or particulate matter removal[P]. US6077491

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700