多靶向抗肿瘤转移天然产物ECO-4601的全合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤转移是指恶性肿瘤细胞脱离原发肿瘤,通过各种方式转移到其他组织或器官继续生长,形成与原发肿瘤相同性质的继发性肿瘤的过程。肿瘤转移是恶性肿瘤的基本特征,是临床肿瘤患者(90%以上)死亡的最主要原因。如何防止肿瘤转移一直是肿瘤治疗的最大难关。目前采用的大多数抗肿瘤药物主要是抑制肿瘤细胞的增殖和杀伤肿瘤细胞,这对增殖期的肿瘤细胞特别有效,而对许多处于休眠或蛰伏期的肿瘤细胞无效。因此,研制针对转移过程和微小转移灶的抗肿瘤转移药物,是提高恶性肿瘤治愈率、降低治疗后复发率和死亡率、延长患者生命、提高患者的生活质量的一个最主要的途径。
     一般认为,肿瘤侵袭与转移是一个复杂的过程,牵涉到细胞脱落、浸润、迁移运行、着床、新生血管生成等。从理论上讲,只要能够阻止上述一个或多个过程,就能抑制肿瘤转移。但是临床应用中作用靶点单一的抗肿瘤转移药物很难达到临床应用要求。因此,理想的抗肿瘤侵袭与转移药物应是多靶向的,最好能作用于肿瘤侵袭与转移过程的多个环节,同时对增殖期的肿瘤细胞也有效。多靶向、多作用机制应成为抗肿瘤侵袭与转移药物的研究新策略。
     ECO-4601(10-法尼基-4,6,8-三羟基-5,10-二氢二苯并[b,e][1,4]二氮杂卓-11-酮)是从真放线菌株(046-ECO11)的二次代谢产物中分离得到的,其母核为独特的二苯二氮杂卓酮结构,在天然产物中非常罕见。ECO-4601具有广谱抗肿瘤作用,对60余种肿瘤细胞系表现出高抑制活性(GI50在微摩尔级)。ECO-4601可以选择性作用于外周苯二氮卓受体,干扰肿瘤Ras信号,诱导肿瘤细胞凋亡,抑制肿瘤细胞增殖;ECO-4601对基质金属蛋白酶MMP-2和MMP-9具有强抑制活性;ECO-4601还能明显抑制肿瘤的侵袭与转移,抑制肿瘤新生血管生成等。因此,ECO-4601具有多靶向抗肿瘤和抗肿瘤转移能力,目前已进入Ⅲ期临床研究。
     目前,ECO-4601只能从真放线菌的二次代谢产物中分离得到,尚未有ECO-4601的全合成研究报道,有关ECO-4601的构效关系也不明确。本研究的目的,就是通过建立ECO-4601的全合成方法,探讨提供ECO-4601的有效化学途径,并为进一步合成ECO-4601衍生物,研究其抗肿瘤与抗肿瘤转移活性,明确该类化合物的构效关系、寻找选高效低毒的抗肿瘤转移ECO-4601衍生物奠定基础。
     通过逆合成分析,我们以2,4-二氯硝基苯为原料,经甲氧基取代、还原、氨基保护、硝化、氨基脱保护、重氮化溴代反应等,制备得到1,5-二甲氧基-3-硝基-2溴苯;以间甲氧基苯甲酸为原料,经硝化及硝基还原反应,合成了2-氨基-3-甲氧基苯甲酸。通过探讨1,5-二甲氧基-3-硝基-2溴苯和2-氨基-3-甲氧基苯甲酸的偶联反应,建立了以铜催化的Ullmann偶合反应合成二芳基取代胺的方法;通过对分子内环合反应以及酯的氨解反应条件等进行一系列探讨,确立了以酯的氨解反应,合成关键环状中间体取代二苯二氮杂卓酮的方法;最终引入法尼基,合成了天然产物ECO-4601的酚羟基甲基化衍生物Me-ECO-4601。生物活性实验表明,Me-ECO-4601的抗肿瘤血管生成和抗细胞迁移运动活性优于天然产物ECO-4601,而其细胞毒性较ECO-4601低,这表明通过对ECO-4601的结构修饰,有望发现高效低毒的抗肿瘤转移ECO-4601衍生物。
     总之,通过对ECO-4601的全合成研究,我们建立了合成关键环状中间体取代二苯二氮杂卓酮的方法,合成了ECO-4601的甲基化衍生物Me-ECO-4601,研究了其抗肿瘤与抗肿瘤转移活性,为进一步合成ECO-4601衍生物、探讨该类化合物的构效关系奠定了基础。由于时间的关系,Me-ECO-4601的脱甲基化条件尚在探讨,另外有些步骤的反应收率有待提高。
Tumor metastasis is the process whereby uncontrolled tumor cell leaves the primary tumor, invades into neighboring tissues and then establishes a secondary tumor at a distant site. Metastasis is the fiducial markers of cancer, over 90% of the cancer patients will eventually lead to death by tumor metastasis. Therefore, how ho control tumor cell metastasis is the most difficulty task in the treatment of cancer. Conventional chemotherapeutic anticancer drugs usually directly act on the tumor cells by killing them or inhibiting their growth and proliferation, but are ineffective towards the metastastic tumor cells. The developments of novel anti-metastatic drugs that target the metastasis processes are very important for the treatment of cancer and reducement of the recurrence and death rate, prolonging the survival time and improving the life quality of the cancer patients.
     It is well established that metastasis is complex and multistep processes, which are influenced by a number of events including the detaching from the primary lesions, the degrading the extracellular matrix (ECM), invading the surrounding stroma, transfering, adapting to the newly colonized organ and angiogenesis. Interfering with any metastatic stages can in theory prevents the metastasis of tumor cells. However, single targeted anti-merastasis drugs prove to be not very effective in clinical treatment of cancer. Ideally, an effective anti-metastasis drug should have synergistic effects by targeting more than one of the metastasis processes, and at the same time has the ability to inhibit the tumor cell proliferation. Therefore, multi-targeted anti-metastasis and anti-invasion drugs will be considered as a new strategy for cancer therapy.
     ECO-4601 (4,6,8-trihydroxy-10-(3,7,11-trimethyldodeca-2,6,10-trienyl)-5,10-di-hydrodibenzo[b,e][1,4]diazepin-11-one), is a novel farnesylated dibenzodiazepinone (MW 462.58), produced by a Micromonospora strain (046-ECO11). ECO-4601 owns a benzodiazepine moiety that is rare in natural products. ECO-4601 has a broad cytotoxic activity (lowμM) against over 60 kinds of tumor cell lines in vitro and has high antitumor efficacy in vivo. It selectively acts on the peripheral benzodiazepine receptors (PBR) that is related to the initiation and regulation of apoptosis of tumor cells. It can also strong inhibits the Ras-MAPK pathway, producing an effect on the inhibition of tumor cell proliferation and migration. Furthemore, ECO-4601 can inhibit the activities of MMP-2 and MMP-9, reduces the tumor cell motility and migration at nanomolar concentrations, and has potent anti-angiogenic effects. Therefore, ECO-4601 is a multi-targeted and cancer and anti-metastasis agent. It is now under clinical phase III evaluation.
     At the present time, ECO-4601 is only obtained from microbial metabolism. No method has been reported for its synthesis and the structure and antitumor activity relationships are not clear. The purpose of this study is to develop a method for the total synthesis of ECO-4601 and set up a synthetic way for the production of ECO-4601. It will provide a new method for the synthesis of ECO-4601 analogues for the further study the structure and activity relationships and for the discovery more potent and less toxic anti-metastasis agents.
     Based on the retrosynthesis analysis, we choose 2,4-dichloronitrobenzene as the starting material and prepared 2-bromo-1,5-dimethoxy-3-nitrobenzene via methoxy substitution, reduction of nitro group, protecting the amino group, nitration, deprotecing, and diazonium bromination; From 3-methoxybenzoic acid, 2-amino-3-methoxybenzoic acid was prepared via nitration follwed by reduction. Various conditions for the coupling of 2-bromo-1,5-dimethoxy-3-nitrobenzene and 2-amino-3-methoxybenzoic acid were studied, and the cooper catalyzed Ullmann reaction was successfully applied on the preparation of the substituted diarylamine. Following the reduction of the nitro group, the intramolecular amide formation conditions were studied. By methyl esterfication and acid catalyzed intramolecular amniolysis, the important dibenzodiazepinone moiety was constructed. Finally, by introducing a farnesyl group, the O-methylated analogue of ECO-4601 (Me-ECO-4601) was prepared. Bioassay studies showed that Me-4601 exhibited higher anti-angiogenic activity and displayed an improvement in the inhibition of cell migration than ECO-4601, and had lower cytotoxicity. This study indicates it is possible to find more potent and less toxic anti-metastasis ECO-4601 analogue by structural modification of ECO-4601.
     In summary, in the studies of total synthesis of ECO-4601, we have established a novel method for the preparation the important dibenzodiazepinone intermediate and prepared the methylated analogues of ECO-4601 and studied its antitumor anti-metastasis activities. Our researches may provide useful information for further synthesis of ECO-4601 analogues, to study their structure-activity relationships, and to find more potent and less toxic anti-metastasis drugs. Due to the time limit, the demethylation conditions are still undergoing, and the yields for some steps in the total synthesis ECO-4601 need further improvements.
引文
1. Steeg P S, Theodorescu D. Metastasis:A Therapeutic Target for Cancer[J]. Nat Clin Pract Oncol,2008,5(4):206-219.
    2. Caroline H, Olivier D, Philippe V H, et al. Characterization of the Activities of Actin-affecting Drugs on Tumor Cell Migration[J]. Toxicol Appl Pharmacol,2006, 211:30-40.
    3. Laconia E, Doratiottoa S, Vineisb P. The Microenvironments of Multistage Carcinogenesis [J]. Seminars in Cancer Biology,2008,18,322-329.
    4. Marina B, Ivan S. Metastatic Cancer Cell [J]. Annu Rev Pathol Mech Dis,2008,3: 221-247.
    5.杨亚平,李敏.作用于MAPK信号转导系统的抗肿瘤药物研究[J].国际药学研究杂志,2008,35(3):178-183.
    6.李颖华,常智杰,刘力.NOK Interacts With Akt and Enhances Its Activation.生物化学与生物物理研究进展,2008,35(1):29-34.
    7. Qiao M, Sheng S, Pardee, B. Metastasis and AKT Activation [J]. Cell Cycle,2008, 7(19):2991-2996.
    8. Weber G F. Molecular Mechanism of Metastasis [J]. Cancer Letters,2008,270: 181-190.
    9. Singh L S, Berk M, Oates R, et al. Ovarian Cancer G Protein-Coupled Receptor 1, a New Metastasis Suppressor Gene in Prostate Cancer [J]. J Natl Cancer Inst, 2007,99:1313-1327.
    10. Ma L, Teruya-Feldstein J, Weinberg R A. Tumour Invasion and Metastasis Initiated by microRNA-1Ob in Breast Cancer [J]. Nature,2007,449:682-688.
    11. Ishikawa K, Takenaga K, Akimoto M et al. ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis [J]. Science,2008,320:661-664.
    12.刘求真,姚开泰.肿瘤干细胞与肿瘤转移[J].肿瘤学杂志,2008,14(1),10-15.
    13.丁怡甜,邢艳丽,辛现良,耿美玉.细胞膜表面糖链结构与肿瘤转移的关系[J].现代生物医学进展,2007,7(6):909-912。
    14. Wu L-H, Hu P, Wu W et al. Fucosylated Glycans Associated With Development and Metastasis of Hepatocellular Carcinoma Cells [J].生物化学与生物物理研究进展,2009,36(1):33-34。
    15. Bacac M, Stamenkovic I. Metastatic cancer cell. [J]. Annu Rev Pathol,2008,3: 221-247.
    16. Perez-Moreno M, Jamora C, Fuchs E. Sticky business:orchestrating cellular signals at adherens junctions [J]. Cell,2003,112(4):535-548.
    17. Conacci-Sorrell M, Zhurinsky J, Ben-Ze A. The cadherin-catenin adhesion system in signaling and cancer [J]. J Clin Invest,2002,109(8):987-991.
    18.黄海力,王孟薇.肿瘤浸润转移分子机制的研究进展[J].生物技术通讯,2006,17(1),84-87.
    19. Takeichi M. Cadherins in cancer:implications for invasion and metastasis. Curr Opin Cell Biol,1993,5(5):806-811.
    20. Jin H, Varner J. Integrins:roles in cancer development and as treatment targets [J]. Br J Cancer,2004,90(3):561-565.
    21. Hynes RO. Integrins:bidirectional, allosteric signaling machines [J]. Cell,2002, 110(6):673-687.
    22. Cavallaro U, Christofori G Cell adhesion and signalling by cadherins and Ig-CAMs in cancer [J]. Nat Rev Cancer,2004,4(2):118-132.
    23. Satyamoorthy K, Muyrers J, Meier F, et al. Mel-CAM-specific genetic suppressor elements inhibit melanoma growth and invasion through loss of gap junctional communication [J]. Oncogene,2001,20(34):4676-4684.
    24. Lasky LA. Lectin cell adhesion molecules (LEC-CAMs):a new family of cell adhesion proteins involved with inflammation [J]. J Cell Biochem,1991,45(2): 139-146
    25.陈华江,王杰军.基质金属蛋白酶及其抑制物与肿瘤侵袭转移的关系[J].国外医学肿瘤学分册,2001,28(1):23-26.
    26. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression [J]. Nat Rev Cancer,2002,2(3):161-174.
    27. Cox G, O' Byrne KJ. Matrix metalloproteinases and cancer[J]. Anticancer Res, 2001,21 (6B):4207-4220.
    28.魏泓.尿激酶型纤溶酶原激活因子作用系统与肿瘤转移[J].肿瘤,1998,18(2):110-113.
    29. Andreasen PA, Kjoller L, Christensen L, et al. The urokinase-type plasminogen activator system in cancer metastasis:a review [J]. Int J Cancer,1997,72(1): 1-22.
    30. Mekkawy AH, Morris DL, Pourgholami MH. Urokinase plasminogen activator system as a potential target for cancer therapy [J]. Future Oncol,2009,5(9): 1487-1499.
    31.Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes [J]. Nature,2000,404(6779):725-728.
    32. Meyer zu Heringdorf D, Himmel HM, Jakobs KH. Sphingosylphosphorylcholine-biological functions and mechanisms of action [J]. Biochim Biophys Acta,2002, 1582(1-3):178-189.
    33.芦曙辉,王玉琦.细胞迁移机制的研究进展[J].中国临床医学,2003,10(6):801-803.
    34. Folkman J. Angiogenesis and apoptosis [J]. Semin Cancer Biol,2003,13(2): 159-167.
    35. Germanov E; Berman J N; Guernsey D. Current and Future Approaches for the Therapeutic Targeting of Metastasis [J]. Int JMol Med,2006,18,1025-1036.
    36. Duff S E, Li C, Jeziorska M, et al. Vascular endothelial growth factors C and D and lymphangiogenesis in gastrointestinal tract malignancy [J]. Br J Cancer,2003, 89(3):426-430
    37. Larson R C, Ignotz G G, Currie W B. Transforming growth factor beta and basic fibroblast growth factor synergistically promote early bovine embryo development during the fourth cell cycle [J]. Mol Reprod Dev,33(4):432-435.
    38.李薇,梁春利.抗肿瘤药物研究进展[J].现代中医药,2004,3,64-65.
    39. Li T, Sparano J A. Farnesyl transferase inhibitors [J]. Cancer Invest,2008,26(7): 653-661.
    40. Boulton T G, Nye S H, Robbins D J, et al. ERKs:a family of protein-serine/
    threonine kinases that are activated and tyrosine phosphorylated in response in insulin and NGF [J]. Cell,1991,65:663-675.
    41.刘佳丽,李承博,梁媛.MAPK通路与肿瘤发生关系的研究新进展[J].中国实用医药,2008,3(25),180-181
    42.罗威,曹亚.靶向ERK信号转导通路抗肿瘤的研究进展[J].国际病理科学与临床杂志,2006,26(3),200-203.
    43. Zhu X, Perry G, SmithM A. Amyotrophic lateral sclerosis:a novel hypothesis involving a gained loss of function' in the JNK/SAPK pathway [J]. RedoxRep, 2003,8(3):129-133.
    44. Dent P, Yacoub A, Fisher, P B, et al. MAPK pathways in radiation responses[J]. Oncogene,2003,22(37):5885-5896.
    45. Der C J, Cox A D. Isoprenoid modification and plasma membrane association: critical factors for ras oncogenicity [J]. Cancer Cells,1991,3(9):331-340.
    46. Filchtinski D, Sharabi O, Riippel A, et al. What Makes Ras an Efficient Molecular Switch:A Computational, Biophysical, and Structural Study of Ras-GDP Interactions with Mutants of Raf [J]. J Mol Biol,2010, in press.
    47.王冰,吴燕红,杨志等.MAPK/ERK信号转导通路的分子生物学特征及生物效应[J].第四军医大学学报,2005,26,18-21.
    48. Njoroge F G, Girijavallabhan V M. Discovery and Advancement of Farnesyl Transferase Inhibitors as Potential Anticancer Therapeutic Agents:SCH 66336 a Case Study [J]. Curr Med Chem-Imm, Endoc& Metab Agents,2001,1,185-198.
    49. Downward, J. The ras superfamily of small GTP-binding proteins [J]. Trends Biochem Sci,1990,15 (12),469-472.
    50. Li T, Sparano J A. Farnesyl transferase inhibitors [J]. Cancer Invest,2008,26(7): 653-661.
    51. Santagada V, Caliendo G, Severino B, et al. Synthesis, pharmacological evaluation, and molecular modeling studies of novel peptidic CAAX analogues as farnesyl-protein-transferase inhibitors [J]. JMed Chem,2006,49(6):1882-1890.
    52. Casey P J, Thissen J A, Moomaw J F. Enzymatic modification of proteins with a geranylgeranyl isoprenoid [J]. Proc Natl Acad Sci,1991,88,8631-8635.
    53. Reiss Y, Stradley S J, Gierasch L M, et al. Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase [J]. Proc Natl Acad Sci, 1991,88,732-736.
    54. Haluska P, Dy G K, Adjei A A. Farnesyl transferase inhibitors as anticancer agents [J]. Eur J Cancer,2002,38(13):1685-1700.
    55. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C [J]. Science (Wash DC),1992,258(5082):607-614.
    56. Wang X, Martindale J L, Liu Y, et al. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival [J]. Biochem J,1998,333(Pt 2):291-300.
    57. Mucha S A, Melen-Mucha G, Godlewski A, et al. Inhibition of estrogen-induced pituitary tumor growth and angiogenesis in Fischer 344 rats by the matrix metalloproteinase inhibitor batimastat [J]. Virchows Arch,2007,450(3):335-41.
    58. Santucci M B, Ciaramella A, Mattei M, et al. Batimastat reduces Mycobacterium tuberculosis-induced apoptosis in macrophages [J]. Int Immunopharmacol,2003, 3(12):1657-1665.
    59. Holst-Hansen C, Low J A, Stephens R W, et al. Increased stromal expression of murine urokinase plasminogen activator in a human breast cancer xenograft model following treatment with the matrix metalloprotease inhibitor, batimastat [J]. Breast Cancer Res Treat,2001,68(3):225-237.
    60. Li J J, Nahra J, Johnson A R, et al. Quinazolinones and pyrido[3,4-d]pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis [J]. JMed Chem,2008,51(4):835-841.
    61. Chen Y, Hu L. Design of anticancer prodrugs for reductive activation [J]. Med Res Rev,2009,29(1):29-64.
    62. van Wijngaarden J, Snoeks T J, van Beek E, et al. An in vitro model that can distinguish between effects on angiogenesis and on established vasculature: actions of TNP-470, marimastat and the tubulin-binding agent Ang-510 [J]. Biochem Biophys Res Commun,2010,391(2):1161-1165.
    63. Bhargava S, Hotz B, Hines O J, et al. Suramin inhibits not only tumor growth and metastasis but also angiogenesis in experimental pancreatic cancer [J]. J Gastrointest Surg,2007,11(2):171-178.
    64. Dua P, Ingle A, Gude R P. Suramin augments the antitumor and antimetastatic activity of pentoxifylline in B16F10 melanoma [J]. Int J Cancer,2007,121(7): 1600-1608.
    65. Alvarado J J, Nemkal A, Sauder J M, et al. Structure of a microsporidian methionine aminopeptidase type 2 complexed with fumagillin and TNP-470 [J]. Mol Biochem Parasitol,2009,168(2):158-167.
    66. Rutland C S, Jiang K, Soff G A, et al. Maternal administration of anti-angiogenic agents, TNP-470 and Angiostatin4.5, induces fetal microphthalmia [J]. Mol Vis, 2009,15:1260-1269.
    67. Yasuda C, Sakata S, Kakinoki S, et al. In vivo evaluation of, microspheres containing the angiogenesis inhibitor, TNP-470, and the metastasis suppression with liver metastatic model implanted neuroblastoma [J]. Pathophysiology,2010, 17(2):149-155.
    68. Jekunen A P, Kairemo K J. Inhibition of malignant angiogenesis [J]. Cancer Treat Rev,1997,23(4):263-286.
    69. Hasinoff B B, Kuschak T I, Yalowich J C, et al. A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane) [J]. Biochem Pharmacol,1995,50(7): 953-958.
    70. Singhal S, Mehta J. Thalidomide in cancer [J]. Biomed Pharmacother,2002,56(1): 4-12.
    71. Du G J, Lin H H, Xu Q T, et al. Thalidomide inhibits growth of tumors through COX-2 degradation independent of antiangiogenesis[J]. Vascul Pharmacol,2005, 43(2):112-119.
    72. Sleijfer S, Kruit W H, Stoter G.Thalidomide in solid tumours:the resurrection of an old drug[J]. Eur J Cancer,2004,40(16):2377-2382.
    73. Tanaka T, Kawai M, Kurihara S. Inotropic Effects of DN-9693:A Selective Cyclic AMP Phosphodiesterase Inhibitor[J]. Curdiovusculur Drug Reviews,1996,14(3): 246-255.
    74. Kondo S, Tanaka N, Kubota S, et al. Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells[J]. Mol Cancer Ther,2006,5(1):129-137.
    75. Isoai A, Goto-Tsukamoto H, Yamori T, et al. Inhibitory effects of tumor invasion-inhibiting factor 2 and its conjugate on disseminating tumor cells[J]. Cancer Res,1994,54(5):1264-1270.
    76. Kainamu O, Asano T, Hasegawa M, et al. Growth inhibition of human pancreatic cancer by farnesyl transferase inhibitor[J]. Gan To Kagaku Ryoho,1996,23: 1657-1659.
    77. Gibbs J B, Oliff A, Kohl N E. Farnesyl transferase inhibitors:Ras reseach yields a potential cancer therapeutic[J]. Cell,1994,77:175-178.
    78. Eskens F A, Stoter G, Verweij J. Farnesyl transferase inhibitors:current developments and future perspectives[J]. Cancer Treat Rev,2000,26(5):319-332.
    79. James G L, Goldstein J L, Brown M S, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells[J]. Science,1993,260: 1937-1942.
    80. James G L, Brown M S, Cobb M H, et al. Benzodiaze pine peptidomimetic BZA-5B interrupts the MAP kinase activation pathway in H-ras transformed Rat-1 cells, but not in untransformed cells[J]. J Biol Chem,1994,269: 27705-27714.
    81. Saha A K, Liu L, Simoneaux R, et al. Novel triazole based inhibitors of Ras farnesyl transferase[J]. Bioorg Med Chem Lett,2005,15(24):5407-5411.
    82. Venet M, End D, Angibaud P. Farnesyl protein transferase inhibitor ZARNESTRA R115777-history of a discovery[J]. Curr Top Med Chem,2003,3(10):1095-1102.
    83. Strickland C L, Weber P C, Windsor W T, et al. Tricyclic farnesyl protein transferase inhibitors:crystallographic and calorimetric studies of structure-activity relationships[J]. J Med Chem,1999,42(12):2125-2135.
    84. Njoroge F G, Vibulbhan B, Pinto P, et al. Trihalobenzocycloheptapyridine analogues of Sch 66336 as potent inhibitors of farnesyl protein transferase[J]. Bioorg Med Chem,2003,11(1):139-143.
    85. Peters D G, Hoover R R, Gerlach M J, et al. Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia[J]. Blood,2001,97(5): 1404-1412.
    86. Hunt J T, Ding C Z, Batorsky R, et al. Discovery of (R)-7-cyano-2,3,4, 5-tetrahydro-l-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity[J]. JMed Chem,2000,43(20):3587-3595.
    87. Reid T S, Beese L S. Crystal structures of the anticancer clinical candidates R115777 (Tipifarnib) and BMS-214662 complexed with protein farnesyltransferase suggest a mechanism of FTI selectivity [J]. Biochemistry,2004, 43(22):6877-6884.
    88. Rowinsky E K, Windle J J, Von Hoff D D. Ras protein farnesyltransferase:A strategic target for anticancer therapeutic development[J]. J Clin Oncol,1999, 17(11):3631-3652.
    89. Bell, I. M.Inhibitors of protein prenylation[J]. Exp Opin Ther Patents,2000, 10(12),1813-1831.
    90. Manne V, Yan N, Carboni J, et al. Bisubstrate inhibitors of farnesyl transferase:a novel class of specific inhibitors of ras transformed cells[J]. Oncogene,1995,10: 1763-1779.
    91. Murphy D A, Makonnen S, Lassoued W, et al. Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006) [J]. Am J Pathol,2006,169(5):1875-1885.
    92. Jane E P, Premkumar D R, Pollack I F. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells[J]. J Pharmacol Exp Ther,2006,319(3):1070-1080.
    93. King A J, Patrick D R, Batorsky R S, et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res,2006,66(23):11100-11105.
    94. Fukuyo Y, Hunt C R, Horikoshi N. Geldanamycin and its anti-cancer activities[J]. Cancer Lett,2010,290(1):24-35.
    95. Wang Y Q, Zhang X M, Wang X D, et al.17-AAG, a Hsp90 inhibitor, attenuates the hypoxia-induced expression of SDF-lalpha and ILK in mouse RPE cells[J]. Mol Biol Rep,2010,37(3):1203-1209.
    96. Wang Y, Van Becelaere K, Jiang P, et al. A role for K-ras in conferring resistance to the MEK inhibitor, CI-1040[J]. Neoplasia,2005,7(4):336-347.
    97. Mody N, Leitch J, Armstrong C, et al. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway[J]. FEBS Lett,2001,502(1-2):21-24.
    98. Marampon F, Bossi G, Ciccarelli C, et al. MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma[J]. Mol Cancer Ther, 2009,8(3):543-51.
    99. Di Paola R, Galuppo M, Mazzon E, Paterniti I, et al. PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice[J]. Pharmacol Res,2010,61(2):175-187.
    100. Lee L M, Davison Z, Heard C M. In vitro delivery of anti-breast cancer agents directly via the mammary papilla (nipple) [J]. Int J Pharm,2010,387(1-2): 161-166.
    101. Duffy M, McGowan P M, Gallagher W M. Cancer Invasion and Metastasis: Changing Views[J]. JPathol 2008,214,283-293.
    102.茆勇军,李海泓,李剑峰等.蛋白酪氨酸激酶信号转导途径与抗肿瘤药物.药学学报,2008,43(4),323-334.
    103. Okumura H, Kobaru S. (Bristol-Meyers Squibb Co.):Compound Produced by a Strain of Micromonospora. U.S.5,541,181, July 30 (1996).
    104. Igarashi Y, Miyanaga S, Onaka H, et al. Revision of the Structure Assigned to the Antibiotic BU-4664L from Micromonopora[J]. JAntibiot,2005,58(5),350-352.
    105. Bachmann B O, McAlpine J B, Zazopoulos E, et al. Farnesyl Dibenzodiazepinones, Processes for Their Production and Their Use as Pharmaceuticals [P]. WO 2004/065591 A1, Aug 5,2004.
    106. Gourdeau H, McAlpine J B, Ranger M, et al. Identification, Characterization and Potent Antitumor Activity of ECO-4601, a Novel Peripheral Benzodiazepine Receptor Ligand[J]. Cancer Chemother Pharmacol,2008,61,911-921.
    107. Olsen R W, Tobin A J. Molecular biology of GABAA receptors[J]. FASEB J,1990, 4(5):1469-1480.
    108. Borhane A, Martha Maria C H, Hennette G. Inhibition of cell migration by a farnesylated dibenzodiazeoinone[P]. WO 2009/124399 Al, Sep 04,2009.
    109. Westmount P F, Meylan F B, Montreal H G, et al. Compositions and methods comprising farnesyl dibenzodlazepinones for targeting neoplastic cells and conditions[P]. US 2006/0079508 Al, Apr 13,2006.
    110. Montreal J M, Saint-Laurent A B, Saint-Laurent M A. Dibenzodlazepinone analogues, processes for their production and their use as pharmaceuticals[P]. US 2006/0079509 A1, Apr 13,2006
    111. Schreiber S L.Target-oriented and diversity-oriented organic synthesis in drug discovery [J]. Science,2000,287(5460):1964-1969
    112. Kranenburg M, Burgt Y E M, Kamer, P C J, et al. New Diphosphine Ligands Based on Heterocyclic Aromatics Inducing Very High Regioselectivity in Rhodium-Catalyzed Hydroformylation:Effect of the Bite Angle [J]. Organometallics,1995,14, 3081-3089.
    113. Frederic P, Joe P, Hartwig J F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides [J]. JAm Chem Soc,1994,116 (13):5969-5970
    114. Guram A S, Stephen L. Buchwald. Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes [J]. JAm Chem Soc,1994,116 (17):7901-7902
    115. Louie J, Hartwig J H. Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents [J]. Tetrahedron Letters,1995,36 (21):3609-3612
    116. Wolfe J P, Buchwald S L. Scope and Limitations of the Pd/BINAP-Catalyzed Amination of Aryl Bromides [J]. J Org Chem,2000,65 (4),1144-1157
    117. Ullmann F, Bielecki J. Ueber Synthesen in der Biphenylreihe [J]. Chemische Berichte,1901,34 (2):2174-2185
    118. Beletskaya I P, Cheprakov A V. Copper in cross-coupling reactions The post-Ullmann chemistry [J]. Coordination Chemistry Reviews,2004,248,2337-2364.
    119. Ma D, Cai Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles [J]. Acc Chem Res,2008,41(11):1450-1460.
    120. Yazawa H, Tanaka K, K Kariyone. The reaction of carboxylic esters with boron tribromide a convenient method for the synthesis of amides and transesterification [J]. Tetra Lett,1974,15(46),3995-3996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700