家蚕corazonin受体信号转导机制及生理功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经多肽是一类由多个氨基酸组成的内源活性物质,广泛存在于生物各个门类中,在生物体内参与了多种生理功能的调节,包括生长、发育、繁殖和内环境的稳定等。家蚕作为大型鳞翅目昆虫,其基因组的测序已完成,可以作为研究神经多肽功能的理想模型;另外,家蚕还具有十分重要的药用价值和经济价值,因此,研究神经肽对家蚕生理功能的调节机制具有重大的实际意义。Corazonin(Crz)神经肽作为昆虫神经多肽家族的重要一员,行使了心率加速、体色改变、物质代谢增减、发育与生理节律调控、蜕皮延迟、吐丝减少等非常广泛的生理功能。Crz由11个氨基酸组成,结构非常保守,在大部分昆虫中是由前侧脑的神经元分泌,也有一些昆虫可以由腹部和食管下神经元分泌产生。然而,目前针对家蚕Crz神经肽的生理功能及其受体的信号转导机制研究尚未得以深入开展。
     基于家蚕全基因组数据库资源,通过生物信息学方法,对已知的昆虫神经肽和神经肽受体的序列进行比对分析,发现在进化上比较保守的昆虫(包括烟草天蛾和果蝇等)的神经肽Crz受体与家蚕神经肽受体A21(BNGR-A21)有着高度的相似性,它们都是具有7次跨膜结构的G蛋白偶联受体(G protein-coupled receptor, GPCR),推测家蚕BNGR-A21应为其Crz受体。以此为基础,对BNGR-A21介导的信号转导路径进行了研究,发现在哺乳动物细胞HEK293和昆虫细胞BmN、Sf21中,BNGR-A21能唯一地被家蚕Crz激活,因此可以将家蚕的BNGR-A21定名为家蚕corazonin受体(Bombyx mori Corazonin Receptor, BmCrzR)。进一步实验表明,BmCrz与BmCrzR有着高亲和力,且BmCrzR被BmCrz激活后,能进一步激活腺苷酸环化酶产生第二信使cAMP的积累,并且这一反应不能被百日咳毒素(PTX:Gai蛋白的抑制剂)所抑制,也不能被霍乱毒素(CTX:持续性激活Gαs蛋白)所饱和;同时,BmCrzR被BmCrz激活后,可以检测到较强的胞内Ca2+信号,且这一反应能被Gαq的抑制剂YM-254890所抑制。以上结果表明cAMP和Ca2+作为第二信使共同参与了BmCrzR的下游的信号传递,也表明BmCrzR同时偶联Gαs和Gaq的G蛋白,介导了胞外至胞内的信号转导。
     丝裂原活化蛋白激酶(Mitogen-Activated Protein Kinase, MAPK)作为重要的细胞信号传递因子广泛参与生物多种生理过程的调控,它的直接作用靶点之一就是细胞外调节激酶(Extracecullar Regulated protein Kinase, ERK1/2)。本研究的结果显示,BmCrzR能显著介导ERK1/2的磷酸化且呈现出配体浓度和时间梯度的依赖性,ERK1/2磷酸化程度受到蛋白激酶A(PKA)、蛋白激酶C(PKC)和胞外钙离子的调控。
     内吞是介导GPCR脱敏的重要机制。研究结果表明,BmCrzR的内吞呈现BmCrz的处理时间和浓度依赖性,且可以被PKA、PKC的抑制剂和胞外钙离子螯合剂的作用所抑制。由于β-arrestin对GPCR的内吞十分重要,本研究克隆了昆虫中与β-arrestin同源的协助蛋白kurtz,实验结果表明,BmCrzR内吞需要招募协助蛋白β-arrestin1、β-arrestin2和kurtz到细胞膜上,与P-arrestin1相比,受体招募β-arrestin2和kurtz有着更高的亲和力。单独干扰β-arrestinl或β-arrestin2的表达,受体的内吞都不会受到明显的影响,但同时干扰β-arrestin1和β-arrestin2的表达,BmCrzR的内吞则受到了抑制。结果说明,BmCrzR的内吞可以同时招募α-arrestin1和β-arrestin2,但是β-arrestin2和kurtz是BmCrzR内吞主要的调控因子;另外,干扰网格蛋白表达后,BmCrzR的内吞没有受到影响,说明其内吞不需要网格蛋白的协助。BmCrzR内吞后,会进入到早期内含体,并在配体移除后回到细胞膜上。GPCR的C末端对于其信号转导和内吞是非常重要的,为了阐释BmCrzR构效机制与信号转导间的关系,本研究构建了BmCrzR C末端的四个缺失突变体,结果显示BmCrzR(Δ408-422)的缺失突变体对BmCrzR的内吞造成了影响,说明在第408-422区域的氨基酸中包含了与BmCrzR内吞相关的关键位点。进一步研究发现,正是这个区域中的411-413位的TSS丝氨酸/苏氨酸簇在一定程度上影响了BmCrzR的内吞。
     最后本研究对家蚕BmCrzR的基因表达组织分布进行检测,并采用基因沉默技术从体内实验水平对其功能进行分析。实时荧光定量PCR检测的结果显示,在五龄家蚕中,BmCrzR在大部分组织中都有表达,其中在后部丝腺中表达量最高,在脑、表皮、脂肪体、中肠、马氏管、卵巢和睾丸中表达量相对较低。siRNA是近年来用于特异基因沉默的有效手段。我们体外注射了能够干扰BmCrzR表达的dsRNA和家蚕Crz,结果表明BmCrz/BmCrzR可能直接或者间接的影响了家蚕的吐丝以及物质和能量代谢。
     综上所述,本论文丰富了家蚕corazomn神经肽及其受体的信号转导机制的理论基础,对于BmCrzR介导的下游第二信使cAMP和Ca2+的产生、受体的内吞、ERK1/2磷酸化路径等信号通路进行了较为详细的阐释,为日后进一步深入、系统地研究家蚕神经肽受体信号转导通路和神经肽介导的生理功能奠定了基础。
Neuropeptides are neuronal signaling molecules consisting of short chains of amino acids used for cell-to-cell communication. Neuropeptides have been identified from all levels of organism ranging from hydrozoans to Drosophila to humans, and play essential roles in the regulation of a wide range of physiological functions including growth, development, food intake, metabolism, reproduction, social behaviors, learning and memory. The silkworm, Bombyx mori, in addition to its utility as an economically important insect for silk production, has been served as an important model for biochemical, genetic and genomic studies. The availability of complete genome sequences, a relatively large body size, and obvious developmental markers make the silkworm well-suited for elucidation of novel functions and mechanisms of neuropeptides in the regulation of growth and development. Corazonin (Crz) is one of the important neuropeptides in insects, which is playing different physiological roles in the regulation of heart contraction rates, silk spinning rates, the induction of dark color and morphometric phase changes, and ecdysis. It has been identified in most arthropods examined with the notable exception of beetles and an aphid. As a conserved oligopeptide comprised by11amino acids, Crz mostly distributes in neurosecretory neurons of the protocerebrum with some in abdominal and suboesophageal ganglia. However, its signaling pathways and physiological function in Bombyx mori remian obscure so far.
     Based on the database of Bombyx mori genome, we made sequence alignment with pubulished genome of different insects. Results showed that insects corazonin receptor (including Manduca sexta and Drosophila melanogaster) had the high homologies with Bombyx mori neuropeptide receptor A21(BNGR-A21). And they all have the typical seven-transmembrane domain as the G-protein-coupled receptor (GPCR). Thus we proposed that BNGR-A21might be the corazonin receptor in silkworm. Based on the assumption, a systematic and intensive research was made on BNGR-A21mediated signaling pathway and its probable physiological roles by performing a series of experiments (including cAMP measurement, internalization, ERK phosphorylation). In the current study, using both the mammalian cell line HEK293and insect cell lines BmN and Sf21, we paired the Bombyx corazonin neuropeptide as a specific endogenous ligand for BNGR-A21, and we therefore designated this receptor as BmCrzR. The direct interaction of BmCrzR with BmCrz was confirmed by a Rhodamine-labeled BmCrz peptide, indicating that synthetic BmCrz demonstrated a high affinity for and activated BmCrzR. The activated receptor mediated the intracellular cAMP accumulation by activation of adenylate cyclase. Besides, the induced cAMP could not be inhibited by PTX (Pertussis toxin), nor saturated by CTX (Choleratoxin). When stimulated by Crz, BmCrzR could also mobilized Ca2+, which could be blocked by Gaq inhibitor YM-254890. Above results showed that cAMP and Ca2+participated in the process of downstream cascades, indicating that both Gaq and Gas involved in the BmCrzR mediated signal transduction.
     Mitogen-activated protein kinase pathways (MAPK) play an important role in regulation of physiological process. Our research demonstrated that activated BmCrzR can evoke ERK1/2phosphorylation in time-and Crz dose-dependent ways, and the phosphorylation was regulated by cAMP/PKA and Ca2+/PKC signaling pathway.
     Internalization is an essential mechanism for GPCR desensitization. Our results revealed that the internalization of BmCrzR stimulated by BmCrz was in the time-and dose-dependent manner and could be blocked by inhibitors of PKA、PKC and chelator of extracecullar Ca2+. As β-arrestins involved in the internalization of many GPCR, we cloned kurtz gene, an non-visual arrestin in Drosophila melanogaster from Bombyx mori, Bm-kurtz.When BmCrzR internalized in cytoplasm, β-arrestins and kurtz were recruited on the cell membrane. Compared with β-arrestin1, BmCrzR had a higher affinity with β-arrestin2and kurtz. The internalization of BmCrzR was not influenced when only β-arrestinl or β-arrestin2was silenced by siRNA. However, simultaneous knockdown of β-arrestins1and β-arrestins2notably inhibited the internalizaiton of BmCrzR, suggesting that both arrestins participating in the process of BmCrzR internalization. Besides, knockdown of clathrin indicated that it is not essential for BmCrzR internalization. Further investigation demonstrated that internalized BmCrzR was sorted in endosomes and recycled to the cell surface after the removal of agonist. In general, C-terminal is very important in GPCR signaling. In order to clarifying the relationship of structure and function, we constructed four mutants through deleting some sequences in C-terminal of BmCrzR. Results indicated that the internalization of BmCrzR (Δ408-422) was significantly blocked, suggesting the sequence (408-422) contains some sites or domains responsible for internalization. Further exploration proposed that it was the411-413Ser/Thr cluster that is responsable for the inhibited internalization of BmCrzR.
     Results from quantitative RT-PCR showed that BmCrzR expression was detectable in most of the tissues, of which the silk gland was found as a major expression site, whereas other tissues, including brain, fat body, epidermis, midgut, Malpighian tubule, testis and ovary, expressing BmCrzR at a lower level.siRNA has been used as one of effective methods to knockdown of the target gene expression in recent years. In order to access the physiological processes of BmCrzR, we used in vitro siRNA injection to inhibit the BmCrzR expression in silkworm. Experiments with dsRNA and synthetic peptide injection suggested a possible role of BmCrz/BmCrzR in the regulation of larval growth and spinning rate.
     Our present results provide the first in-depth information on BmCrzR-mediated signaling, inculding intracellcular accumulation of cAMP, Ca2+, ERK1/2phosphoylation and receptor internalization. Combined with the study of physiology, these results will lead to a better understanding of the BmCrz/BmCrzR system in the regulation of fundamental physiological processes.
引文
1. M. J. Klowden. Contributions of insect research toward our understanding of neurosecretion. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003,53 (3):101-114
    2. M. D. Adams, S. E. Celniker, R. A. Holt, et al. The genome sequence of Drosophila melanogaster. Science 2000,287 (5461):2185-2195
    3. R. A. Holt, G. M. Subramanian, A. Halpern, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002,298 (5591):129-149
    4. Q. Xia, Z. Zhou, C. Lu, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004,306 (5703):1937-1940
    5. K. Mita, M. Kasahara, S. Sasaki, et al. The genome sequence of silkworm, Bombyx mori. DNA Res 2004,11(1):27-35
    6. V. Nene, J. R. Wortman, D. Lawson, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007,316 (5832):1718-1723
    7. G. M. Weinstock, e. al. and H. G. S. Consort. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006,443 (7114):931-949
    8. S. Richards, R. A. Gibbs, G. M. Weinstock, et al. The genome of the model beetle and pest Tribolium castaneum. Nature 2008,452 (7190):949-955
    9. L. Roller, N. Yamanaka, K. Watanabe, et al. The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 2008,38 (12):1147-1157
    10. C. J. P. Grimmelikhuijzen and F. Hauser. Mini-review:The evolution of neuropeptide signaling. Regulatory Peptides 2012,177 S6-S9
    11. Y. Fan, P. Sun, Y. Wang, et al. The G protein-coupled receptors in the silkworm, Bombyx mori. Insect Biochem Mol Biol 2010,40 (8):581-591
    12. K. P. Singh and R. S. Jayasomu. Bombyx mori-A review of its potential as a medicinal insect. Pharmaceutical Biology 2002,40 (1):28-32
    13. Q. Xia, Y. Guo, Z. Zhang, et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 2009,326 (5951):433-436
    14. N. Yamanaka, S. Yamamoto, D. Zitnan, et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One 2008,3(8):e3048
    15. J. A. Veenstra. Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 1989,250 (2):231-234
    16. R. Predel, S. Neupert, W. K. Russell, et al. Corazonin in insects. Peptides 2007,28 (1):3-10
    17. B. Boerjan, P. Verleyen, J. Huybrechts, et al. In search for a common denominator for the diverse functions of arthropod corazonin:a role in the physiology of stress? Gen Comp Endocrinol 2010,166 (2):222-233
    18. J. A. Veenstra and N. T. Davis. Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res 1993,274 (1):57-64
    19. A. I. Tawfik, S. Tanaka, A. De Loof, et al. Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proceedings of the National Academy of Sciences of the United States of America 1999,96 (12):7083-7087
    20. S. Tanaka. The role of [His7]-corazonin in the control of body-color polymorphism in the migratory locust Locusta migratoria (Orthoptera:Acrididae). J Insect Physiol 2000,46 (8):1169-1176
    21. S. Tanaka. Corazonin and locust phase polyphenism. Applied Entomology and Zoology 2006,41 (2):179-193
    22. J. A. Veenstra. Isolation and structure of the Drosophila corazonin gene. Biochem Biophys Res Commun 1994,204 (1):292-296
    23. G. Baggerman, A. Cerstiaens, A. De Loof, et al. Peptidomics of the larval Drosophila melanogaster central nervous system. JBiol Chem 2002,277 (43):40368-40374
    24. Y. J. Choi, G. Lee, J. C. Hall, et al. Comparative analysis of Corazonin-encoding genes (Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J Comp Neurol 2005,482 (4): 372-385
    25. S. H. Choi, G. Lee, P. Monahan, et al. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol 2008,507 (2): 1184-1195
    26. Y. J. Hua, J. Ishibashi, H. Saito, et al. Identification of [Arg(7)] corazonin in the silkworm, Bombyx mori and the cricket, Gryllus bimaculatus, as a factor inducing dark color in an albino strain of the locust, Locusta migratoria. J Insect Physiol 2000,46 (6):853-859
    27. I. A. Hansen, F. Sehnal, S. R. Meyer, et al. Corazonin gene expression in the waxmoth Galleria mellonella. Insect Mol Biol 2001,10 (4):341-346
    28. J. A. Veenstra. Presence of corazonin in three insect species, and isolation and identification of [His7]corazonin from Schistocerca americana. Peptides 1991,12 (6):1285-1289
    29. M. A. Riehle, S. F. Garczynski, J. W. Crim, et al. Neuropeptides and peptide hormones in Anopheles gambiae. Science 2002,298 (5591):172-175
    30. L. Roller, S. Tanaka, K. Kimura, et al. Molecular cloning of [Thr(4), His(7)]-corazonin (Apime-corazonin) and its distribution in the central nervous system of the honey bee Apis mellifera (Hymenoptera:Apidae). Applied Entomology and Zoology 2006,41 (2):331-338
    31. P. Verleyen, G. Baggerman, I. Mertens, et al. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera. Peptides 2006,27 (3):493-499
    32. R. Zavodska, C. J. Wen, I. Hrdy, et al. Distribution of corazonin and pigment-dispersing factor in the cephalic ganglia of termites. Arthropod Struct Dev 2008,37 (4):273-286
    33. R. Zavodska, C. J. Wen, F. Sehnal, et al. Corazonin- and PDF-immunoreactivities in the cephalic ganglia of termites. JInsect Physiol 2009,55 (5):441-449
    34. B. P. Settembrini, D. de Pasquale, M. Postal, et al. Distribution and characterization of Corazonin in the central nervous system of Triatoma infestans (Insecta:Heteroptera). Peptides 2011,32 (3): 461-468
    35. R. Predel, R. Kellner and G. Gade. Myotropic neuropeptides from the retrocerebral complex of the stick insect, Carausius morosus (Phasmatodea:Lonchodidae). European Journal of Entomology 1999,96 (3):275-278
    36. R. Predel, W. K. Russell, D. H. Russell, et al. Comparative peptidomics of four related hemipteran species:pyrokinins, myosuppressin, corazonin, adipokinetic hormone, sNPF, and periviscerokinins. Peptides 2008,29 (2):162-167
    37. L. Roller, Y. Tanaka and S. Tanaka. Corazonin and corazonin-like substances in the central nervous system of the Pterygote and Apterygote insects. Cell Tissue Res 2003,312 (3):393-406
    38. B. Li, R. Predel, S. Neupert, et al. Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 2008,18 (1):113-122
    39. R. J. Weaver and N. Audsley. Neuropeptides of the beetle, Tenebrio molitor identified using MALDI-TOF mass spectrometry and deduced sequences from the Tribolium castaneum genome. Peptides 2008,29 (2):168-178
    40. G. Gade, H. G. Marco, P. Simek, et al. Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum:a case study with beetles and moths. Peptides 2008,29 (7):1124-1139
    41. F. Hauser, G. Cazzamali, M. Williamson, et al. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 2008,29 (1):142-165
    42. J. Huybrechts, J. Bonhomme, S. Minoli, et al. Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 2010,19 Suppl 287-95
    43. R. Cantera, J. A. Veenstra and D. R. Nassel. Postembryonic development of corazonin-containing neurons and neurosecretory cells in the blowfly, Phormia terraenovae. J Comp Neurol 1994,350 (4): 559-572
    44. R. Predel, H. Agricola, D. Linde, et al. The Insect Neuropeptide Corazonin-Physiological and Immunocytochemical Studies in Blattariae. Zoology-Analysis of Complex Systems 1994,98 (1):35-49
    45. L. Schoofs, G. Baggerman, D. Veelaert, et al. The pigmentotropic hormone [His(7)]-corazonin, absent in a Locusta migratoria albino strain, occurs in an albino strain of Schistocerca gregaria. Mol Cell Endocrinol 2000,168(1-2):101-109
    46. S. Wise, N. T. Davis, E. Tyndale, et al. Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol 2002,447 (4):366-380
    47. Y. Hamanaka, K. Yasuyama, H. Numata, et al. Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly Protophormia terraenovae. Journal of Comparative Neurology 2005,491 (4):390-399
    48. G. Lee, K. M. Kim, K. Kikuno, et al. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster. Cell Tissue Res 2008,331 (3):659-673
    49. K. Sha, W. C. Conner, D. Y. Choi, et al. Characterization, expression, and evolutionary aspects of Corazonin neuropeptide and its receptor from the House Fly, Musca domestica (Diptera:Muscidae). Gene 2012,497(2):191-199
    50. S. Qi-Miao, S. Tanaka and M. Takeda. Immunohistochemical localization of clock proteins (DBT and PER), and [His7]-and [Arg7]-corazonins in the cerebral ganglia of Bombyx mori:Are corazonins downstream regulators of circadian clocks? European Journal of Entomology 2003,100 (2):283-286
    51. G. J. Roch, E. R. Busby and N. M. Sherwood. Evolution of GnRH:diving deeper. Gen Comp Endocrinol 2011,171 (1):1-16
    52. M. M. Rahman, S. Neupert and R. Predel. Neuropeptidomics of the Australian sheep blowfly Lucilia cuprina (Wiedemann) and related Diptera. Peptides 2012,
    53. J. Zoephel, W. Reiher, K. H. Rexer, et al. Peptidomics of the agriculturally damaging larval stage of the cabbage root fly Delia radicum (Diptera:Anthomyiidae). PLoS One 2012,7 (7):e41543
    54. Y. Yerushalmi, K. Bhargava, C. Gilon, et al. Structure-activity relations of the dark-colour-inducing neurohormone of locusts. Insect Biochem Mol Biol 2002,32 (8):909-917
    55. C. Grach, Y. Wang, Y. Barda, et al. In vivo structure-activity studies on the dark-color-inducing neurohormone of locusts. Journal of Peptide Research 2003,62 (1):37-44
    56. Y. Tanaka, J. Ishibashi and S. Tanaka. Comparison of structure-activity relations of corazonin using two different bioassay systems. Peptides 2003,24 (6):837-844
    57. K. Slama, T. Sakai and M. Takeda. Effect of corazonin and crustacean cardioactive peptide on heartbeat in the adult American cockroach (Periplaneta americana). Arch Insect Biochem Physiol 2006, 62 (2):91-103
    58. J. F. Hillyer, T. Y. Estevez-Lao, L. J. Funkhouser, et al. Anopheles gambiae corazonin:gene structure, expression and effect on mosquito heart physiology. Insect Mol Biol 2012,21 (3):343-355
    59. K. Slama. The effect of corazonin on heartbeat reversal in pupae of the tobacco hornworm, Manduca sexta (Lepidoptera:Sphingidae). European Journal of Entomology 2004,101 (4):513-521
    60. B. Hoste, S. J. Simpson, A. De Loof, et al. Behavioural differences in Locusta migratoria associated with albinism and their relation to [His(7)]-corazonin. PHYSIOLOGICAL ENTOMOLOGY 2003,28(1):32-38
    61.朱道弘,阳柏苏.飞蝗变型及体色多型的内分泌控制机理.动物学研究2004,(05):460-464
    62. B. Boerjan, A. De Loof, S. Tanaka, et al. Dispersion of peptides in vegetable oil as a simple slow release formula for both injection and oral uptake in insects:a case study with [His7]-corazonin in an albino Locusta migratoria deficient in corazonin. Peptides 2011,32 (7):1536-1539
    63. M. Altstein, Y. Gazit, O. BenAziz, et al. Induction of cuticular melanization in Spodoptera littoralis larvae by PBAN/MRCH:Development of a quantitative bioassay and structure function analysis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1996,31 (4):355-370
    64. E. C. Johnson, O. T. Shafer, J. S. Trigg, et al. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 2005,208 (Pt 7):1239-1246
    65. A. Sellami, G. Isabel and J. A. Veenstra. Expression of the mu opioid receptor in Drosophila and its effects on trehalose and glycogen when expressed by the AKH neuroendocrine cells. Peptides 2010, 31(7):1383-1389
    66. L. Auerswald and G. Gade. Endocrine control of TAG lipase in the fat body of the migratory locust, Locusta migratoria. Insect Biochem Mol Biol 2006,36 (10):759-768
    67. K. D. McClure and U. Heberlein. A Small Group of Neurosecretory Cells Expressing the Transcriptional Regulator apontic and the Neuropeptide corazonin Mediate Ethanol Sedation in Drosophila. JNeurosci 2013,33 (9):4044-4054
    68. N. Kapan, O. V. Lushchak, J. Luo, et al. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci 2012,
    69. A. Sellami, C. Wegener and J. A. Veenstra. Functional significance of the copper transporter ATP7 in peptidergic neurons and endocrine cells in Drosophila melanogaster. FEBS Lett 2012,586 (20):3633-3638
    70. N. Audsley and R. J. Weaver. A comparison of the neuropeptides from the retrocerebral complex of adult male and female Manduca sexta using MALDI-TOF mass spectrometry. Regul Pept 2003,116 (1-3):127-137
    71. R. Zavodska, S. Fexova, G. von Wowern, et al. Is the Sex Communication of Two Pyralid Moths, Plodia interpunctella and Ephestia kuehniella, under Circadian Clock Regulation? J Biol Rhythms 2012, 27 (3):206-216
    72. A. O. Bergland, H. S. Chae, Y. J. Kim, et al. Fine-scale mapping of natural variation in fly fecundity identifies neuronal domain of expression and function of an aquaporin. PLoS Genet 2012,8 (4):e1002631
    73. Y. Zhao, C. A. Bretz, S. A. Hawksworth, et al. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS One 2010,5 (2):e9141
    74. T. D. Tayler, D. A. Pacheco, A. C. Hergarden, et al, A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 2012,109 (50):20697-20702
    75. G. Lee, Z. Wang, R. Sehgal, et al. Drosophila caspases involved in developmental regulated programmed cell death of peptidergic neurons during early metamorphosis. J Comp Neurol 2011,519 (1):34-48
    76. G. Lee, R. Sehgal, Z. Wang, et al. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster. Biol Open 2013,2 (3):283-294
    77. S. Choi. The Regulation of neuropeptide corazonin and its functional analyses in Drosophila melanogaster. Tennessee:University of Tennessee,2009,
    78. M. J. McDonald and M. Rosbash. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 2001,107 (5):567-578
    79. I. Sauman and S. M. Reppert. Circadian clock neurons in the silkmoth Antheraea pernyi:novel mechanisms of Period protein regulation. Neuron 1996,17 (5):889-900
    80. Y. J. Kim, I. Spalovska-Valachova, K. H. Cho, et al. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci USA 2004,101 (17):6704-6709
    81. Y. Tanaka, Y. Hua, L. Roller, et al. Corazonin reduces the spinning rate in the silkworm, Bombyx mori. J Insect Physiol 2002,48 (7):707-714
    82. J. A. Veenstra. Does corazonin signal nutritional stress in insects? Insect Biochem Mol Biol 2009, 39 (11):755-762
    83. G. Cazzamali, N. Saxild and C. Grimmelikhuijzen. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun 2002,298 (1):31-36
    84. M. Belmont, G. Cazzamali, M. Williamson, et al. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 2006,344 (1):160-165
    85. Y. Park, Y. J. Kim and M. E. Adams. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci USA 2002,99(17):11423-11428
    86. F. Hauser, G. Cazzamali, M. Williamson, et al. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 2006,80 (1):1-19
    87. K. K. Hansen, E. Stafflinger, M. Schneider, et al. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems.J Biol Chem 2010,285 (14):10736-10747
    88. Y. Shi, H. Huang, X. Deng, et al. Identification and functional characterization of two orphan G-protein-coupled receptors for adipokinetic hormones from silkworm Bombyx mori. J Biol Chem 2011,286 (49):42390-42402
    89. K. Sato, M. Pellegrino, T. Nakagawa, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008,452 (7190):1002-1006
    90. R. Smart, A. Kiely, M. Beale, et al. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 2008,38 (8):770-780
    91. D. Wicher, R. Schafer, R. Bauernfeind, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008,452 (7190):1007-U1010
    92. Q. Y. Xia, J. Wang, Z. Y. Zhou, et al. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 2008,38 (12):1036-1045
    93. T. Homma, K. Watanabe, S. Tsurumaru, et al. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochemical and Biophysical Research Communications 2006,344 (1):386-393
    94. L. M. Jorgensen, F. Hauser, G. Cazzamali, et al. Molecular identification of the first SIFamide receptor. Biochem Biophys Res Commun 2006,340 (2):696-701
    95. S. Matsumoto, J. Joe Hull, A. Ohnishi, et al. Molecular mechanisms underlying sex pheromone production in the silkmoth, Bombyx mori:Characterization of the molecular components involved in bombykol biosynthesis. Journal of Insect Physiology 2007,53 (8):752-759
    96. S. Matsumoto, J. J. Hull and A. Ohnishi. Molecular mechanisms underlying PBAN signaling in the silkmoth Bombyx mori. Ann N YAcad Sci 2009,1163 464-468
    97. T. Secher, C. Lenz, G. Cazzamali, et al. Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori. J Biol Chem 2001,276 (50):47052-47060
    98. N. Yamanaka, D. Zitnan, Y. J. Kim, et al. Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Pro cNatl Acad Sci USA 2006,103 (23):8622-8627
    99. N. Yamanaka, Y. J. Hua, L. Roller, et al. Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci U S A 2010,107 (5): 2060-2065
    100. J. Huang, T. Hamasaki, F. Ozoe, et al. Single amino acid of an octopamine receptor as a molecular switch for distinct G protein couplings. Biochem Biophys Res Commun 2008,371 (4): 610-614
    101. A. Ohtani, Y. Arai, F. Ozoe, et al. Molecular cloning and heterologous expression of an alpha-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Mol Biol 2006,15 (6):763-772
    102. E. von Nickisch-Rosenegk, J. Krieger, S. Kubick, et al. Cloning of biogenic amine receptors from moths (Bombyx mori and Heliothis virescens). Insect Biochem Mol Biol 1996,26 (8-9):817-827
    103. X. Chen, H. Ohta, F. Ozoe, et al. Functional and pharmacological characterization of a beta-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Biochem Mol Biol 2010,40 (6):476-486
    104. J. D. Reagan. Expression cloning of an insect diuretic hormone receptor. A member of the calcitonin/secretin receptor family. J Biol Chem 1994,269 (1):9-12
    105. J. D. Reagan. Functional expression of a diuretic hormone receptor in baculovirus-infected insect cells:evidence suggesting that the N-terminal region of diuretic hormone is associated with receptor activation. Insect Biochem Mol Biol 1995,25 (4):535-539
    106. N. Birgul, C. Weise, H. J. Kreienkamp, et al. Reverse physiology in drosophila:identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J 1999,18 (21):5892-5900
    107. M. J. Larsen, K. J. Burton, M. R. Zantello, et al. Type A allatostatins from Drosophila melanogaster and Diplotera puncata activate two Drosophila allatostatin receptors, DAR-1 and DAR-2, expressed in CHO cells. Biochem Biophys Res Commun 2001,286 (5):895-901
    108. C. Lenz, M. Williamson and C. J. Grimmelikhuijzen. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster. Biochem Biophys Res Commun 2000,273 (2):571-577
    109. C. Lenz, M. Williamson, G. N. Hansen, et al. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem Biophys Res Commun 2001,286 (5):1117-1122
    110. S. F. Garczynski, M. R. Brown, P. Shen, et al. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 2002,23 (4):773-780
    111. N. Yapici, Y. J. Kim, C. Ribeiro, et al. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 2008,451 (7174):33-U31
    112. K. F. Rewitz, N. Yamanaka, L. I. Gilbert, et al. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 2009,326 (5958):1403-1405
    113. S. C. Young, W. L. Yeh and S. H. Gu. Transcriptional regulation of the PTTH receptor in prothoracic glands of the silkworm, Bombyx mori. J Insect Physiol 2012,58 (1):102-109
    114. F. Staubli, T. J. Jorgensen, G. Cazzamali, et al. Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 2002,99 (6):3446-3451
    115. J. Huang, H. Ohta, N. Inoue, et al. Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochemistry and Molecular Biology 2009,39 (11):842-849
    116.顾燕燕,华荣胜,周耐明等.家蚕滞育激素受体基因(BmDHR)的分子克隆及定量分析.蚕业科学2008,(03):417-423
    117.章玉萍,蒋剑豪,张建设等.家蚕G蛋白α亚基基因BmGa73B的克隆与表达.昆虫学报2008,(08):785-791
    118.章玉萍,蒋剑豪,赵云坡等.家蚕G蛋白γ1亚基(BmGyl)的克隆及其谷胱甘肽硫转移酶融合蛋白的表达与纯化.蚕业科学2008,(04):627-633
    119.刘艳艳,池旭娟,方向明等.家蚕蛋白激酶C受体基因(Bmrack)的克隆及序列分析.蚕业科学2009,(03):623-629
    120. E. L. Arrese, M. T. Flowers, J. L. Gazard, et al. Calcium and cAMP are second messengers in the adipokinetic hormone-induced lipolysis of triacylglycerols in Manduca sexta fat body. J Lipid Res 1999, 40 (3):556-564
    121. G. Gade and L. Auerswald. Mode of action of neuropeptides from the adipokinetic hormone family. Gen Comp Endocrinol 2003,132 (1):10-20
    122. M. Manaboon, M. Iga, M. Iwami, et al. Intracellular mobilization of Ca2+by the insect steroid hormone 20-hydroxyecdysone during programmed cell death in silkworm anterior silk glands. Journal of Insect Physiology 2009,55 (2):123-129
    123. M. Hoff, S. Balfanz, P. Ehling, et al. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. FASEB J 2011,25 (7):2484-2491
    124. J. Hernandez-Sanchez, J. G. Valadez, J. V. Herrera, et al. lambda bar minigene-mediated inhibition of protein synthesis involves accumulation of peptidyl-tRNA and starvation for tRNA. EMBO J 1998,17 (13):3758-3765
    125. J. Hernandez, C. Ontiveros, J. G. Valadez, et al. Regulation of protein synthesis by minigene expression. Biochimie 1997,79 (8):527-531
    126. K. Lorenz, J. P. Schmitt, E. M. Schmitteckert, et al. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 2009,15(1):75-83
    127. Y. Sun, Z. Cheng, L. Ma, et al. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. JBiol Chem 2002,277 (51):49212-49219
    128. W. F. Schwindinger and J. D. Robishaw. Heterotrimeric G-protein betagamma-dimers in growth and differentiation. Oncogene 2001,20 (13):1653-1660
    129. S. Ahn, J. Kim, M. R. Hara, et al.{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation. JBiol Chem 2009,284 (13):8855-8865
    130. Y. Fujiwara, C. Shindome, M. Takeda, et al. The roles of ERK and P38 MAPK signaling cascades on embryonic diapause initiation and termination of the silkworm, Bombyx mori. Insect Biochem Mol Biol 2006,36(1):47-53
    131. J. J. Hull, A. Ohnishi, K. Moto, et al. Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization. JBiol Chem 2004,279 (49):51500-51507
    132. J. J. Hull, A. Ohnishi and S. Matsumoto. Regulatory mechanisms underlying pheromone biosynthesis activating neuropeptide (PBAN)-induced internalization of the Bombyx mori PBAN receptor. Biochem Biophys Res Commun 2005,334 (1):69-78
    133. H. Huang, X. He, X. Deng, et al. Bombyx adipokinetic hormone receptor activates extracellular signal-regulated kinase 1 and 2 via G protein-dependent PKA and PKC but beta-arrestin-independent pathways. Biochemistry 2010,49 (51):10862-10872
    134. Y. Jiang, A. M. Cypess, E. D. Muse, et al. Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 2001, 98(18):10102-10107
    135. K. J. Soeder, S. K. Snedden, W. Cao, et al. The beta3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 1999, 274(17):12017-12022
    136. M. H. Verheijen and L. H. Defize. Parathyroid hormone activates mitogen-activated protein kinase via a cAMP-mediated pathway independent of Ras. JBiol Chem 1997,272 (6):3423-3429
    137. J. Friedman, B. Babu and R. B. Clark. Beta(2)-adrenergic receptor lacking the cyclic AMP-dependent protein kinase consensus sites fully activates extracellular signal-regulated kinase 1/2 in human embryonic kidney 293 cells:lack of evidence for G(s)/G(i) switching. Mol Pharmacol 2002, 62(5):1094-1102
    138. E. Rozengurt. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 2007,213 (3):589-602
    139. Y. Daaka, L. M. Luttrell, S. Ahn, et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. JBiol Chem 1998,273 (2):685-688
    140. M. Schmidt and M. C. Michel. How can 1+1=3? beta2-adrenergic and glucocorticoid receptor agonist synergism in obstructive airway diseases. Mol Pharmacol 2011,80 (6):955-958
    141. S. S. Ferguson, J. Zhang, L. S. Barak, et al. G-protein-coupled receptor kinases and arrestins: regulators of G-protein-coupled receptor sequestration. Biochem Soc Trans 1996,24 (4):953-959
    142. S. S. Ferguson, J. Zhang, L. S. Barak, et al. Role of beta-arrestins in the intracellular trafficking of G-protein-coupled receptors. Adv Pharmacol 1998,42 420-424
    143. R. J. Lefkowitz and E. J. Whalen. beta-arrestins:traffic cops of cell signaling. Curr Opin Cell Biol 2004,16(2):162-168
    144. R. J. Lefkowitz and S. K. Shenoy. Transduction of receptor signals by beta-arrestins. Science 2005,308 (5721):512-517
    145. S. M. DeWire, S. Ahn, R. J. Lefkowitz, et al. Beta-arrestins and cell signaling. Annu Rev Physiol 2007,69483-510
    146. S. K. Shenoy and R. J. Lefkowitz. beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 2011,32 (9):521-533 147. S. Katsuma, K. Mita and T. Shimada. ERK-and JNK-Dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. Journal of Virology 2007,81 (24):13700-13709
    148. Y. Fujiwara, Y. Tanaka, K.-i. Iwata, et al. ERK/MAPK regulates ecdysteroid and sorbitol metabolism for embryonic diapause termination in the silkworm, Bombyx mori. Journal of Insect Physiology 2006,52 (6):569-575
    149. Y. Fujiwara and K. Shiomi. Distinct effects of different temperatures on diapause termination, yolk morphology and MAPK phosphorylation in the silkworm, Bombyx mori. J Insect Physiol 2006, 52(11-12):1194-1201
    150. Y. Fujiwara, Y. Tanaka, K. Iwata, et al. ERK/MAPK regulates ecdysteroid and sorbitol metabolism for embryonic diapause termination in the silkworm, Bombyx mori. J Insect Physiol 2006, 52 (6):569-575
    151. L. Ma, S. Liu, M. Shi, et al. Rasl-Upregulated bcpi Inhibits Cathepsin Activity to Prevent Tissue Destruction of the Bombyx Posterior Silk Gland. J Proteome Res 2013,
    152. J. H. Kim, J. S. Choi and B. H. Lee. PI3K/Akt and MAPK pathways evoke activation of FoxO transcription factor to undergo neuronal apoptosis in brain of the silkworm Bombyx mori (Lepidoptera: Bombycidae). Cell Mol Biol (Noisy-le-grand) 2012, Suppl.58 OL1780-1785
    153. S. H. Gu, S. C. Young, W. H. Tsai, et al. Involvement of 4E-BP phosphorylation in embryonic development of the silkworm, Bombyx mori. J Insect Physiol 2011,57 (7):978-985
    154. S. H. Gu, W. L. Yeh, S. C. Young, et al. TOR signaling is involved in PTTH-stimuIated ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology 2012,42 (4):296-303
    155.邓晓燕.家蚕神经肽受体NPFR信号转导和内吞分子机制的研究[博士学位论文].杭州,浙江大学,2012,1-75
    156.黄海山.家蚕脂动激素受体信号转导机制研究[博士学位论文].杭州,浙江大学,2010,1-98
    157. J. J. Hull, J. M. Lee and S. Matsumoto. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori pheromone biosynthesis activating neuropeptide receptor crucial for ligand-induced internalization. Insect Mol Biol 2011,20 (6):801-811
    158. N. Sharma, D. I. Lopez and J. K. Nyborg. DNA binding and phosphorylation induce conformational alterations in the kinase-inducible domain of CREB. Implications for the mechanism of transcription function. J Biol Chem 2007,282 (27):19872-19883
    159. D. Gesty-Palmer, M. Chen, E. Reiter, et al. Distinct beta-arrestin-and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 2006,281 (16): 10856-10864
    160.李果.烟酸受体GPR109A信号转导和内吞分子机制的研究[博士学位论文].杭州,浙江大学,2011,1-84
    161. M. J. Lohse, J. L. Benovic, J. Codina, et al. Beta-Arrestin-a Protein That Regulates Beta-Adrenergic-Receptor Function. Science 1990,248 (4962):1547-1550
    162. M. J. Lohse, S. Andexinger, J. Pitcher, et al. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem 1992,267 (12):8558-8564
    163. V. V. Gurevich and J. L. Benovic. Cell-Free Expression of Visual Arrestin-Truncation Mutagenesis Identifies Multiple Domains Involved in Rhodopsin Interaction. Journal of Biological Chemistry 1992,267 (30):21919-21923
    164. S. A. Laporte, R. H. Oakley, J. A. Holt, et al. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta(2)-adrenergic receptor into clathrin-coated pits. Journal of Biological Chemistry 2000,275 (30):23120-23126
    165. O. B. Goodman, J. G. Krupnick, F. Santini, et al. beta-arrestin acts as a clathrin adaptor in endocytosis of the beta(2)-adrenergic receptor. Nature 1996,383 (6599):447-450
    166. M. LopezIlasaca, P. Crespo, P. G. Pellici, et al. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 1997,275 (5298):394-397
    167. S. Pippig, S. Andexinger, K. Daniel, et al. Overexpression of Beta-Arrestin and Beta-Adrenergic-Receptor Kinase Augment Desensitization of Beta(2)-Adrenergic Receptors. Journal of Biological Chemistry 1993,268 (5):3201-3208
    168. H. Attramadal, J. L. Arriza, C. Aoki, et al. Beta-Arrestin2, a Novel Member of the Arrestin Beta-Arrestin Gene Family. Journal of Biological Chemistry 1992,267 (25):17882-17890
    169. K. M. Krueger, Y. Daaka, J. A. Pitcher, et al. The role of sequestration in G protein-coupled receptor resensitization-Regulation of beta(2)-adrenergic receptor dephosphorylation by vesicular acidification. Journal of Biological Chemistry 1997,272 (1):5-8
    170. J. Zhang, L. S. Barak, K. E. Winkler, et al. A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. JBiol Chem 1997,272 (43):27005-27014
    171. R. H. Oakley, S. A. Laporte, J. A. Holt, et al. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. Journal of Biological Chemistry 1999,274 (45):32248-32257
    172. S. S. Ferguson, L. S. Barak, J. Zhang, et al. G-protein-coupled receptor regulation:role of G-protein-coupled receptor kinases and arrestins. Can JPhysiol Pharmacol 1996,74 (10):1095-1110
    173. J. G. Krupnick and J. L. Benovic. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annual Review of Pharmacology and Toxicology 1998,38 289-319
    174. B. L. Wolfe, A. Marchese and J. Trejo. Ubiquitination differentially regulates clathrin-dependent internalization of pro tease-activated receptor-1. Journal of Cell Biology 2007,177 (5):905-916
    175. A. B. Fielding, A. K. Willox, E. Okeke, et al. Clathrin-mediated endocytosis is inhibited during mitosis. Proceedings of the National Academy of Sciences of the United States of America 2012,109 (17):6572-6577
    176. E. Kelly, C. P. Bailey and G. Henderson. Agonist-selective mechanisms of GPCR desensitization. BrJPharmacol 2008,153 Suppl 1 S379-388
    177. G. Roman, J. He and R. L. Davis, kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics 2000,155 (3):1281-1295
    178. E. C. Johnson, F. W. Tift, A. McCauley, et al. Functional characterization of kurtz, a Drosophila non-visual arrestin, reveals conservation of GPCR desensitization mechanisms. Insect Biochem Mol Biol 2008,38(11):1016-1022
    179. C. E. Groer, C. L. Schmid, A. M. Jaeger, et al. Agonist-directed Interactions with Specific beta-Arrestins Determine mu-Opioid Receptor Trafficking, Ubiquitination, and Dephosphorylation. Journal of Biological Chemistry 2011,286 (36):31731-31741
    180. M. Schumann, T. Nakagawa, S. A. Mantey, et al. Function of non-visual arrestins in signaling and endocytosis of the gastrin-releasing peptide receptor (GRP receptor). Biochemical pharmacology 2008, 75(5):1170-1185
    181. S. K. Rodal, G. Skretting, O. Garred, et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999, 10 (4):961-974
    182. S. S. Ferguson. Evolving concepts in G protein-coupled receptor endocytosis:the role in receptor desensitization and signaling. Pharmacol Rev 2001,53 (1):1-24
    183. A. Marchese, M. M. Paing, B. R. Temple, et al. G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol 2008,48 601-629
    184. R. H. Oakley, S. A. Laporte, J. A. Holt, et al. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*.J Biol Chem 2001,276 (22):19452-19460
    185. T. Kawai, J. M. Lee, K. Nagata, et al. The Arginine Residue within the C-Terminal Active Core of Bombyx mori Pheromone Biosynthesis-Activating Neuropeptide is Essential for Receptor Binding and Activation. Front Endocrinol (Lausanne) 2012,3 42
    186. H. Huang, X. Deng, X. He, et al. Identification of distinct c-terminal domains of the Bombyx adipokinetic hormone receptor that are essential for receptor export, phosphorylation and internalization. Cell Signal 2011,23 (9):1455-1465
    187. G. Li, Q. Zhou, Y. Yu, et al. Identification and characterization of distinct C-terminal domains of the human hydroxycarboxylic acid receptor-2 that are essential for receptor export, constitutive activity, desensitization, and internalization. Mol Pharmacol 2012,82 (6):1150-1161
    188. L. Ma, H. Xu, J. Zhu, et al. Rasl(CA) overexpression in the posterior silk gland improves silk yield. Cell Res 2011,21 (6):934-943
    189. H. Dai, L. Ma, J. Wang, et al. Knockdown of ecdysis-triggering hormone gene with a binary UAS/GAL4 RNA interference system leads to lethal ecdysis deficiency in silkworm. Acta Biochim Biophys Sin (Shanghai) 2008,40 (9):790-795
    190. T. Daimon, T. Kozaki, R. Niwa, et al. Precocious Metamorphosis in the Juvenile Hormone-Deficient Mutant of the Silkworm, Bombyx mori. PLoS Genet 2012,8 (3):e1002486
    191. Y. Tomoyasu, S. C. Miller, S. Tomita, et al. Exploring systemic RNA interference in insects:a genome-wide survey for RNAi genes in Tribolium. Genome Biol 2008,9(1):R10
    192. H. Huvenne and G. Smagghe. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:a review. J Insect Physiol 2010,56 (3):227-235
    193. J. Yamaguchi, T. Mizoguchi and H. Fujiwara. siRNAs induce efficient RNAi response in Bombyx mori embryos. PLoS One 2011,6 (9):e25469
    194. L. Roller, N. Yamanaka, K. Watanabe, et al. The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol 2008,38 (12):1147-1157
    195. S. Choi. The Regulation of Neuropeptide Corazonin and Its Functional Analyses in Drosophila Melanogaster. Graduate School 2009, Doctor
    196. C. Kaufmann, H. Merzendorfer and G. Gade. The adipokinetic hormone system in Culicinae (Diptera:Culicidae):molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem Mol Biol 2009,39 (11):770-781
    197. G. Gade, K. H. Hoffmann and J. H. Spring. Hormonal regulation in insects:facts, gaps, and future directions. Physiol Rev 1997,77 (4):963-1032
    198.高志宏.几个家蚕丝蛋白合成关键基因的表达调控[博士学位论文].重庆,西南大学,2010,1-78.
    199.汪生鹏,孙霞.家蚕蚕丝蛋白基因表达调控研究进展.安徽农业科学2009,(28):3514-3518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700