基于可逆、可再生介孔二氧化硅的刺激响应控制释放和分析检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔二氧化硅由于具有超高的比表面积、大的介孔体积、均一可调的孔径尺寸和有序的介孔结构等独特的介观结构和物理化学性质,在催化、吸附、大分子转化、蛋白质分离鉴定和光电磁材料等高科技领域,尤其是在刺激响应可控释放领域以及分析检测方面拥有广阔的应用前景。但是,目前已发展的许多刺激响应控制释放系统和分析检测系统均缺乏可逆性和可再生性。基于此,本论文以介孔二氧化硅纳米颗粒为载体材料,结合胸腺嘧啶的光反应性质和DNA分子构型的多样性,构建了基于光、pH、生物分子响应的可逆控制释放系统,同时结合磁纳米颗粒的磁分离特性,设计了一种能同时检测和移除汞离子的可再生核壳磁介孔二氧化硅纳米颗粒。主要开展以下研究工作:
     一、基于胸腺嘧啶功能化介孔二氧化硅的光响应可逆控制释放系统
     胸腺嘧啶具有良好的可逆光反应性质,是一种理想的光激发门控分子。本章将胸腺嘧啶共价交联到介孔二氧化硅纳米颗粒表面,设计了一种光响应可逆控制释放系统。在波长为365nm紫外光照射下,介孔二氧化硅颗粒表面的胸腺嘧啶形成二聚体结构,封堵住介孔,阻止包裹客体分子的释放;在波长为240nm的紫外光照射下,胸腺嘧啶二聚体发生解离,使封堵的介孔打开,释放装载的客体分子。Ru(bipy)32+分子由于其良好的光学性质而被选作模式客体分子,研究了其在不同波长光照条件下的储存和释放情况。此外,利用Ru(bipy)32+分子荧光的氧淬灭性质,我们成功设计了一种可再生的光开关氧传感器。
     二、基于i-motif DNA和羟基孔雀石绿功能化介孔二氧化硅的光响应可逆控制释放系统
     寡核苷酸因其具有良好的生物相容性、构型的多样性和稳定的物理化学性质等而成为构建“纳米门”的理想材料。本章选择i-motif DNA(富含胞嘧啶的四链DNA)作为pH响应的“纳米门”,羟基孔雀石绿(MGCB)作为光激发氢氧根离子发射器,结合介孔二氧化硅纳米颗粒巧妙地设计了一种新型的光响应可逆控制释放系统。首先,在介孔颗粒表面共价修饰上i-motif DNA,然后将MGCB通过静电吸附和疏水作用力固定在介孔通道壁上,并选择Ru(Bipy)32+作为模式客体分子装载进介孔通道内。当溶液pH为5.0时,i-motif DNA能有效地封堵介孔,限制客体分子的释放。在紫外光照射条件下,MGCB解离出氢氧根离子,导致溶液pH值升高,使得i-motif DNA去折叠成单链结构,从而导致介孔的打开和客体分子的释放。在黑暗的条件下,通过再结合溶液中的氢氧根离子,MGCB分子得以再生,使溶液的pH值返回到原始值,此时单链DNA再次折叠成i-motif DNA结构,从而关闭介孔,完成一个“开/关”循环。因此,通过交替地打开和关闭光源,DNA构型的变化和介孔的打开与关闭能被反复操作,达到可逆循环的效果。该方法利用光刺激pH变化分子来间接诱导pH敏感DNA的构型变化,简便易行,并且不需要复杂的合成技术,为纳米可控释放技术在实际体系中的应用奠定了基础。
     三、基于T-Hg2+-T碱基对介导的双链DNA功能化介孔二氧化硅的细胞内pH响应可逆控制释放系统
     胸腺嘧啶(T)能特异性结合汞离子形成T-Hg2+-T结构。在中性条件下,T-Hg2+-T结构具有比A-T结构更高的稳定性,而在弱酸性条件下能发生解离。本章将T-Hg2+-T碱基对介导的双链DNA共价交联在介孔二氧化硅表面,发展了一种细胞内酸响应可逆控制释放系统。在中性条件下,双链DNA能有效封堵介孔,防止药物分子的泄漏;而在弱酸(pH5.0)条件下,由于T-Hg2+-T结构的解离,双链DNA解链成单链,介孔被打开,装载的药物分子被释放。阿霉素(Dox)是一种常见的化疗药物分子,因此将其包裹在介孔通道内,以T-Hg2+-T碱基对介导的双链DNA封堵介孔,考察该系统在细胞内的控制释放行为。结果表明,细胞内溶酶体pH值能刺激介孔打开,释放Dox分子。此外,MTT实验结果表明,该药物释放系统展现良好的生物相容性,是一种理想的细胞内酸响应药物载体,有望应用于活体内酸响应药物释放研究。
     四、基于C-Ag+-C碱基对介导的双链DNA功能化介孔二氧化硅的生物分子响应可逆控制释放系统
     细胞在生长代谢过程中会产生一系列特殊功能的生物分子,因此发展一种生物分子响应的控制释放系统对药物运输和肿瘤靶向治疗具有重大意义。本章利用C-Ag+-C结构介导的双链DNA作为分子门,结合介孔二氧化硅纳米颗粒设计了一种生物分子响应可逆控制释放系统。在这个系统中,富含胞嘧啶的DNA(C-richDNA)被共价交联在介孔二氧化硅颗粒表面。当银离子存在时,邻近的C-rich DNA能相互结合,形成具有C-Ag+-C结构的双链DNA,从而封堵住介孔,阻止客体分子的释放。巯基类生物分子(GSH和半胱氨酸等)能特异性螯合C-Ag+-C结构中的银离子,使得该双链DNA变性解离,进而打开介孔,释放客体分子。我们利用Ru(bipy)32+作为模式客体分子,将其包裹进介孔通道内;以二硫苏糖醇(DTT)作为模式刺激分子,考察该系统的刺激响应释放行为。实验结果表明,在DTT存在条件下,Ru(bipy)32+能很好地实现控制释放。此外,该DNA分子的开关态能通过银离子和DTT的交替加入来进行调节。同时,该系统能通过胞吞方式进入细胞,并且展现出非常低的细胞毒性(IC50>200μg mL-1)。这些特性使得该DNA分子门控释放系统有望用于细胞内的药物控制释放。
     五、可再生多功能磁介孔二氧化硅颗粒用于汞离子检测和移除
     汞离子是水环境中的一种重金属污染物,毒性高,损害人类健康。本章结合磁性纳米颗粒的磁富集特性和介孔二氧化硅纳米颗粒的优点,设计了一种核壳结构的磁介孔二氧化硅纳米颗粒,然后通过EDC/NHS策略分别将能与汞离子特异性结合的DNA(T-rich DNA)和胸腺嘧啶(T)修饰在介孔颗粒表面和介孔通道内部,构建了一种能同时检测和移除汞离子的纳米传感器(Fe3O4@nSiO2@mSiO_2-T-TRDNA)。该传感器利用单链T-rich DNA捕获溶液中的汞离子而形成双链结构,以SYBR Green I(特异性嵌入双链而使得荧光增强的染料)对该双链DNA进行染色来达到检测汞离子的目的;而汞离子的移除主要是通过介孔通道内固定的大量能与汞离子特异性结合的胸腺嘧啶来实现。实验结果表明,该纳米传感器不仅实现了理想条件下汞离子检测和移除(检测限为2nM),而且能对环境污染水样中汞离子进行检测和快速移除。此外,该传感器在简单的酸处理下能再生,并且固定在颗粒表面的DNA具有很好的抗酶切稳定性。因此,该可再生多功能介孔二氧化硅颗粒能用于环境水样中汞离子的特异性检测和选择性移除。
Mesoporous silica nanoparticles, due to its high surface area, large mesoporousvolume, uniform tunable size (2-30nm), ordered mesoporous structure (multiplearrangement), the unique mesoscopic structure and physical and chemical properties,show a broad application in catalysis, adsorption, macromolecules transformation,protein isolation, optical electromagnetic materials, especially in stimuli-responsivecontrolled release and biosensors. But recent controlled release systems have somedisadvantages such as lack of reversibility and reproducibility. Consequently, thispaper will employ mesoporous silica nanoparticles as the nanocarriers to design thereversible stimuli-responsive release system and develop reproducible methods formercury detection and removal. The main research aspects are as follow:1. A light-responsive reversible controlled release system using thymine-modifiedmesoporous silica nanoparticles
     In this paper, a reversible light-responsive controlled release system based onmesoporous silica nanoparticles (MSN) functionalized with thymine derivatives isdesigned and demonstrated. The closing/opening protocol and release of the entrappedguest molecules is related by a photodimerization-cleavage cycle of thymine upondifferent irradiation. In the system, thymine derivatives with hydrophilicity andbiocompatibility were grafted on the pore outlets of MSN. The irradiation with365nm wavelength of UV light to thymine-functionalized MSN leaded to the formation ofcyclobutane dimer in the pore outlet, subsequently resulted in blockage of pores andstrongly inhibited the diffusion of guest molecules from pores. With240nmwavelength of UV light irradiation, the photocleavage of cyclobutane dimer openedthe pore and allowed release of the entrapped guest molecules. As aproof-of-the-concept, Ru(bipy)32+was selected as the guest molecule. Then thelight-responsive loading and release of Ru(bipy)32+have been investigated. Theresults indicated that the system had excellent loading amount (53μmol g-1MSN) andcontrolled release behavior (82%release after irradiation for24h), and thelight-responsive loading and release procedure exhibited a good reversibility. Besides,the light-responsive system loaded with Ru(bipy)32+molecule could also be used as alight-switchable oxygen sensor.2. A photoresponsive reversible controlled release system using i-motif DNA andMGCB functionalized mesoporous silica nanoparticles
     This paper proposed a novel photoresponsive reversible controlled release systemusing mesoporous silica nanoparticles functionalized with i-motif DNA and malachitegreen carbinol base (MGCB). In this system, MGCB was immobilized on thenanochannel walls of MSN as a light-induced hydroxide ion emitter, and i-motif DNAwas grafted on the surface of MSN as a cap. The photoirradiation with365nmwavelength of UV light made MGCB dissociate into malachite green (MG) cation andOH–ion, which induced i-motif DNA to unfold into the single-stranded form. Thus,the pores were uncapped and the entrapped guest molecules were released. After thelight was turned off, the MG cation recombined with the OH–ion. The single-strandedDNA switched back to i-motif structure to cap the pore again. Rooting form MGCBmediated DNA conforma-tion changes, the quadruplex DNA-gated switch could beeasily operated by turning the light on or off. Importantly, the opening/closingprotocol was highly reversible and a partial cargo release could be easily achieved atwill. This proof of concept might promote the application of DNA in the controlledrelease and could also provide an idea to design various photon-fueledcontrolled-release systems by using a combination of photoirradiated pH-jump systemand other kinds of pH-sensitive linkers.3. A reversible intracellular acid-responsive controlled release system using T-Hg2+-Tbase pairs mediated double-stranded DNA-capped mesoporous silica nanoparticles
     This paper proposed a reversible intracellular pH-responsive controlled releasesystem consisting of mesoporous silica nanoparticles (MSN) functionalized on thepore outlets with T-Hg2+-T base pairs mediated double-stranded DNA (dsDNA1). Inthis system, the dsDNA was grafted on the MSN surface as a nanoscopic cap. Thecontrolled release system was closed at neutral pH but opened at pH5.0due to thedissociation of T-Hg2+-T structures and the subsequent melting of dsDNA1. As aproof-of-the-concept, the doxorubicin (Dox) was loaded into the dsDNA1-modifiedMSN (MSN-dsDNA1) as a model drug. Release-profile studies in water showed thatno Dox leaked when the cap was closed and that release occurred immediately afteracidification. By alternately changing the pH from5.0to7.2, the DNA cap could beswitched “on” and “off” and thereby regulated the partial release of Dox. Further invitro studies demonstrated that the Dox-loaded MSN-dsDNA1(MSN-Dox-dsDNA1)could be endocytosed and accumulated within endosomes and lysosomes, followed byserving as a delivery for the controlled release of Dox into the cell nuclei at theendosomal and lysosomal pH level inside live HeLa cells. The cell viability resultsshowed that the inhibitory concentration (IC50) of MSN-Dox-dsDNA1was low (≈ 12.5μg mL–1), while MSN-dsDNA1(IC50>100μg mL–1) had a negligiblecytotoxicity at the same concentration, indicating that MSN-dsDNA1was fairlybiocompatible and indeed served as a drug-carrier for intracellular controlled release.We believe that the nanosystem may prove to be a significant step toward thedevelopment of an intracellular acid-responsive drug delivery system that is apromising candidate in vivo delivery of therapeutic agents.4. Reversible bioresponsive controlled release system using mesoporous silicananoparticles capped with C-Ag+-C base pairs mediated double-stranded DNA
     We reported a novel reversible bioresponsive controlled-release system consistingof mesoporous silica nanoparticles (MSN) functionalized with C-Ag+-C base pairsmediated double-stranded DNA. In this system, a unique sequential cytosine (C)-richDNA as the smart molecule-gated switch was grafted on the mesoporous silicananoparticles (MSN) surface. In the presence of Ag+ions, the closer C-rich DNAcould hybridize each other by the formation of C-Ag+-C structure based onmetal-dependent pairs of two nucleobases, resulting in blockage of pores and packageof guest molecules. By a competitive displacement reaction, the duplex DNA withC-Ag+-C structure deformed into single-stranded DNA in the presence ofthiol-containing molecule, such as dithiothreitol (DTT), which gave rise to uncappingand the subsequent release of the entrapped guest molecules. The reversible open andclosed states of DNA molecule-gated switch could be easily achieved by alternatingaddition of Ag+-linkers and DTT molecules. Our results demonstrated that the systemhad excellent loading amount (43μmol g–1) and good controlled release behavior.Moreover, the system could enter the cells through endocytosis and showed a lowcytotoxicity even with treatment in a high concentration (200μg mL–1). We believedthat the stimuli-responsive controlled MSN release system based on the smartmolecule-gated switch could play an important role in the development intracellulardelivery nanodevices.5. Regenerable multifunctional mesoporous silica nanocomposites for simultaneousdetection and removal of mercury (II)
     Mercury (Hg~(2+)) is a highly toxic and widespread environmental pollutant. Herein, aregenerable core-shell structured magnetic mesoporous silica nanocomposite withfunctionalization of thymine (T) and T-rich DNA (denoted as Fe3O4@nSiO2@mSiO2-DNA-thymine) has been developed for simultaneous detection and removal ofHg~(2+). The detection mechanism is based on Hg~(2+)-mediated hairpin structure formedby T-rich DNA functionalized on the surface of the nanocomposite, where, upon addition of SYBR Green I dye, strong fluorescence is observed. In the absence ofHg~(2+), however, addition of the dye results in low fluorescence. The limit of detectionfor Hg~(2+)in a buffer is2nM by fluorescence spectroscopy. Simultaneously, thenanocomposites-based sensors feature a selective binding with Hg~(2+)between twothymines immobilized at the interior surface of the mesopores and exhibits efficientand convenient Hg~(2+)removal by a magnet. Kinetic study reveals that the Hg~(2+)removal is a rapid process. The applicability of the developed materials isdemonstrated to detect and remove Hg~(2+)from samples of Xiangjiang river waterspiked with Hg~(2+). In addition, distinguishing aspects of the nanocomposite for Hg~(2+)detection and removal also include the regeneration using a simple acid treatment andresistance to nuclease digestion. Similar process can be used to functionalizeFe3O4@nSiO2@mSiO2nanocomposite with other nucleic acids and small moleculesfor environmental and biomedical applications.
引文
[1]师昌绪.跨世纪材料科学与技术若干热点问题[J].自然科学进展1999,9(1):25-28.
    [2] Chen H R, Shi J L, Li Y S et al. A new method for the synthesis of highlydispersive and catalytically active platinum nanoparticles confined inmesoporous zirconia [J]. Advanced Materials2003,15(13):1078-1081.
    [3] Yu C Z, Fan J, Tian B Z et al. Morphology development of mesoporousmaterials: a colloidal phase Separation Mechanism [J]. Chemistry of Materials2004,16(5):889-898.
    [4] Shi J L, Hua Z L, Zhang L X. Nanocomposites from ordered mesoporousmaterials [J]. Journal of Materials Chemistry2004,14(5):795-806.
    [5] Yamada T, Zhou H S, Uchida H et al. Experimental and theoretical NOxphysisorption analyses of mesoporous film (SBA-15”and SBA-16) constructedsurface photo voltage (SPV) sensor [J]. The Journal of Physical Chemistry B2004,108(35):13341-13346.
    [6] Torchilin V P. Recent advances with liposomes as pharmaceutical carriers [J].Nature Reviews Drug Discovery2005,4(2):145-160.
    [7] Malmsten M. Soft drug delivery systems [J]. Soft Materials2006,2(2):760-769.
    [8] Trewyn B G, Slowing I I, Giri S et al. Synthesis and functionalization of amesoporous silica nanoparticle based on the sol-gel process and applications incontrolled release [J]. Accounts of Chemical Research2007,40(9):846-853.
    [9] Beck J S, Vartuli J C, Roth W J et al. A new family of mesoporous molecularsieves prepared with liquid crystal templates [J]. Journal of the AmericanChemical Society1992,114(27):10834-10843.
    [10] Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporoussilicates [J]. Chemical Reviews2007,107(7):2821-2860.
    [11] Wan Y, Shi Y F, Zhao D Y. Designed synthesis of mesoporous solids vianonionic-surfactant-templating approach [J]. Chemical Communications2007,(9):897-926.
    [12] Kresge C T, Leonowicz M E, Roth W J et al. Ordered mesoporous molecularsieves synthesized by a liquid-crystal template mechanism [J]. Nature1992,359(6397):710-712.
    [13] Beck J S, Vartuli J C, Roth W J et al. A new family of mesoporous molecularsieves prepared with liquid crystal templates [J]. Journal of the AmericanChemical Society1992,114(27):10834-10943.
    [14] Cassiers K, Linssen T, Mathieu M et al. A detailed study of thermal,hydrothermal, and mechanical stabilities of a wide range of surfactantassembled mesoporous silicas [J]. Chemisty of Materials2002,14(5):2317-2324.
    [15] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporousmaterials from a layered polysilicate [J]. Journal of the Chemical Society,Chemical Communications1993,(8):680-682.
    [16] Huo Q, Margolese D I, Ciesla U et al. Organization of organic molecules withinorganic molecular species into nanocomposite biphase arrays [J]. Chemistryof Materials1994,6(8):1176-1191.
    [17] Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in thesynthesis of mesoporous silica-based materials [J]. Chemistry of Materials1996,8(5):1147-1160.
    [18] Huo Q, Leon R, Petroff P M et al. Mesostructure design with geminisurfactants: supercage [J]. Science1995,268(5215):1324-1327.
    [19] Ryoo R, Ko C H, Kruk M et al. Block-copolymer-templated orderedmesoporous silica: Array of uniform mesopores or mesopore-microporenetwork?[J]. The Journal of Physical Chemistry B2000,104(48):11465-11471.
    [20] Galarneau A, Desplantier-Giscard D, Renzo F C D et al. Thermal andmechanical stability of micelle-templated silica supports for catalysis [J].Catalysis Today2001,68(1-3):191-200.
    [21] Albouy P A, Ayral A. Coupling X-ray scattering and nitrogen adsorption: aninteresting approach for the characterization of ordered mesoporous materials.application to hexagonal silica [J]. Chemistry of Materials2002,14(8):3391-3397.
    [22] Wang L, Qi T, Zhang Y et al. Morphosynthesis route to large-pore SBA-15microspheres [J]. Microporous and Mesoporous Materials2006,91(1-3):156-160.
    [23] Che S, Lund K, Tatsumi T et al. Direct observation of3D mesoporous structureby scanning electron microscopy (SEM): SBA-15silica and CMK-5carbon [J].Angewandte Chemie International Edition2003,42(19):2182-2185.
    [24] Zhao D, Huo Q, Feng J et al. Nonionic triblock and star diblock copolymer andoligomeric surfactant syntheses of highly ordered, hydrothermally stable,mesoporous silica structures [J]. Journal of the American Chemical Society1998,120(24):6024-6036.
    [25] Zhao D, Feng J, Huo Q et al. Triblock copolymer synthesis of mesoporoussilica with periodic50to300angstrom pores [J]. Science1998,279(5350):548-552.
    [26] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecularsieves by nonionic polyethylene oxide surfactants [J]. Science1995,269(5228):1242-1244.
    [27] Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of wormholesilica molecular sieves from water soluble silicates [J]. ChemicalCommunications2000,(10):835-836.
    [28] Tanev P T, Liang Y, Pinnavaia T J. Assembly of mesoporous lamellar silicaswith hierarchical particle architectures [J]. Journal of the American ChemicalSociety1997,119(37):8616-8624.
    [29] Kim S S, Zhang W, Pinnavaia T J. Ultrastable mesostructured silica vesicles [J].Science1998,282(5392):1302-1305.
    [30] Liu X, Tian B, Yu C et al. Room-temperature synthesis in acidic media oflarge-pore three-dimensional bicontinuous mesoporous silica with Ia3dsymmetry [J]. Angewandte Chemie International Edition2002,41(20):3876-3878.
    [31] Fan J, Yu C, Gao F et al. Cubic mesoporous silica with large controllableentrance sizes and advanced adsorption properties [J]. Angewandte ChemieInternational Edition2003,42(27):3146-3150.
    [32] Jansen J C, Shan Z, Marchese L et al. A new templating method forthree-dimensional mesopore networks [J]. Chemical Communications2001,(8):713-714.
    [33] Beck J S, Vartuli J C, Roth W J et al. A new family of mesoporousmolecular-sieves prepared with liquid-crystal templates [J]. Journal of theAmerican Chemical Society1992,114(27):10834-10843.
    [34] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecularsieves [J]. Science1995,267(5199):865-867.
    [35] Huo Q, Margolese D I, Ciesla U et al. Generalized synthesis of periodicsurfactant/inorganic composite materials [J]. Nature1994,368(6469):317-321.
    [36] Zhao D Y, Feng J L, Huo Q S et al. Triblock copolymer synthesis ofmesoporous silica with periodic50to300angstrom pores [J]. Science1998,279(5350):548-552.
    [37] Asefa T, MacLachlan M J, Coombs N et al. Periodic mesoporous organosilicaswith organic groups inside the channel walls [J]. Nature1999,402(6764):867-871.
    [38] Melde B J, Holland B T, Blanford C F et al. Mesoporous sieves with unifiedhybrid inorganic/organic frameworks [J]. Chemistry of Materials1999,11(11):3302-3308.
    [39] Inagaki S, Guan S, Fukushima Y et al. Novel mesoporous materials with auniform distribution of organic groups and inorganic oxide in their frameworks[J]. Journal of the American Chemical Society1999,121(41):9611-9614.
    [40] Nakajima K, Tomita I, Hara M et al. A stable and highly active hybridmesoporous solid acid catalyst [J]. Advanced Materials2005,17(15):1839-1842.
    [41] Muth O, Schellbach C, Fr ba M. Triblock copolymer assisted synthesis ofperiodic mesoporous organosilicas (PMOs) with large pores [J]. ChemicalCommunications2001,2032-2033.
    [42] Sayari A, Yang Y. Nonionic oligomeric polymer directed synthesis of highlyordered large pore periodic mesoporous organosilica [J]. ChemicalCommunications2002,(21):2582-2583.
    [43] Zhu H G, Jones D J, Zajac J et al. Periodic large mesoporous organosilicas fromlyotropic liquid crystal polymer templates [J]. Chemical Communications2001,(24):2568-2569.
    [44] Guo W P, Park J Y, Oh M O et al. Triblock copolymer synthesis of highlyordered large-pore periodic mesoporous organosilicas with the aid of inorganicsalts [J]. Chemistry of Materials2003,15(12):2295-2298.
    [45] Wang W H, Xie S H, Zhou W Z et al. Synthesis of periodic mesoporousethylenesilica under acidic conditions [J]. Chemistry of Materials2004,16(9):1756-1762.
    [46] Bao X Y, Zhao X S, Li X et al. Organosilicas [J]. The Journal of PhysicalChemistry B2004,108(15):4684-4689.
    [47] Bao X Y, Zhao X S, Li X et al. Pore structure characterization of large-poreperiodic mesoporous organosilicas synthesized with varying SiO2/templateratios [J]. Applied Surface Science2004,237(1-4):380-386.
    [48] Bao X Y, Zhao X S, Qiao S Z et al. Comparative analysis of structural andmorphological properties of large-pore periodic mesoporous organosilicas andpure silicas [J]. The Journal of Physical Chemistry B2004,108(42):16441-16450.
    [49] Bao X Y, Zhao X S. Morphologies of large-pore periodic mesoporousorganosilicas [J]. The Journal of Physical Chemistry B2005,109(21):10727-10736.
    [50] Lou X W, Archer L A, Yang Z C. Hollow micro-/nanostructures: Synthesis andapplications [J]. Advanced Materials2008,20(21):3987-4019.
    [51] Liu J, Qiao S Z, Chen J S et al. Yolk/shell nanoparticles: new platforms fornanoreactors, drug delivery and lithium-ion b atteries [J]. ChemicalCommunications2011,47(47):12578-12591.
    [52] Tan B, Rankin S E. Dual latex/surfactant templating of hollow spherical silicaparticles with ordered mesoporous shells [J]. Langmuir2005,21(18):8180-8187.
    [53] Javier A M, Kreft O, Semmling M et al. Uptake of colloidalpolyelectrolyte-coated particles and polyelectrolyte multilayer capsules byliving cells [J]. Advanced Materials2008,20(22):4281-4287.
    [54] Yin Y D, Rioux R M, Erdonmez C K et al. Formation of hollow nanocrystalsthrough the nanoscale [J]. Science2004,304(5671):711-714.
    [55] Lou X W, Yuan C L, Rhoades E et al. Encapsulation and ostwald ripening ofAu and Au-Cl complex nanostructures in silica shells [J]. Advanced FunctionalMaterials2006,16(13):1679-1684.
    [56] Chen J Y, McLellan J M, Siekkinen A et al. Facile synthesis of gold-silvernanocages with controllable pores on the surface [J]. Journal of the AmericanChemical Society2006,128(46):14776-14777.
    [57] Tang F Q, Li L L, Chen D. Mesoporous Silica Nanoparticles: Synthesis,Biocompatibility and Drug Delivery [J]. Advanced Materials2012,24(12):1504-1534.
    [58] Wu P, Zhu J, Xu Z. Template-assisted synthesis of mesoporous magneticnanocomposite particles [J]. Advanced Functional Materials2004,14(4):345-351.
    [59] Deng Y H, Qi D W, Zhao D Y. Superparamagnetic high-magnetizationmicrospheres with a Fe3O4@SiO2core and perpendicularly aligned mesoporousSiO2shell for removal of microcystins [J]. Journal of the American ChemicalSociety2008,130(1):28-29.
    [60] Lin Y S, Wu S H, Hung Y et al. Multifunctional composite nanoparticles:magnetic, luminescent, and mesoporous [J]. Chemistry of Materials2006,18(22):5170-5172.
    [61] Gorelikov I, Matsuura N. Single-step coating of mesoporous silica oncetyltrimethyl ammonium bromide-capped nanoparticles [J]. Nano Letter2008,8(1):369-373.
    [62] Qian H S, Guo H C, Ho P C-L et al. Mesoporous-silica-coated up-conversionfluorescent nanoparticles for photodynamic therapy [J]. Small2009,5(20):2285-2290.
    [63] Stein A, Melde B J, Schroden R K. Hybrid inorganic-organic mesoporoussilicates-nanoscopic reactors coming of age [J]. Advanced Materials2000,12(19):1403-1419.
    [64] Wight A P, Davis M E. Design and preparation of organic-inorganic hybridcatalysts [J]. Chemical Reviews2002,102(10):3589-3614.
    [65] MacLachlan M J, Asefa T, Ozin G A. Writing on the wall with a new syntheticquill [J]. Chemistry-A European Journal2000,6(14):2507-2511.
    [66] Sayari A, Hamoudi S. Periodic mesoporous silica-based organic-inorganicnanocomposite materials [J]. Chemistry of Materials2001,13(10):3151-3168.
    [67] Zhao X S, Lu G Q. Modification of MCM-41with trimethylchlorosilane andadsorption study [J]. The Journal of Physical Chemistry B1998,102(9):1556-1561.
    [68] Zhao X S, Lu G Q, Hu X. Organophilicity of MCM-41adsorbents studied byadsorption and temperature-programmed desorption [J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects2001,179(2-3):261-269.
    [69] Zhao X S, Lu G Q, Hu X. Characterization of the structural and surfaceproperties of chemically modified MCM-41material [J]. MicroporousMesoporous Materials2000,41(1-3):37-47.
    [70] Zhao X S, Ma Q, Lu G Q. VOC removal: comparison of MCM-41withhydrophobic zeolites and activated carbon [J]. Energy&Fuels1998,12(6):1051-1054.
    [71] Zhao X S, Lu G Q, Song C. Mesoporous silica-immobilized aluminiumchloride as a new catalyst system for the isopropylation of naphthalene [J].Chemical Communications2001,(22):2306-2307.
    [72] Zhao X S, Lu G Q, Song C. Immobilization of aluminum chloride on MCM-41as a new catalyst system for liquid-phase isopropylation of naphthalene [J].Journal of Molecular Catalysis A: Chemical2003,191(1):67-74.
    [73] Chong A S M, Zhao X S. Functionalized nanoporoussilicas for theimmobilization of penicillin acylase [J]. Applied Surface Science2004,237(1-4):398-404.
    [74] Chong A S M, Zhao X S. Design of large-pore mesoporous materials forimmobilization of penicillin G acylase biocatalyst [J]. Catalysis Today2004,93-95,293-299.
    [75] Chen H-T, Huh S, Lin V S Y. Fine-tuning the functionalization of mesoporoussilica [M]. Catalyst Preparation, Science and Engineering (ISBN:0-8493-7088-4), J. R. Regalbuto, Ed., CRC Press, Taylor&Francis PublishingGroup: New York,2007; pp45-74.
    [76] Radu D R, Lai C Y, Huang J et al. Fine-tuning the degree of organicfunctionalization of mesoporous silica nanosphere materials via an interfaciallydesigned co-condensation method [J]. Chemical Communications2005,(10):1264-1266.
    [77] Huh S, Chen H T, Wiench J W et al. Cooperative catalysis by general acid andbase bifunctionalized mesoporous silica nanospheres [J]. Angewandte ChemieInternational Edition2005,44(12):1826-1830.
    [78] Huang Y, Xu S, Lin V S-Y. Bifunctionalized mesoporous materials withsite-separated br nsted acids and bases: Catalyst for a two-step reactionsequence [J]. Angewandte Chemie International Edition2011,50(3):661-664.
    [79] Huh S, Wiench J W, Yoo J C et al. Organic functionalization and morphologycontrol of mesoporous silicas via a co-condensation synthesis method [J].Chemistry of Materials2003,15(22):4247-4256.
    [80] Radu D R, Lai C Y, Wiench J W et al. Gatekeeping layer effect: A poly(lacticacid)-coated mesoporous silica nanosphere-based fluorescence probe fordetection of amino-containing neurotransmitters [J]. Journal of the AmericanChemical Society2004,126(6):1640-1641.
    [81] Lu J, Liong M, Zink J I et al. Mesoporous silica nanoparticles as a deliverysystem for hydrophobic anticancer drugs [J]. Small2007,3(8):1341-1346.
    [82] He X X, Nie H L, Wang K M et al. In vivo study of biodistribution and urinaryexcretion of surface-modified silica nanoparticles [J]. Analytical Chemistry2008,80(24):9597-9603.
    [83] Burleigh M C, Dai S, Hagaman E W et al. Stepwise assembly of surfaceimprint sites on MCM-41for selective metal ion separations [J]. ACS SympSeries2001,778(10):146-158.
    [84] Vallet-Regi M, Ramila A, Real R P et al. A new property of MCM-41: drugdelivery system [J]. Chemistry of Materials2001,13(2):308-311.
    [85] Lai C-Y, Trewyn B G, Jeftinija D M et al. A mesoporous silicananosphere-based carrier system with chemically removable CdS nanoparticlecaps for stimuli-responsive controlled release of neurotransmitters and drugmolecules [J]. Journal of the American Chemical Society2003,125(15):4451-4459.
    [86] Torney F, Trewyn B G, Lin V S-Y et al. Mesoporous silica nanoparticles deliverDNA and chemicals into plants [J]. Nature Nanotechnology2007,2(5):295-300.
    [87] Vivero-Escoto J L, Slowing I I, Wu C-W et al. Photoinduced intracellularcontrolled release drug delivery in human cells by gold-capped mesoporoussilica nanosphere [J]. Journal of the American Chemical Society2009,131(10):3462-3463.
    [88] Zhao Y, Vivero-Escoto J L, Slowing I I et al. Capped mesoporous silicananoparticles as stimuli-responsive controlled release systems for intracellulardrug/gene delivery [J]. Expert Opinion on Drug Delivery2010,7(9):1013-1029.
    [89] Giri S, Trewyn B G, Stellmaker M P et al. Stimuli-responsivecontrolled-release delivery system based on mesoporous silica nanorodscapped with magnetic nanoparticles [J]. Angewandte Chemie InternationalEdition2005,44(32):5038-5044.
    [90] Lee J E, Lee N, Kim H et al. Uniform mesoporous dye-doped silicananoparticles decorated with multiple magnetite nanocrystals for simultaneousenhanced magnetic resonance imaging, fluorescence imaging, and drugdelivery [J]. Journal of the American Chemical Society2010,132(2):552-557.
    [91] Radu D R, Lai C-Y, Jeftinija K et al. A polyamidoamine dendrimer-cappedmesoporous silica [J]. Journal of the American Chemical Society2004,126(41):13216-13217.
    [92] Climent E, Bernardos A, Martínez-Má ez R et al. Controlled delivery systemsusing antibody-capped mesoporous nanocontainer [J]. Journal of the AmericanChemical Society2009,131(39):14075-14080.
    [93] Singh N, Karambelkar A, Gu L et al. Bioresponsive mesoporous silicananoparticles for triggered drug release [J]. Journal of the American ChemicalSociety2011,133(49):19582-19585.
    [94] Liu R, Zhao X, Wu T et al. Tunable redox-responsive hybrid nanogatedensembles [J]. Journal of the American Chemical Society2008,130(44):14418-14419.
    [95] Liu R, Liao P, Liu J et al. Responsive polymer-coated mesoporous silica as apH-sensitive nanocarrier for controlled release [J]. Langmuir2011,27(6):3095-3099.
    [96] Hong C Y, Li X, Pan C Y. Fabrication of smart nanocontainers with amesoporous core and a pH-responsive shell for controlled uptake and release[J]. Journal of Materials Chemistry2009,19(29):5155-5160.
    [97] Gao Q, Xu Y, Wu D et al. pH-responsive drug release from polymer-coatedmesoporous silica spheres [J]. The Journal of Physical Chemistry C2009,113(29):12753-12758.
    [98] Gao Q, Xu Y, Wu D et al. Synthesis, characterization, and in vitropH-controllable drug release from mesoporous silica spheres with switchablegates [J]. Langmuir2010,26(22):17133-17138.
    [99] Chen C, Pu F, Huang Z et al. Stimuli-responsive controlled-release systemusing quadruplex DNA-capped silica nanocontainers [J]. Nucleic acidsresearch2011,39(4):1638-1644.
    [100] Gan Q, Lu X, Yuan Y et al. A magnetic, reversible pH-responsive nanogatedensemble based on Fe3O4nanoparticles-capped mesoporous silica [J].Biomaterials2011,32(7):1932-1942.
    [101] Liu R, Zhang Y, Zhao X. pH-responsive nanogated ensemble based ongold-capped mesoporous silica through an acid-labile acetal linker [J]. Journalof the American Chemical Society2010,132(5):1500-1501.
    [102] Lee C-H, Cheng S-H, Huang I-P et al. Intracellular pH-responsive mesoporoussilica nanoparticles for the controlled release of anticancer chemotherapeutics[J]. Angewandte Chemie International Edition2010,49(44):8214-8219.
    [103] Sun J-T, Hong C-Y, Pan C-Y. Fabrication of PDEAEMA-coated mesoporoussilica nanoparticles and pH-responsive controlled release [J]. Journal ofPhysical Chemistry C2010,114(29):12481-12486.
    [104] Angelos S, Khashab N M, Yang Y-W. pH clock-operated mechanizednanoparticles [J]. Journal of the American Chemical Society2009,131(36):12912-12914.
    [105] Chen L, Di J, Cao C. A pH-driven DNA nanoswitch for responsive controlledrelease [J]. Chemical Communications2011,47,2850-2852.
    [106] Zhao Y-L, Li Z, Kabehie S. pH-operated nanopistons on the surfaces ofmesoporous silica nanoparticles [J]. Journal of the American Chemical Society2010,132(37):13016-13025.
    [107] Muhammad F, Guo M, Qi W. pH-triggered controlled drug release frommesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids[J]. Journal of the American Chemical Society2011,133(23):8778-8781.
    [108] Liao X J, Chen G S, Liu X X et al. Photoresponsive pseudopolyrotaxanehydrogels based on competition of host–guest interactions [J]. AngewandteChemie International Edition2010,49(26):4409-4413.
    [109] Pouliquen G, Tribet C. Light-triggered association of bovine serum albuminand azobenzene-modified poly(acrylic acid) in dilute and semidilute solutions[J]. Macromolecules2006,39(1):373-383.
    [110] Liu X K, Jiang M. Optical switching of self-assembly: micellization andmicellehollow-sphere transition of hydrogen-bonded polymers [J]. AngewandteChemie International Edition2006,45(23):3846-3850.
    [111] Sugiura S, Szilagyi A, Sumaru K et al. On-demand microfluidic control bymicropatterned light irradiation of a photoresponsive hydrogel sheet [J]. Labon a Chip2009,9(2):196-198.
    [112] Wang S, Choi M S, Kim S H. Bistable photoswitching inpoly(N-isopropylacrylamide) with spironaphthoxazine hydrogel for opticaldata storage[J]. Journal of Photochemistry and Photobiology A: Chemistry2008,198(2):150-155.
    [113] Frkanec L, Jokic M, Makarevic J et al. Bis(PheOH) maleic acid amide-fumaricacid amide photoizomerization induces microsphere-to-gel fiber morphologicaltransition: the photoinduced gelation system [J]. Journal of the AmericanChemical Society2002,124(33):9716-9717.
    [114] Matsumoto S, Yamaguchi S, Wada A et al. Photoresponsive gel droplet as anano-or pico-litre container comprising a supramolecular hydrogel [J].Chemical Communications2008,(14):1545-1547.
    [115] Sun K S, Kumar R, Falvey D E et al. Photogelling colloidal dispersions basedon light-activated assembly of nanoparticles [J]. Journal of the AmericanChemical Society2009,131(20):7135-7141.
    [116] Fomina N, McFearin C, Sermsakdi M et al. UV and near-IR triggered releasefrom polymeric nanoparticles [J]. Journal of the American Chemical Society2010,132(28):9540-9542.
    [117] Woodcock J W, Wright R A E, Jiang X G et al. Dually responsive aqueous gelsfrom thermo-and light-sensitive hydrophilic ABA triblock copolymers [J]. SoftMatter2010,6(14):3325-3336.
    [118] Andreopoulos F M, Deible C R, Stauffer M T et al. Photoscissable hydrogelsynthesis via rapid photopolymerization of novel PEG-based polymers in theabsence of photoinitiators [J]. Journal of the American Chemical Society1996,118(26):6235-6240.
    [119] Zheng Y J, Andreopoulos F M, Micic M et al. A novel photoscissilepoly(ethylene glycol)-based hydrogel [J]. Advanced Functional Materials2001,11(1):37-40.
    [120] Chujo Y, Sada K, Saegusa T. A novel nonionic hydrogel from2-methyl-2-oxazoline.3. Polyoxazoline having a coumarin moiety as a pendantgroup-synthesis and photogelation [J]. Macromolecules1990,23(10):2693-2697.
    [121] He J, Tong X, Zhao Y. Photoresponsive nanogels based on photocontrollablecross-links [J]. Macromolecules2009,42(13):4845-4852.
    [122] Zheng Y J, Mieie M, Mello S V et al. PEG-based hydrogel synthesis via thephotodimerization of anthracene groups [J]. Macromolecules2002,35(13):5228-5234.
    [123] Sako Y, Takaguchi Y. A photo-responsive hydrogelator having gluconamides atits peripheral branches [J]. Organic&Biomolecular Chemistry2008,6(20):3843-3847.
    [124] Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guestmolecules from coumarin-modified mesoporous silica [J]. Nature2003,421(6921):350-353
    [125] Mal N K, Fujiwara M, Tanaka Y et al. Photo-switched storage and release ofguest molecules in the pore void of coumarin-modified MCM-41[J].Chemistry of Materials2003,15(17):3385-3394
    [126] Lu J, Choi E, Tamanoi F et al. Light-activated nanoimpeller-controlled drugrelease in cancer cells [J]. Small2008,4(4):421-426.
    [127] Angelos S, Yang Y-W, Khashab N M et al. Dual-controlled nanoparticlesexhibiting AND logic [J]. Journal of the American Chemical Society2009,131(32):11344-11346.
    [128] Ferris D P, Zhao Y-L, Khashab N M et al. Light-operated mechanizednanoparticles [J]. Journal of the American Chemical Society2009,131(5):1686-1688.
    [129] Vivero-Escoto J L, Slowing I I, Wu C W et al. Photoinduced intracellularcontrolled release drug delivery in human cells by gold-capped mesoporoussilica nanosphere [J]. Journal of the American Chemical Society2009,131(10):3462-3463.
    [130] You Y-Z, Kalebaila K K, Brock S L et al. Temperature-controlled uptake andrelease in PNIPAM-modified porous silica nanoparticles [J]. Chemistry ofMaterials2008,20(10):3354-3359.
    [131] Schlossbauer A, Warncke S, Gramlich P M E et al. A programmableDNA-based molecular valve for colloidal mesoporous silica [J]. AngewandteChemie International Edition2010,49(28):4734-4737.
    [132] Chen C, Geng J, Pu F et al. Polyvalent nucleic acid/mesoporous silicananoparticle conjugates: dual stimuli-responsive vehicles for intracellular drugdelivery [J]. Angewandte Chemie International Edition2010,50(4):882-886.
    [133] Aznar E, Mondragón L, Ros-Lis J V et al. Finely tuned temperature-controlledcargo release using paraffin-capped mesoporous silica nanoparticles [J].Angewandte Chemie International Edition2011,50(47):11172-11175.
    [134] Lai C Y, Trewyn B G, Jeftinija D M et al. A mesoporous silicananosphere-based carrier system with chemically removable CdS nanoparticlecaps for stimuli-responsive controlled release of neurotransmitters and drugmolecules [J]. Journal of the American Chemical Society2003,125(15):4451-4459.
    [135] Giri S, Trewyn B G, Stellmaker M P et al. Stimuli-responsivedontrolled-release delivery system based on mesoporous silica nanorodscapped with magnetic nanoparticles [J]. Angewandte Chemie InternationalEdition2005,44(32):5038-5044.
    [136] Kim H, Kim S, Park C et al. Glutathione-induced intracellular release of guestsfrom mesoporous silica nanocontainers with cyclodextrin gatekeepers [J].Advanced Materials2010,22(38):4280-4283.
    [137] Luo Z, Cai K, Hu Y. Mesoporous silica nanoparticles end-capped with collagen:redox-responsive nanoreservoirs for targeted drug delivery [J]. AngewandteChemie International Edition2011,50(3):640-643.
    [138] Zhao Y, Trewyn B G, Slowing I I et al. Mesoporous silica nanoparticle-baseddouble drug delivery system for glucose-responsive controlled release ofinsulin and cyclic AMP [J]. Journal of the American Chemical Society2009,131(24):8398-8400.
    [139] Zhu C-L, Lu C-H, Song X-Y et al. Bioresponsive controlled release usingmesoporous silica nanoparticles capped with aptamer-based molecular gate [J].Angewandte Chemie International Edition2011,133(5):1278-1281.
    [140] Patel K, Angelos S, Dichtel W R et al. Enzyme-responsive snap-top coveredsilica nanocontainers [J]. Journal of the American Chemical Society2008,130(8):2382-2383.
    [141] Schlossbauer A, Kecht J, Bein T. Biotin-avidin as a protease-responsive capsystem for controlled guest release from colloidal mesoporous silica [J].Angewandte Chemie International Edition2009,48(17):3092-3095.
    [142] Bernardos A, Mondragón L, Aznar E et al. Enzyme-responsive intracellularcontrolled release using nanometric silica mesoporous supports capped with“saccharides”[J]. ACS Nano2010,4(11):6353-6368.
    [143] Bernardos A, Aznar E, Marcos M D et al. Enzyme-responsive controlledrelease using mesoporous silica supports capped with lactose [J]. AngewandteChemie International Edition2009,48(32):5884-5887.
    [144] Coll C, Mondragn L, Martínez-Má ez R et al. Enzyme-mediated controlledrelease systems by anchoring peptide sequences on mesoporous silica supports[J]. Angewandte Chemie International Edition2011,50(9):2138-2140.
    [145] Aznar E, Casasús R, García-Acosta B et al. Photochemical and chemicaltwo-channel control of functional nanogated hybrid architectures [J].Advanced Materials2007,19(17):2228-2231.
    [146] Aznar E, Marcos M D, Martínez-Má ez R et al. pH-and photo-switchedrelease of guest molecules from mesoporous silica supports [J]. Journal of theAmerican Chemical Society2009,131(19):6833-6843.
    [147] Perelman L A, Moore T, Singelyn J et al. Preparation and characterization of apH-and thermally responsive poly(N-isopropylacrylamide-coacrylic acid)/porous SiO2hybrid [J]. Advanced Functional Materials2010,20(5):826-833.
    [148] Kne evi N, Trewyn B G, Lin V S-Y. Light-and pH-responsive release ofdoxorubicin from a mesoporous silica-based nanocarrier [J]. Chemistry-AEuropean Journal2011,17(12):3338-3342.
    [149] Liu R, Zhang Y, Feng P. Multiresponsive supramolecular nanogated ensembles[J]. Journal of the American Chemical Society2009,131(42):15128-15129.
    [150] Zhang Z J, Wang L M, Wang J et al. Mesoporous silica-coated gold nanorods asa light-mediated multifunctional theranostic platform for cancer treatment [J].Advanced Materials2012,24(11):1418-1423
    [151] Yang X, Liu X, Liu Z et al. Near-infrared light-triggered, targeted drugdelivery to cancer cells by aptamer gated nanovehicles [J]. Advanced Materials2012,24(21):2890-2895.
    [152] Climent E, Marcos M D, Martínez-Má ez R et al. The determination ofmethylmercury in real samples using organically capped mesoporous inorganicmaterials capable of signal amplification [J]. Angewandte Chemie InternationalEdition2009,48(45):8519-8522.
    [153] Zhang Y, Yuan Q, Chen T et al. DNA-capped mesoporous silica nanoparticlesas an ion-responsive release system to determine the presence of mercury inaqueous solutions [J]. Analytical Chemistry,2012,84(4):1956-1962
    [154] Yang M, Li H, Javadi A et al. Multifunctional mesoporous silica nanoparticlesas labels for the preparation of ultrasensitive electrochemical immunosensors[J]. Biomaterials2010,31(12):3281-3286.
    [155] Salis A, Bhattacharyya M S, Monduzzi M. Specific ion effects on adsorption oflysozyme on functionalized SBA-15mesoporous silica [J]. The Journal ofPhysical Chemistry B2010,114(23):7996-8001.
    [156] Liu S, Chen H, Lu X et al. Facile synthesis of copper(II)-Immobilized onmagnetic mesoporous silica microspheres for selective enrichment of peptidesfor mass spectrometry analysis [J]. Angewandte Chemie International Edition2010,49(41):7557-7561.
    [157] Brown J, Mercier L, Pinnavaia T J. Selective adsorption of Hg2+bythiol-functionalized nanoporous silica [J]. Chemical Communications1999,(1):69-70.
    [158] Brown J, Richer R, Mercier L. One-step synthesis of high capacity mesoporousHg2+adsorbents by non-ionic surfactant assembly [J]. Microporous andMesoporous Materials2000,37(2):41-48.
    [159] Mercier L, Pinnavaia T J. Access in mesoporous materials: Advantages of auniform pore structure in the design of a heavy metal ion adsorbent forenvironmental remediation [J]. Advanced Materials1997,9(6):500-503.
    [160] Mercier L, Pinnavaia T J. Heavy metal ion adsorbents formed by the grafting ofa thiol functionality to mesoporous silica molecular sieves: factors affectingHg(II) uptake [J]. Environmental Science&Technology1998,32(18):2749-2754.
    [161] Liu J, Feng X, Fryxell G E et al. Hybrid mesoporous materials withfunctionalized monolayers [J]. Chemical Engineering&Technology1998,21(1):97-100.
    [162] Feng X, Fryxell G E, Wang L Q et al. Functionalized monolayers on orderedmesoporous supports [J]. Science1997,276(5314):923-926.
    [163] Liu A M, Hidajat K, Kawi S et al. A new class of hybrid mesoporous materialswith functionalized organic monolayers for selective adsorption of heavy metalions [J]. Chemical Communications2000,(13):1145-1146.
    [164] Dai S, Burleigh M C, Shin Y et al. Imprint coating: A novel synthesis ofselective functionalized ordered mesoporous sorbents [J]. Angewandte ChemieInternational Edition1999,38(9):1235-1239.
    [165] Fryxell G E, Liu J, Hauser T A et al. Design and synthesis of selectivemesoporous anion types [J]. Chemistry of Materials1999,11(8):2148-2154.
    [166] Inumaru K, Kiyoto J, Yamanaka S. Molecular selective adsorption ofnonylphenol in aqueous solution by organo-functionalized mesoporous silica[J]. Chemical Communications2000,(11):903-904.
    [167] Vallet-RegíM, Balas F, Arcos D. Mesoporous materials for drug delivery [J].Angewandte Chemie International Edition2007,46(40):7548-7558.
    [168] Lake N, Ralston J, Reynolds G. Light-induced surface wettability of a tetheredDNA base [J]. Langmuir2005,21(25):11922-11931.
    [169] Itoh H, Tahara A, Naka K et al. Photochemical assembly of gold nanoparticlesutilizing the photodimerization of thymine [J]. Langmuir2004,20(5):1972-1976.
    [170] Alberti P, Mergny J L. DNA duplex-quadruplex exchange as the basis for ananomolecular machine [J]. Proceedings of the National Academy of SciencesUSA2003,100(4):1569-1573.
    [171] Weizmann Y, Cheglakov Z, Pavlov V et al. Autonomous fueled mechanicalreplication of nucleic acid templates for the amplified optical detection of DNA[J]. Angewandte Chemie International Edition2006,45(14):2238-2242.
    [172] Simmel F C. Towards biomedical applications for nucleic acid nanodevices [J].Nanomedicine2007,2(6):817-830.
    [173] Miyoshi D, Karimata H, Wang Z et al. Artificial G-wire switch with2,2’-bipyridine units responsive to divalent metal ions [J]. Journal of theAmerican Chemical Society2007,129(18):5919-5925.
    [174] Sharma J, Chhabra R, Cheng A et al. Control of self-assembly of DNA tubulesthrough integration of gold nanoparticles [J]. Science2009,323(5910):112-116.
    [175] Climent E, Martínez-Má ez R, Sancenón F et al. Controlled delivery usingoligonucleotide-capped mesoporous silica nanoparticles [J]. AngewandteChemie International Edition2010,49(40):7281-7283.
    [176] zalp V, Sch fer T. Aptamer-based switchable nanovalves forstimuli-responsive drug delivery [J]. Chemistry-A European Journal2011,17(36):9893-9896.
    [177] Hamad-Schifferli K, Schwartz J J, Santos A T et al. Remote electronic controlof DNA hybridization through inductive coupling to an attached metalnanocrystal antenna [J]. Nature2002,415(6868):152-155.
    [178] Kr ck L, Heckel A. Photo-induced transcription using temporarily mismatchedcaged oligonucleotides [J]. Angewandte Chemie International Edition2005,44(3):471-473.
    [179] Heckel A, Mayer G. Light regulation of aptamer activity: an anti-thrombinaptamer with caged thymidine nucleobases [J]. Journal of the AmericanChemical Society2005,127(3):822-823.
    [180] Zhou M, Liang X, Mochizuki T et al. A light-driven DNA nanomachine forefficiently photoswitching RNA digestion [J]. Angewandte ChemieInternational Edition2010,49(12):2167-2170.
    [181] Liu H, Xu Y, Li F et al. Light-driven conformational switch of i-motif DNA [J].Angewandte Chemie International Edition2007,46(14):2515-2517.
    [182] Irie M, Hirano Y, Hashimoto S et al. Photoresponsive polymers.2. Reversiblesolution viscosity change of polyamides having azobenzene residues in themain chain [J]. Macromolecules1981,14(2):262-267.
    [183] Manchair R N. Photochromism in triphenylmethanes [J]. Photochemistry andPhotobiology1967,6(11):779-797.
    [184] Vaupel P, Kallinowski F, Okunieff P et al. Blood flow, oxygen and nutrientsupply, and metabolic microenvironment of human tumors: a review [J].Cancer Research1989,49(23):6449-6465.
    [185] Rofstad E K, Mathiesen B, Kindem K et al. Acidic extracellular pH promotesexperimental metastasis of human melanoma cells in athymic nude mice [J].Cancer Research2006,66(13):6699-6707.
    [186] Grabe M, Oster G. Regulation of organelle acidity [J]. The Journal of GeneralPhysiology2001,117(4):329-344.
    [187] Siddiqui-Jain A, Grand C L, Bearss D J et al. Direct evidence for aG-quadruplex in a promoter region and its targeting with a small molecule torepress c-MYC transcription [J]. Proceedings of the National Academy ofSciences USA2002,99(18):11593-11598.
    [188] Tang Q, Xu Y, Wu D et al. Hydrophobicity-controlled drug delivery systemfrom organic modified mesoporous silica [J]. Chemistry Letters2006,35(5):474-475.
    [189] Mane T, Vidson N. On the complexing of desoxyribonucleic acid (DNA) bymercuric ion [J]. Journal of the American Chemical Society1961,83(12):2599-2607.
    [190] Wang Z, Lee J H, Lu Y. Highly sensitive “turn-on” fluorescent sensor for Hg2+in aqueous solution based on structure-switching DNA [J]. ChemicalCommunications2008,(45):6005-6007.
    [191] Feldkamp U, Niemeyer C M. Rational engineering of dynamic DNA systems[J]. Angewandte Chemie International Edition2008,47(21):3871-3873.
    [192] Lee J-S, Han M Su, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+)in aqueous media using DNA-functionalized gold nanoparticles [J].Angewandte Chemie International Edition2007,46(22):4093-4096.
    [193] Xue X, Wang F, Liu X. One-step, room temperature, colorimetric detection ofmercury (Hg2+) using DNA/nanoparticle conjugates [J]. Journal of theAmerican Chemical Society2008,130(11):3244-3245.
    [194] Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ions byoligonucleotide-gold-nanoparticle hybrids and DNA-based machines [J].Angewandte Chemie International Edition2008,47(21):3927-3931.
    [195] Chiang C-K, Huang C-C, Liu C-W et al. Oligonucleotide-based fluorescenceprobe for sensitive and selective detection of mercury(II) in aqueous solution[J]. Analytical Chemistry2008,80(10):3716-3721.
    [196] Wang Z, Zhang D, Zhu D. A sensitive and selective “turn on” fluorescentchemosensor for Hg(II) ion based on a new pyrene-thymine dyad [J]. AnalyticaChimica Acta2005,549(1-2):10-13.
    [197] Shi H, He X X, Yuan Y et al. Nanoparticle-based biocompatible and long-lifemarker for lysosome labeling and tracking [J]. Analytical Chemistry2010,82(6):2213-2220.
    [198] Mizutani H, Tada-Oikawa S, Hiraku Y et al. Mechanism of apoptosis inducedby doxorubicin through the generation of hydrogen peroxide [J]. Life Sciences2005,76(13):1439-1453.
    [199] Pan L, He Q, Liu J et al. Nuclear-targeted drug delivery of TATpeptide-conjugated monodisperse mesoporous silica nanoparticles [J]. Journalof the American Chemical Society2012,134(13):5722-5725.
    [200] Stein A. Advances in microporous and mesoporous solids-highlights of recentprogress [J]. Advanced Materials2003,15(10):763-775.
    [201] Hoffmann F, Cornelius M, Morell M et al. Silica-based mesoporousorganic-inorganic hybrid materials [J]. Angewandte Chemie InternationalEdition2006,45(20):3216-3251.
    [202] Liu N G, Dunphy D R, Atanassov P et al. Photoregulation of mass transportthrough a photoresponsive azobenzene-modified nanoporous membrane [J].Nano Letters2004,4(4):551-554.
    [203] Lai J, Mu X, Xu Y et al. Light-responsive nanogated ensemble based onpolymer grafted mesoporous silica hybrid nanoparticles [J]. ChemicalCommunications2010,(46):7370-7372.
    [204] Nguyen T D, Tseng H R, Celestre P C et al. A reversible molecular valve [J].Proceedings of the National Academy of Sciences USA2005,102(29):10029-10034.
    [205] Nguyen T D, Leung K C F, Liong M et al. Versatile supramolecular nanovalvesreconfigured for light activation [J]. Advanced Functional Materials2007,17(13):2101-2110.
    [206] Lin Z, Li X. Kraatz H-B. Impedimetric immobilized DNA-based sensor forsimultaneous detection of Pb(II), Ag(I), and Hg(II)[J]. Analytical Chemistry2011,83(17):6896-6901.
    [207] Huy G D, Zhang M, Zuo P et al. Multiplexed analysis of silver(I) andmercury(II) ions using oligonucletide-metal nanoparticle conjugates [J].Analyst,2011,136(16):3289-3294.
    [208] Zhao C, Qu K, Song Y et al. A reusable DNA single-walledcarbon-nanotube-based fluorescent sensor for highly sensitive and selectivedetection of Ag+and cysteine in aqueous solutions [J]. Chemistry-A EuropeanJournal2010,16(27):8147-8154.
    [209] Lee J S, Ulmann P A, Han M S et al. A DNA-gold nanoparticle-basedcolorimetric competition assay for the detection of cysteine [J]. Nano Letters2008,8(2):529-533.
    [210] Liu J W, Lu Y. Rational design of “turn on” allosteric DNAzyme catalyticbeacons for aqueous mercury ions with ultrahigh sensitivity and selectivity [J].Angewandte Chemie International Edition2007,46(40):7587-7590.
    [211] Honda S, Hylander L, Sakamoto M. Recent advances in evaluation of healtheffects on mercury with special reference to methylmercury [J]. EnvironmentalHealth and Preventive Medicine2006,11(4):171-176.
    [212] Wang J, Liu B. Highly sensitive and selective detection of Hg2+in aqueoussolution with mercury-specific DNA and SYBR Green I [J]. ChemicalCommunications2008,(39):4759-4761.
    [213] Murphy J, Jones P, Hill S J. Determination of total mercury in environmentaland biological samples by flow injection cold vapour atomic absorptionspectrometry [J]. Spectrochimica Acta Part B: Atomic Spectroscopy1996,51(9-10):1263-1270.
    [214] Wuilloud J C, Wuilloud R G, Silva M F et a1. Sensitive determination ofmercury in tap water by cloud point extraction pre-concentration and flowinjection cold vapor-inductively coupled plasma optical emission spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy2002,57(2):365-374.
    [215] Li Y, Chen C, Li B et a1. Elimination efficiency of different reagents for thememory effect of mercury using ICP-MS [J]. Journal of Analytical AtomicSpectrometry2006,21(1):94-96.
    [216] Zhang X B, Guo C C, Li Z Z et a1. An optical fiber chemical sensor formercury ions based on a porphyrin dimmer [J]. Analytical Chemistry2002,74(4):821-825.
    [217] Feng L H, Chen Z B. Screening mercury(II) with selective fluorescentchemosensor [J]. Sensors and Actuators B: Chemical2007,122(2):600-604.
    [218] Guo X F, Qian x H, Jia L H et a1. A highly selective and sensitive fluorescentehemosensor for Hg2+in neutral buffer aqueous solution [J]. Journal of theAmerican Chemical Society2004,126(8):2272-2273.
    [219] Miyake Y, Togashi H, Tashiro M et a1. MercurylI-mediated formation ofthymine-HgII-thymine base pairs in DNA duplexes [J]. Journal of theAmerican Chemical Society2006,128(7):2172-2173.
    [220] Tanaka Y, Oda S, Yamaguchi H et a1.15N-15N J-coupling across HgII: Directobservation of HgII-mediated T-T base pairs in a DNA duplex [J]. Journal ofthe American Chemical Society2007,129(2):244-245.
    [221] Ono A, Togashi H. Highly selective oligonueleotidebased sensor for mercury(II)in aqueous solutions [J]. Angewandte Chemie International Edition2004,43(33):4300-4302.
    [222] Wang Z, Zhang D Q, Zhu D B. A sensitive and selective “turn on” fluorescentchemosensor for Hg(II) ion based on a new pyrene-thymine dyad [J].Analytica Chimica Acta2005,549(1-2):10-13.
    [223] Chiang C K, Huang C C, Liu C et a1. Oligonucleotide-based fluorescenceprobe for sensitive and selective detection of mercury(II) in aqueous solution[J]. Analytical Chemistry2008,80(10):3716-3721.
    [224] Che Y K, Yang XM, Zhang L. Ultraselective fluorescent sensing of Hg2+through metal coordination. induced molecular aggregation [J]. ChemicalCommunications2008,(12):1413-1415.
    [225] Liu C W, Hsieh Y Y, Huang C C et al. Detection of mercury(II) based onHg2+-DNA complexes inducing the aggregation of gold nanoparticles [J].Chemical Communications2008,(19):2242-2244.
    [226] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+)in aqueous media using DNA-functionalized gold nanoparticles [J].Angewandte Chemie International Edition2007,46(22):4093-4096.
    [227] Xue X J, Wang F, Liu X G. One-step, room temperature, colorimetric detectionof mercury (Hg2+) using DNA/nanoparticle conjugates [J]. Journal of theAmerican Chemical Society2008,130(11):3244-3245.
    [228] Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ions byoligonucleotide-gold-nanoparticle hybrids and DNA-based machines [J].Angewandte Chemie International Edition2008,47(21):3927-3931.
    [229] Wang J, Nielsen P E, Jiang M et a1. Mismatch-sensitive hybridization detectionby peptide nucleic acids immobilized on a quartz crystal microbalance [J].Analytical Chemistry1997,69(24):5200-5202.
    [230] Wang J. From DNA biosensors to gene chips [J]. Nucleic Acids Research2000,28(16):3011-3016.
    [231] Canck E D, Lapeire L, Clercq J D et al. New ultrastable mesoporous adsorbentfor the removal of mercury ions [J]. Langmuir2010,26(12):10076-10083.
    [232] Li N, Bai R B, Liu C K. Enhanced and selective adsorption of mercury ions onchitosan beads grafted with polyacrylamide via surface-initiated atom transferradical polymerization [J]. Langmuir2005,21(25):11780-11787.
    [233] Sonmez H B, Senkal B F, Sherrington D C et al. Atom transfer radical graftpolymerization of acrylamide from N-chlorosulfonamidated polystyrene resin,and use of the resin in selective mercury removal [J]. Reactive and FunctionalPolymers2003,55(1):1-8.
    [234] Joseph K A, Dave N, Liu J W. Electrostatically directed visual fluorescenceresponse of DNA-functionalized monolithic hydrogels for highly sensitiveHg2+detection [J]. ACS Applied Materials&Interfaces2011,3(3):733-739.
    [235] Bayramo lu G, Arica M Y. Kinetics of mercury ions removal from syntheticaqueous solutions using by novel Mmagnetic p(GMA-MMA-EGDMA) beads[J]. Journal of Hazardous Materials2007,144(1-2):449-457.
    [236] Huang P J, Liu J W. Immobilization of DNA on magnetic microparticles formercury enrichment and detection with flow cytometry [J]. Chemistry-AEuropean Journal2011,17(18):5004-5010.
    [237] Kim B C, Lee J, Um W et al. Magnetic mesoporous materials for removal ofenvironmental wastes [J]. Journal of Hazardous Materials2011,192(3):1140-1147.
    [238] Uludag Y, zbelge H, Yilmaz L. Removal of mercury from aqueoussolutions via polymer-enhanced ultrafiltration [J]. Journal of MembraneScience1997,129(1):93-99.
    [239] Kim M, Um H J, Bang S et al. Arsenic removal from vietnamese groundwaterusing the arsenic-binding DNA aptamer [J]. Environmental Science&
    Technology2009,43(24):9335-9340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700