UV-B辐射和O_3浓度增加对冬小麦生长和产量的胁迫效应及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,南京地区及长江三角洲地区的NOX等臭氧前体物浓度迅速上升,导致地表03浓度不断增加,其对农作物等地表植物的影响已受到普遍关注,同时,广泛研究表明地表UV-B辐射对于地表生物有严重的胁迫效应。开展UV-B辐射和03浓度复合胁迫对作物生长和产量的影响研究,对于进一步探明逆境条件下农作物的响应机制具有重要的科学意义。本论文以冬小麦为受试作物,基于开顶式气室(OTCs),设置了UV-B增强10%(EUl)、UV-B增强20%(EU2)、100nL·L-103(E01)、150 nL·L-103(E02)、UV-B增强10%与100nL·L-103复合(EU1+EO1)、UV-B增强20%与100 nL·L-103复合(EU2+E01)、UV-B增强10%与150 nL·L103复合(EU1+E02)、UV-B增强20%与100 nL·L-103复合(EU2+E01)8个处理组,开展了UV-B辐射增强和03浓度增加对冬小麦生长和产量的影响及其模拟研究。主要结果如下:
     (1)孕穗期-杨花期UV-B和03复合作用对冬小麦叶面积指数的影响表现为协同作用,但灌浆期和成熟期叶面积指数高于单因子处理组。杨花期-成熟期03熏气在一定程度上缓解了UV-B对冬小麦单株叶片数和单叶叶面积的不利影响。复合作用对株高和节点数没有明显的效应。灌浆期-成熟期倒一节长介于EO1和EU2组之间。杨花期-成熟期倒二节长度为EU2>E01>CK>EU2+EO1。UV-B辐射增强在一定程度上能够缓解03对冬小麦茎粗的负作用。EU2、EO1、EU2+E01形态响应指数分别为49.4%、32.87%、33.25%。上述表明,复合作用对冬小麦形态特征的影响并不是单独作用的简单叠加。
     (2)UV-B和03复合胁迫下叶绿素含量显著下降;丙二醛和类黄酮含量显著增加,干物质量显著下降,且杨花期之后变化幅度均大于EU2和E01组。灌浆期-成熟期,复合胁迫组叶分配指数最高,穗壳分配指数显著下降,且下降幅度大于EU2和EO1组。灌浆后期籽粒分配指数介于E01和EU2组之间。EU2组旗叶转运率显著下降35.01%P<0.01),EO1组茎鞘转运率增加了7.63%(P<0.05),复合胁迫下旗叶可溶性糖含量和茎的转运率显著下降(55.61%),导致成熟期穗粒数和千粒重显著下降,且下降幅度大于单因子处理组。EU2、E01、EU2+EO1冬小麦产量分别下降了31.54%(P<0.05)、23.64%(P<0.05)、40.72%(P<0.01)。以上结果表明,灌浆期-成熟期是UV-B和03复合胁迫对冬小麦生长产量影响的敏感时期,冬小麦不同的生长生理指标对UV-B和03复合胁迫表现出不同的相互作用。
     (3)基于大田试验,在Vensim PLE系统动力学软件下,通过引入UV-B和03对冬小麦最大光合速率和叶面积指数的影响的胁迫系数(fc1,fc2),建立了模拟冬小麦干物质累积和产量形成的系统动力学模型。模拟结果表明,总干重、地上总干重和产量模拟值与实测值相关性达到了显著性水平(P<0.01),总干重、地上总干重和籽粒重量的模拟值与实测值的相对误差分别为9.05%、10.01%、16.19%。表明,在灌浆后期UV-B和03复合胁迫对干物质生产和生物产量以及籽粒产量存在协同作用。
Emissions of ozone (O3) precursors of methane and NOx due to human activity and fossil-fuel combustion leaded to an increase in ground-level O3 in Yangtze River Delta, China, At present, the adverse effects of O3 on wheat have been reported extensively. Meanwhile The extensive research showed that UV-B radiation (UV-B:280-320 nm) is also a menace to many crops. The study on the influencing mechanism and influence degree of the compound stress on winter wheat is of profound theoretical and practical significance. In this study, with open-top chambers established in the field in Nanjing we investigated the responses of winter wheat to elevated UV-B and O3 levels at different growth stages, and analyzed yield components at harvest time. This study provides the first-hand field observations for studying the compound effects of two important environmental factors (UV-B and O3) that are projected to change in the future climate on winter wheat growth and development. The experimental design consisted of eight treatments:CK (the control, natural solar UV-B irradiance, ambient air with approximately 50nl·L-1O3), EU1(10% higher level of UV-B intensity, ambient air with approximately 50 nl·L-1 O3),EU2(20% higher level of UV-B intensity, ambient air with approximately 50 nl·L-1O3), EO1(natural solar UV-B irradiance, mixed gas with approximately 100 nl·L-1 O3), EO2(natural solar UV-B irradiance, mixed gas with approximately 150 nl·L-1O3),EU1+EO1(10% higher level of UV-B intensity, mixed gas with approximately 100 nl·L-1O3), EU2+EO1(20% higher level of UV-B intensity, mixed gas with approximately 100 nl-L-1O3), EUl+EO2(10% higher level of UV-B intensity, mixed gas with approximately 150 nl-L-1O3). The main conclusions of this paper were as follows:
     (1)From booting stage to blooming stage, the interactive stress of UV-B and O3 significantly decreased leaf area index, with the reductions larger than those under single stress, however, in filling and ripening stage, the leaf area index under compound stress was lager than that under single stress. From blooming to ripening and the compound effects of UV-B and O3 on leaf number per plant and leaf area per leaf can be explained as antagonistic action. There was no significant difference in the plant height and internode number. In filling and ripening the topmost knop length under compound stress was between those under EU and EO. The compound effects of UV-B and O3 can alleviate the adverse effects of O3 to stem diameter of winter wheat. Compared to the contral, the morpha response index under 20% higher level of UV-B intensity, mixed gas with approximately 100 nl·L-1 O3 and the compound stress is 49.4%,32.87%,33.25% respectively. The compound effects of UV-B and O3 on morphological character of winter wheat were not simple additive relation.
     (2) Under the interactive stress of ultraviolet-B and O3, the content of chlorophyll decreased very significantly, and the reductions had no significant difference with that under the single stress of UV-B. Malonaldehyde and flavonoids increased markedly with the increment larger than those under single stress after blooming. Dry matter weight decreased significantly with the decrements larger than that under any single stress in filling and ripening; The partitioning index of leaves was higher than that under other treatments in filling and ripening; The partitioning index of stalk decreased significantly with the decreament larger than that single stress; The partitioning index of grains was higher than that under ultraviolet-B treatment and lower than that under O3 treatment in later filling stage; However, no significant difference was detected in the partitioning index of stem. Under EU2 condition, the contribution of leaves was dcreased by 35.01%(P<0.01), however, under the EOl condition, the contribution of stalk wase increased by 7.63%(P<0.01). Under the compound stress, the average content of soluble sugar in the flag leaf and contribution of stem decreased significantly, which leaded to significant declines in both grains per panicle and 1000-grains weight. Compared to the contral, the yield of winter wheat under 20% higher level of UV-B intensity, mixed gas with approximately 100nl·L-1 O3 and the compound stress is reduced by 31.54%(P<0.05),23.64%(P<0.05),40.72%(P<0.01) respectinely. The above results showed that the filling-ripening stage is the sensitive developmental period of winter wheat under the compound stress.Different indicators for growth and physiology of winter wheat exhibited different compound effects in response to the interactive stresses of ultraviolet-B and O3.
     (3) A dynamic model is established in this study and runs under a Vensim PLE software. Indices (fc1, fc2) were built in the model to explore how the plant response to the stresses. Additionally, the correlation between the stress factors for UV-B intensity and O3 concentration and the increase rate of the fraction of grain weight was established to simulate the yield formation. The model was examined via experimental document. Results showed that the model has good performances on predicting the dynamic formation of total dry matter, aboveground dry matter and yield of winter wheat. The correlation coefficients between observed value and simulated value were significant (P<0.01). The relative errors (RE) for total dry matter, aboveground dry matter and grain weight were 9.05%,10.01%,16.19%, respectively. The model demonstrated that elevated UV-B and O3 has synergistic impacts on dry matter production, biological yield and yield formation in later filling stage of winter wheat.
引文
1. Akhtar N, Yamaguchi M, Inada H et al. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.)[J].Environmental Pollution,2009:1-5.
    2. Alexieva, V., Sergiev, I., Mapelli, S.,et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment,2001, 24:1337-1344.
    3. Al-Oudat, M., Baydoun, S.A., Mohammad, A. Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum var. Horani) and broad beans (Vicia faba) under field conditions. Environment and Experimental Botany,1998,40:11-16.
    4. Ambasht N K, M Agrawal. Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat [J]. Biologia Plantarum, 2003,47(4):625-628.
    5. Aunan K, Berntsen TK, Seip HM. Surface ozone in China and its possible impact on agricultural crop yields[J]. Ambio,2002,29(6):294-301.
    6. Avnery S, Mauzerall D L, Liu J F, et al. Global Crop Yield Reductions due to Surface Ozone Exposure:1. Year 2000 Crop Production Losses and Economic Damage[J]. Atmospheric Environment,2010 (in publishing)
    7. Barnes P W, Flint S D, Caldwell M M. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation[J]. American Journal of Botony,1990, 77 (10):1354-1360.
    8. Bergo E,Segalla A,Giacometti GM,et al.Role of visible light in the recovery of photosystem II structure and function from ultraviolet-B stress in higher plants[J] Journal of Experimental botany,2003,54:1665-1673.
    9. Biggs H, Kouthus SV. Effects of ultraviolet-B radiation enhancements under field condition[R] In:UV-B Biological and Climate Effects Research(BACER),1978.
    10. Borman, J F, Target sites of UV-B radiation in photosynthesis of higher plant. Journal of Photochemistry and Photobiology B:Biology,1989,4:145-158.
    11. Bornman, J.F., Teramura, A.H., Effect of ultraviolet-B radiation on terrestrial plants. In: Young, A.R., Bjorn, L.O.,Moan, J., Nulttsch, W. (Eds.), Environmental UV Photobiology. Plenum Press, New York,1993, pp.427-472.
    12. Caldwell M M, Robberecht R, Flint S D. Internal filters:Prospects for UV-acclimation in higher plants[J]. Plant Physiology,1983, (58):445-450.
    13. Cechin, I., Corniani, N., de Fatima-Fumis, T.et al. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants [J]. Radiation and Environment Biophysics,2008,47:405-413.
    14. Cen, Y.P., Bornman, J.F. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Plant Physiology,1993,87:249-255.
    15. Chameides W L, Kasibhatla P S, Yienger J et al. Growth of continental-scale metro-agro-plexus, regional ozone pollution, and world food production [J]. Science,1994, 4:74-77.
    16. Christos Dordas. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations [J].European Journal of Agronomy,2009,30:129-139.
    17. Connor, D.J., Fereres, E. A dynamic model of crop growth and partitioning of biomass. Field Crop Research,1999,63:139-157.
    18. Dai, Q J, Peng, S B, Chavez, A Q, et al. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environment and Experimental Botany,1994,34:422-433.
    19. Davey, K R. Belehradek modelsDApplication to chilled foods preservation, International Symposium, La Microbiologie Previsionnelle Appliquee a la Conservation des Aliments Refrigeres (Predictive Microbiology Applied to Chilled Food Preservation), Commission on Food Science and Technology (C2) of the International Institute of Refrigeration (ⅡR), Quimper, France, June 16-18,1997, pp.37-47.
    20. Ewert, F, Rodriguez, D, Jamieson, P et al. Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agriculture, Ecosystems and Environment.2002,93:249-266.
    21. Fagnano M, Maggio A, Fumagalli I et al. Crops responses to ozone in Mediterranean environments[J]. Environmental Pollution,2009,157:1438-1444.
    22. Feng H Y, Li S W, Xue L G.,et al. The interactive effects of enhanced UV-B radiation and soil drought on spring wheat. South. Africa Journal of Botany,2007,73:429-434.
    23. Feng Z W, Jin M H, Zhang F Z et al. Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River Delta[J]. Journal of Environmental Science,2003,15(3):360-362.
    24. Feng, H Y, An, L Z, Chen, T et al. The effect of enhanced ultraviolet-B radiation on growth, photosynthesis, and stable carbon isotope composition (delta C-13) of two soybean cultivars(Glycine max) under field conditions.[J]. Environment and Experimental Botany. 2003,49,1-8.
    25. Fiscus, E.L., Booker, F.L., Burkey, K.O. Crop responses to ozone:uptake, modes of action, carbon assimilation and partitioning[J]. Plant, Cell and Environment,2005,28:997-1011.
    26. Gonzalez, R., Mepsted, R., Wellburn, A.R.et al. Non-photosynthetic mechanisms of growth reduction in pea (Pisum sativum L.) exposed to UV-B radiation. Plant Cell and Environment, 1998,21:23-32.
    27. Gower S T., McMurtrie R S, Murty D. Aboveground net primary production decline with stand age:potential causes. Tree,1996,11:378-382.
    28. Harmens H., Mills G., Emberson L D et al. Implications of climate change for the stomatal flux of ozone:A case study for winter wheat. Environment Pollution,2007,146:763-770.
    29. Hidema J, Kumagai T. Sensitivity of rice to ultraviolet-B radiation [J]. Annals of Botany 2006,97:933-942.
    30. Ignacio G F, Agnieszka K, Mahmadali D. Establishing ozone fluxe response relationships for winter wheat:Analysis of uncertainties based on data for UK and Polish genotypes[J].Atmospheric Environment,2009:1-10.
    31. Jankowski P, Gozdowski D. Canonical modelling of spring barley growth using dry matter weight data from a field experiment[J]. Ecological Modelling,2010,221:161-172.
    32. Jansen, M A K., Van-den-Noort R E. Ultraviolet-B radiation induces complex alterations in stomatal behavior. Plant Physiology,2000,110:189-194.
    33. Jordan B R.The effect of Ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue:UV-B induced changes in gene expression are gene specific and dependent upon tissue development[J].Plant cell and Environment,1994,17:45-5.
    34. Jung Y J, Oh B S, Kang J W. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores [J].Water Research,2008, 42:1613-1621.
    35. Kakani V G., Reddy K R., Zhao D. Field crop responses to ultraviolet-B radiation:a review[J]. Agriculture Forest and Meteoreology,2003,120:191-218.
    36. Khadre M A., Yousef A E. Sporicidal action of ozone and hydrogen peroxide:a comparative study [J]. International Journal of Food Microbiology,2001,71:131-138.
    37. Kim Y H, Lim S, Han S H, et al. Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation Plant[J].Physiology and Biochemistry,2007,45:908-914.
    38. Kobayashi K, Okada M, Nouchi I. Effects of ozone on dry matter partition and yield of Japanese cultivar of rice (Oryzasaliva L.) [J]. Agriculture, Ecosystems and Environment, 1995,53:109-122.
    39. Lam K S, Ding A J, Chan L Y et al. Ground-based measurements of total ozone and UV radiation by the Brewer spectrophotometer #115 at Hong Kong[J]. Atmospheric Environment,2002,36:2003-2012.
    40. Lamaud E, Loubet B, Rvine M et al. Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes, using eddy-covariance flux measurements and modeling[J]. Agricultural and Forest Meteorology,2009, 149:1385-1396.
    41. Li F R., Peng S L., Chen B M et al. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation[J]. Acta Oecologica,2009:1-9.
    42. Li J, Ou-Lee T-M, Raba R et al.Arabidopsis flavonoid mutants are hypersensitive to ultraviolet-B radiation[J]. Plant Cell,1993,5:171-179.
    43. Li Y, He L, Zu Y et al. Intraspecific variation in sensitivity to ultraviolet-B radiation in endogenous hormones and photosynthetic characteristics of 10 wheat cultivars grown South African[J]. Journal of Botany,2010,76:493-498.
    44. Li Y, Zu Y Q, Chen H Y Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions[J]. Field Crops Research 2000,67:25-33.
    45. Li Y, Yue M., Wang X L. Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions. Field Crops Research, 1998,57:253-263.
    46. Li Y, Zu Y Q, Chen J J et al. Intraspecific responses in crop growth and yield of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions.Field Crops Research, 2002,72:1-8.
    47. Liu F, Wang X K, Zhu Y G. Assessing current and future ozone-induced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China[J]. Environmental Pollution,2009,157:707-709.
    48. Mark U, Tevini M. Combination effects of UV-B radiation and temperature on sunflower (Helianthus annuus L., cv.Polstar) and maize (Zea mays L., cv. Zenit 2000) seedlings. Journal of Plant Physiology,1996,148:49-56.
    49. McMeekin T A, Olley J N, Ross T et al. Predictive Microbiology:Theory and Application. Research Studies Press, Ltd. Taunton, UK.1993.
    50. Meijkamp B B, Doodeman G., Rozema J. The response of Vicia faba to enhanced UV-B radiation under low and near ambient PAR levels. Plant Ecology,2001,154:137-146.
    51. Meyer U, Kollner B J, Willen brink J et al. Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat J]. Agriculture. Ecosystems and Environment,2000,78 (1):49-55.
    52. Miller J E, Booker F L, Fiscus E L et al. Ultraviolet-B radiation and ozone effects on growth, yield, and photosynthesis of soybean. Journal of Environmental Quality,1994,23:83-91.
    53. Mills G, Buse A, Gimeno B, et al.A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops[J]. Atmospheric Environment, 2007,41:2630-2643.
    54. Nedunchezhian N., Kulandaivelu G. Changes induced by ultraviolet-B (280-320 nm) radiation to vegetative growth and photosynthetic characteristics in field grown Vigna unguiculata L. Plant Scicence. Limerick,1997,123:85-92.
    55. Nguyen H T, Davey K R, Gardner T et al. Effect of transmittance and suspended solids on the efficacy of UV disinfection of water,26th Australasian Chemical Engineering Conference, CHEMECA'98, Port Douglas, North Queensland, September,28-30,1998, p.5.
    56. Nogues S, Allen D J, Morison J I et al.Characterization of stomatal closure caused by ultraviolet-Bradiation[J]. Plant Physiology,1999.121 (2):489-499
    57. Ormrod D P, Landry L G, Conklin P L. Short term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid deficient Arabidopsis[J]. Plant Physiology,1995,93:602-610.
    58. Pleijel H, Danielsson H., Emberson L et al.Ozone risk assessment for agricultural crops. In EU2rope:Further development of stomatal flux and flux-response relationships for European wheat and potato. Atmospheric Environment,2007,41:3022-3040.
    59. Pleijel H, Danielssona H, Gelang J et al. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.) [J]. Agriculture, Ecosystems and Environment,1998,70(1):61-68.
    60.Rai R. M, Agrawal, S B. Agrawal. Assessment of yield losses in tropical wheat using open top Chambers [J]. Atmospheric Environment,2007,41:9543-9554.
    61. Raja Reddy K, Kakani V G, Zhao D. et al.Cotton responses to ultraviolet-B radiation: experimentation and algorithm development.Agricultural and Forest Meteorology,2003,120: 249-265.
    62. Rao M V, Ormrod D P. Ozone exposure decreases UV-B sensitivity in a UV-B sensitive flavonoid mutant of Arabidopsis[J]. Photochemistry Photobiology.1995,61(1):71-82.
    63. Riikonen J, Percy K E, Kivima M et al. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. Environment Pollution,2010,158:1029-1035.
    64. Ros J, Tevini M. UV-radiation and indole-3-acetic acid:interaction during growth of seedlings and hypocotyl segments of sunflower. Journal of Plant Physiology,1995,146: 295-305.
    65. Shindell D T, Rind D, Lonergan P.Increased polar Stratospheric ozone losses and delayed eventual recovery owing to the increasing greenhouse gas concentrations [J]. Nature,1998, 392(9):58.
    66. Sicard P, Dalstein-Richier L, Vas N. Annual and seasonal trends of ambient ozone concentration and its impact on forest vegetation in Mercantour National Park (South-eastern France) over the 2000-2008 period[J]. Environmental Pollution,2011, 159:351-362.
    67. Singh S K, Surabhi G K, Gao W et al. Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation Journal of Photochemistry and Photobiology B:Biology,2008,93 (2):71-81.
    68. Singh S, Kumari R, Agrawal M et al. Modification in growth, biomass and yield of radish under supplemental UV-B at different NPK levels. Ecotoxicology and Environmental Safety, 2011,74(4):897-903.
    69. Singh S, Kumari R, Agrawal M et al. Modification of growth and yield responses of Amaranthus tricolor L.to UV-B under varying mineral nutrient supply [J]. Scientia Horticulturae,2009,120:173-180.
    70. Steinmuller D, Tevin M. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta,1985,164:557-564.
    71. Strid A, Porra R J. Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant and Cell Physiology,1992,33:1015-1023.
    72. Taalas P, Kaurola J, Kylling A, et al. The impact of greenhouse gases and halogenated species on future solar UV radiation doses [J]. Geophysical Research Letters,2000,27(8): 1127-1130.
    73. Teramura A H. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Plant Physiology,1983,58:415-427.
    74. Tevini M, ThomaU, Iwanzik W. Effects of UV-B radiation on germination, seedling growth, leaf anatomy and pigments of some crop plants. Z. Pflazenphysiol.,1983,109:435-448.
    75. UNEP,2002. Executive Summary. Final of UNEP/WMO Scientific Assessment of Ozone Depletion:2002.
    76. Van de staaij J W M, Tonneijck A E G, Rozema J. The effect of reciprocal treatments with ozone and ultraviolet-b radiation on photosynthesisi and growth of perennial grass elymus athericus [J]. Evironmental Pollution,1997,97:281-286.
    77. Vingarzan R.A review of surface ozone background levels and trends[J]. Atmospheric Environment 2004,38:3431-3442.
    78. Volz A, Kley D. Evaluation of the montsouris series of ozone measurements made in the 19th-century[J]. Nature,1988,332:240-242.
    79. Wahid A. Influence of atmospheric pollutants on agriculture in developing countries:A case study with three new wheat varieties in Pakistan [J]. Science of the Total Environment,2006, 371:304-313.
    80. Wang C Y, Zheng Y F, Gao W et al. Responses of winter wheat growth and production under sub-ambient UV-B irradiance[J]. Proceedings of SPIE,2003,4896:219-222.
    81. Wang H X, Kiang C S, TangX Y et al.. Surface ozone:A likely threat to crops in Yangtze delta of China. Atmospheric Environment,2005,39:3843-3850.
    82. Wang X K, Manning W J, Feng Z W et al. Ground-level ozone in China:distribution and effects on crop yields[J]. Environmental Pollution,2007,147:394-400.
    83. Wang X P, Denise L. Mauzerall. Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea:1990 and 2020[J]. Atmospheric Environment,2004,38(26):4383-4402.
    84. Wang X., Mauzerall D L. Characterising distributions of surface ozone and its impacts on grain production in China, Japan and South Korea[J]. Atmospheric Environment,2004,38: 4383-4402.
    85. Zapletal M, Cudlin P, Chroust P et al. Ozone flux over a Norway spruce forest and correlation with net ecosystem production[J]. Environmental Pollution,2010 (in publishing).
    86. Zhao D, Reddy K R, Kakani V G et al. Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environment conditions[J]. Plant Cell and Environment,2003:771-782.
    87. Zheng Y, Gao W, Slusser J R et al. Yield and yield formation of field winter wheat in response to supplemental solar ultraviolet-B radiation[J]. Short communication. Agricultural and Forest Meteorology,2003,120:279-283.
    88.乔玉辉,宇振荣,P. M. Driessen.冬小麦干物质在各器官中的累积和分配规律研究[J].应用生态学报,2002,13(5):543-546.
    89.冯兆忠,小林和彦,王效科等.小麦产量形成对大气臭氧浓度升高响应的整合分析[J].科学通报,2008,53(4):3080-3085
    90.冯虎元,安黎哲,徐世健等.UV-B线-B辐射增强对大豆生长、发育、色素和产量的影响[J].作物学报,2001,27(3):319-323
    91.冯虎元,安黎哲,陈书燕等.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响[J].生态学报,2002,22(9):1564-1566.
    92.刘宏举,郑有飞,吴荣军等.地表03浓度增加对南京地区冬小麦生长和产量的影响[J].中国农业气象,2009,30(2):195-200
    93.刘建栋,周秀骥,于强,等.近地层大气03对水稻光合作用影响的数值模拟[J].环境科学学报,2003,23(3):289-294.
    94.叶子飘,于强.植物气孔导度的机理模型.植物生态学报,2009,33(4):772-782.
    95.吴杏春,林文雄,黄忠良等.增强UV-B辐射对两种不同抗性水稻叶片光合生理及超显微结构的影响[J].生态学报,2007,27(2):554-566.
    96.吴荣军,郑有飞.紫外辐射胁迫下小麦干物质生产和积累的动力学模型研究农业环境科学学报,2008,27(6):2325-2331.
    97.吴荣军.地表O3胁迫下的冬小麦生理生态效应及风险评估.PhD.南京信息工程大学,2010.
    98.周秀骥.长江三角洲地区近地层大气和生态系统相互关系的研究.北京,气象科学出版社,2004.
    99.周青,黄晓华.紫外辐射(UV-B)对47种植物叶片的表观伤害效应[J].环境科学,2002,3(3):23-28.
    100.姚芳芳,王效科,陈展等.农田冬小麦生长和产量对03动态暴露的响应植物生态学报..2008,32(1):212-219。
    101.孙林,黄海山,赵秀勇.UV-B辐射增强对冬小麦生长发育及产量的影响农村生态环境.2004,20(2):24-27.
    102.岳明,王勋陵.紫外-B辐射增强对小麦和燕麦繁殖特性影响的研究[J].中国环境科学,1998,18(1):68-71.
    103.张立军,樊金娟.植物生理学实验教程[M].北京:中国农业大学出版社,2007,98-101.
    104.李元王勋陵.UV-B辐射对田间春小麦生物量和产量的影响.农业生态环境1999.15(2):28-31.
    105.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2004.
    106.李永康,王雪明,杨明珠.中国石楠属的两个新种.植物研究,1988,8(3):132-135.
    107.李玉娥,张厚暄.温室效应对我国北方冬麦区作物生产潜力的影响[J].中国农业气象,1992,13(4):37-39.
    108.林而达,张厚喧,王京华等.全球气候变化对中国农业影响的模拟.北京:中国农业科技出版社,1997,3.
    109.毛晓艳,殷红,郭巍等.增强UV-B辐射对水稻产量及品质的影响[J].安徽农业科学,2007,35(4):1016-1017.
    110.王传海,郑有飞,万长建等.紫外线UV-B增加对小麦开花及结实率的影响[J].农业环境保护,2000,19(4):221-223.
    111.王效科,欧阳志云,苗鸿DNDC模拟在长江三角洲农田生态系统CH4和N20排放量估算的应用[J].环境科学,2001,22(3):15-19.
    112.王春乙,白月明.03和气溶胶浓度变化对农作物的影响研究[M].北京:气象出版社,2007,143-144.
    113.王春乙,郭建平,白月明等.03浓度增加对冬小麦影响的实验研究[J].气象学报,2002,60(2):238-242.
    114.王石立,王馥棠.气候变暖对黄淮海地区小麦产量可能影响的模拟试验[J].气象学报,1993,51(2):209-216.
    115.王馥棠.气候变化对长江中下游地区水稻产量影响的模拟试验,见:中国气候变化对农业影响的试验与研究,北京:气象出版社,1991,58-65.
    116.田展,刘纪远,曹明奎.气候变化对中国黄淮海农业区小麦生产影响模拟研究[J].自然资源学报,2006,2l(4):598-607.
    117.白月明,霍治国,王春乙等.03浓度增加对冬小麦叶片影响的实验研究[J].中国农业气象,2001,22(4):22-26.
    118.白月明,王春乙,温民.大豆对O3、CO2及其复合效应的响应[J].应用生态学报,2005,16(3):545-549.
    119.白月明,王春乙,刘玲等.03浓度增加对油菜影响的诊断实验研究[J].应用气象学报,2002,13(3):364-370.
    120.白月明,王春乙,郭建平,等.油菜产量响应03胁迫的实验研究[J].农业环境科学学报,2003b,22(3):279-282.
    121.胡莹莹,赵天宏,徐玲等.臭氧浓度升高对小麦光合作用和产量构成的影响[J].农业现代化研究,2008,29(4):498-502.
    122.谢居清,郑启伟,王效科等.03对原位条件下水稻叶片光合,穗部性状及产量构成的影响[J].西北农业学报,2006,15(3):27-30.
    123.赵天宏,史奕,王春乙等.C02和03浓度倍增及其复合作用对大豆叶绿素含量的影响[J].生态学杂志,2003,22(6):117-120.
    124.赵忠宝,万福绪,刘奕琳等.徐淮平原农田防护林对小麦光合生理生态的影响.江苏农业学报,2010,26(4):691-695.
    125.赵晓莉,张容刚,郑有飞等.UV-B增强对菠菜生长发育和生理特性的影响[J].农业环境科学学报,2004,23(1):26-28.
    126.郑启伟,王效科,冯兆忠,等.用旋转布气法开顶式气室研究03对水稻生物量和产量的影响[J].环境科学,2007,28(1):170-175.
    127.郑启伟,王效科,谢居清等.外援抗坏血酸对03胁迫下水稻叶片膜保护系统的影响[J].生态学报,2006,26(4):1132-1137.
    128.郑昌玲,王乙春.近地层03和C02浓度变化对冬小麦影响的数值模拟:Ⅰ模型结构[J].气象学报,2005-63(2):184-191.
    129.郑昌玲,王乙春.近地层03和CO2浓度变化对冬小麦影响的数值模拟:Ⅱ模拟结果和分 析[J].气象学报,2005b,63(2):192-203.
    130.郑有飞,胡程达,吴荣军等.地表03浓度增加对冬小麦光合作用的影响[J].生态学报,2010,30(4):0847-0855.
    131.郭建平,王春乙,白月明,等.大气中浓度变化对冬小麦生理过程和籽粒品质的影响[J].应用气象学报,2001,12(2):255-256.
    132.金之庆,葛道阔,方娟等.评价全球气候变化对我国玉米生产的可能影响[J].作物学报,1996,22(5):513-524.
    133.金之庆,葛道阔,陈华,等.全球气候变化影响我国大豆生产的利弊分析[J].大豆科学,1994,13(4):302-311.
    134.金明红,冯宗炜,张福珠等.03对水稻叶片膜脂过氧化和抗氧化系统的影响[J].环境科学,2000,21(3):1-5.
    135.陈建军,祖艳群,陈海燕等.20个小麦品种对UV-B辐射增强响应的形态学差异.农村态环境,200l,17(2):26-29.
    136.颜景义,杨志敏,郑有飞.大豆对紫外辐射的生物学效应研究[J].农业环境保护,1995,14(4):154-157.
    137.高亮之,Hannaway D B苜蓿生产的农业气候计算机模拟模式——ALFAMOD[J].江苏农业学报,1985,1(2):2-10.
    138.高素华,潘亚茹.温室效应对未来农业气候资源的影响问题[J].中国农业气象,1991,12(4):l-5.
    139.黄辉.近地层03和C02浓度增加对作物影响的实验研究[D].中国气象科学研究院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700