高精度人眼像差哈特曼探测器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈特曼波前探测器具有实时性强,易操作,可以简单方便的测量波前位相分布等优点,因此在人眼像差测量、激光光束质量诊断、光学元件、光学系统检测、大气扰动光学测量、以及自适应光学等诸多领域有着广泛的应用。
     本论文主要研究了用于眼底液晶自适应光学成像系统中的哈特曼波前探测器。由于人眼视网膜的光反射率只有1/1000,且由多层组织构成,各层组织的反射导致哈特曼光斑周围有一层光晕;另外人眼角膜各个部位的偏振特性不同,而本实验系统采用液晶空间光调制器作为波前校正器,必须利用偏振片滤光后进行像差校正,偏振化后就出现了光强分布不均匀的问题,因此导致位于后光路上的哈特曼光斑光强分布不均匀。本论文提出了多峰逐点阈值算法解决了此问题。研究了光强加幂算法,并将它与多峰逐点阈值算法融合在一起使哈特曼波前探测器的探测精度提高到1%像素,对应波前PV值小于λ/40(λ=500nm)。提出了一种动态追踪质心探测算法,仅通过软件手段在不降低探测能量,增加探测速度的基础上扩大了哈特曼波前探测器的动态范围,解决了高度屈光不正人眼的波前探测问题,此方法也适用于大气湍流测量。论文还分析了微透镜排列方式对哈特曼波前探测器质心探测精度的影响,分析了由于人眼瞳孔变化引起的重构误差,提出了动态重构方法。利用Zernike模式的对称性,优化了GPU波前重构算法,提高了波前重构速度。将所研制的哈特曼波前探测器用于人眼眼底自适应光学成像系统中,获得了达到衍射极限水平的3微米直径的视网膜细胞轮廓图像。
     本论文通过软件手段在提高人眼像差探测的哈特曼波前探测精度的同时,扩大了探测动态范围,不增加任何成本,因此具有良好的应用前景。
Harmann wavefront has many advantages such as good real-time performance, easy operation, measuring wavefront slope easily and visual display wavefront distortion, so it is widely applied in many fields such as the laser beam quality diagnosis, optical components and optical system detection, atmospheric disturbances measurement, eye aberration measurement and adaptive optics etc.
     A hartmann wavefront detector for liquid crystal adaptive optics fundus imaging system is tried to deveop in the paper. Due to the reflection of each layer of the human eye tissue, causing the halo around the spot image; The different polarization characteristics as different place of the cornea, and using liquid crystal spatial light modulator as wavefront correctors in our laboratory, polarization light should be used to correct aberration, therefore light intensity distribution of Hartmann spot image is uneven when polarized. A new thresh algorithm of multimodal and point by point selection thresh is developed to solve above proplem in the paper. The light intensity with power algorithm is studied, and it is merged with the multimodal and point by point thresh selection thresh algorithm together to improve the precision of Hartmann wavefront detector to 1% pixels, and the corresponding PV value of the wavefont is less thanλ/40(λ=500nm). A dynamic tracking centroid detection algorithm is developed to solve the problem of the large eye aberration detection, which expand the dynamic range of Hartmann wavefront detector only by software means without loss of accuracy and increasing the detection time and is also applicable to the atmospheric turbulence measurement. The influence of the microlens arrangement for the centroid detection precision of Hartmann wavefront detector is analyzed, and the reconstruction error the variation of the eye pupil size leads to is analyzed, and the dynamic wavefront reconstruction algorithm is developed to solve above problem. According to the symmetry of the Zernike mode, optimizing the GPU program and decreasing the time of the wavefront reconstruction. The development Hartmann wavefront detector is used in the experiment of adaptive optics retina imaging, and the three microns retinal image of the diffraction limit is obtained.
     The precision is improved and the dynamic range is expanded of Hartman wavefront detector by software means, and without additional costs, so it has a good application prospect.
引文
1. R. K. Tyson, Principles of adaptive optics. (Academic Press, Boston, 1991).
    2. T.L. Bruno, A. Wirth, A.J. Jankevics,―Applying Hartmann wavefront sensing technology to precision optical testing of the Hubble space telescope correctors,‖Proc. SPIE. 1920, 328-336 (1993).
    3. J. Liang, B. Grimm,―Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,‖J. Opt. Soc. Am. A 11(7), 1949-1957 (1994).
    4. A. Larichev, P. Ivanov, I. Irochnikov, S.C. Nemeth, A. Edwards, P. Soliz,―High Speed Measurement of Human Eye Aberrations with Shack-Hartman Sensor,‖Invest. Opthalmol. Visual Sci. 42, 897 (2001)
    5. Ang Zhang, Changhui Rao, Yudong Zhang, Wenhan Jiang,―Performance Analysis of Shack-Hartman Wavefront Sensor with Variable Subaperture Pixels,‖Proc. SPIE. 5490, 1268-1277 (2004).
    6. N. Lindlein, J. Pfund,―Experimental results for expanding the dynamic range of a Shack-Hartmann sensor using astigmatic microlenses,‖Opt. Eng. 41(2), 529-533 (2002).
    7. J. Pfund, N. Lindlein, J. Schwider, R. Burow, T. Blumel, K. E. Elssner, ??Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack-Hartmann sensor,‘‘Opt. Lett. 23(10), 742-744 (1998).
    8. J.A. Koch, R. W. Presta, R.A. Sacks, R.A. Zacharias, E.S. Bliss, M.J. Dailey, M. Feldman, A.A. Grey, F.R. Holdener, J.T. Salmon, L.G. Seppala, J.S. Toeppen, L.V. Atta, B.M.V. Wonterghem, W.T. Whistler, S.E. Winters, B.W. Woods, ??Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,‘‘Appl. Opt. 39(25), 4540-4546 (2000).
    9. R. Irwan, R.G. Lane,―Analysis of optimal centroid estimation applied to Shack-Hartmann sensing,‖J. Appl. Opt. 38(32), 6737-6743 (1999).
    10. Zhiling Jiang, Shunsheng Gong, Yang Dai,―Monte-Carlo analysis of centroid detected accuracy for wavefront sensor,‖Opt. Laser Tech. 37(7), 541-546 (2005).
    11. Roddier.F,The effects of atmospheric turbulence in optical astronomy,Progress in Optics,edited by E.Wolf,North-Holland New York,1981,Vol.ⅪⅩ,281-376.
    12. Goodman.J.W.,Statistical Optics,Wiley,New York,1985
    13. Aleksoff.C.C,C.Dainty,J.R.Fienap,Etal,Unconventional imaging systems in the infrared and electro-optical systems handbook,edited by S.R.Robinson,SPIE, Bellingham,WA,1993,Vol.8,1-164
    14. Beckers J.M.,Adaptive optics for astronomy:principles,performance,and application,Annu.Rev.Astron.Astrophys.1993,31,13-62
    15.姜文汉.自适应光学技术.自然杂志,2006 (28): 7-13
    16. Babcock H W, The possibility of astronomical seeing. Publ. Astrron. Soc. PAC. 1953 65: 229-236
    17. Hudgin R.H.,Wavefront reconstruction for compensated imaging,J.Opt.Soc. Am.,1977,67,375-377
    18. Wallner E.P.,Optimal wave front correction using slope measurements,J.Opt. Soc.Am.1983,73,1771-1776
    19. Welsh B.M.,C.S.Gardner,Performance analysis of adaptive optics systems using slope sensors,J.Opt.Soc.Am.A.1989,6,1913-1923
    20. Ellerbroek B.L.,First-order performance evaluation of adaptive optics for atmospheric turbulence compensation in extended field-of-view astronomical telescopes,J.Opt.Soc.Am.A,1994,11,783-805
    21. Ellerbroek B.L.,C.V.Loan,N.P.Phisianis,Optimizing closed-loop adaptive-optics performance with use of multiple control bandwidths,J.Opt.Soc.Am.A.,1994,11, 2871-2886
    22. Hardy.J.W.,Lefebvre.J.E.,and Koliopoulos.C.L.,Real-time atmospheric compensation,J.Opt.Soc.Am.A,1977,67,360-369
    23. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos. Real time atmospheric compensation. J. Opt. Soc. Am. 1977 67: 60-69
    24. J. E. Pearson, R. H. Freeman, and H. C. Jr. Reynolds. Adaptive optical techniques for wave-front correction. In: Applied optics and optical engineering, 1979 Vol. 7, Chapter 8, pp. 245-340. Academic Press, New York.
    25. http://www.de.afrl.af.mil/SOR/images/Research/satcomp.jpg
    26. Merkle.F., Kern.P., Lena.P., etal, Successful tests of adaptive optics, ESO Messenger, 1989, 58, 1-4
    27. Rigaut.F, Performance of the Canada-France-Hawaii telescope adaptive optics, Bonnette, PASP, 1998, 110, 152-164
    28. Roggemann M.C., B.M.Welsh, Imaging though the atmosphere, CRC.Boca Raton, FL, 1996
    29. Gardner C.S., B.M.Welsh, L.A.Thompson, Design and deformance analysis of adaptive optical telescopes using laser guide stars, Proc.IEEE, 1990, Vol.78, 1721-1743
    30. Smithson R.C, M.L.Peri, Partial correction of astronomical images with active mirrors, J. Opt. Soc. Am. A. 1989, 6, 92-97
    31. Roggemann M.C., Limited degree of freedom adaptive optics and imaging reconstruction, Applied Optics, 1991, 30, 4227-4233
    32. Fried D.L.,Anisoplanatism in adaptive optics,J.Opt.Soc.Am.,1982,72(1), 52-61.
    33. Smithson R.C, M.L.Peri,Partial correction of astronomical images with active mirrors, J. Opt. Soc. Am. A. 1989, 6, 92-97
    34. Roggemann M.C., Limited degree of freedom adaptive optics and imaging reconstruction, Applied Optics, 1991, 30, 4227-4233
    35. Nisenson P., R.Barakat, Partial atmospheric correction with adaptive optics, J. Opt.Soc.Am.A, 1987, 4, 2249-2253
    36. Roggemann M.C.,C.L.Matson,Power-spectrum and Fourier phase spectrum estimator by using fully and partially compensating adaptive optics and bispectrum post-processing, J.Opt.Soc.Am.A, 1992, 9, 1525-1535
    37. Gonglewski J.D., D.G., Voelz, etc. First astronomical application of postdetection turbulence compensation images of a Aurigae, v Ursae Magoris and a Geminorum using self-referenced speckle holography, Applied Optics, 1990, 39, 4527-4529
    38. Primot J., G.Rousset, J.C.Fontamella, Deconvolution from wave-front sensing anew technique for compensating turbulence-degraded images, J.Opt.Soc.Am.A, 1990, 7, 1589-1608
    39. Roggemann M.C., and J.A.Meinhardt, Image reconstruction by means of wavefront sensor measurements in closed-loop-adaptive-optics systems, J. Opt.Soc. Am.A, 1993, 10, 1996-2007
    40. Roggemann M.C., Optical performance of fully and partially compensated adaptive optics system using least-square and minimum variance phase reconstruction, Compat.Electr.Eng., 1992, 18, 451-466
    41. Beckers.J.M., Increasing the size of the isoplanatic patch with multicongugate adaptive-optics, SPIE, 1986, Vol.628, 298
    42. Francois Rigaut, Multi-Conjugate Adaptive Optics: A Feasibility Study for Gemini-South, Document No RPT-AO-G0091, Version 1.2, 2005
    43. T.Berlefeld, A.Glindemann, S.Hippler, Multi-Conjugate adaptive optics with two deformable mirrors requirement and performance, Experimental Astronomy, 2001, 11, 1-21
    44. R.K.Tyson, Adaptive optics system performance approximations for atmospheric turbulence correction, Optical Engineering, 1990, Vol.29, No.10, 1165-1173
    45. C.A.Primmerman, T.R.Price, R.A.Humphreys, Atmospheric compensation experiments in strong-scintillation conditions, Applied Optics, 1995, 34(12), 2081-2088
    46. Born M, Wolf E. Principles of Optlcs. New York: Pergamon, 1975, Sec. 9. 2
    47. Noll R J. JOSA, 1976, 66, 207
    48.鲜浩等,用Hartmann-Shack传感器测量激光光束的波前相位,光电工程,1995,Vol.22,No.2,38-45
    49.冯马理,金锋,万作文.激光光束质量诊断技术的进展.激光杂志,1995,Vol.16,No.41,45-147
    50.杨成龙,等.非稳腔激光光束质量评价的儿个问题,激光杂志. 1997,Vol.18,No.4,4-10
    51. Huagui Li, Wenhan Jiang,―Application of H-S Wavefront Sensor Quality Diagnosis of Optical System and Light Beam‖, ICO-16 Satellite Conference on Active and Adaptive Optics, August2-5, 1993, Garching/Munich, German
    52.张蓉竹,杨春林,许乔等,子孔径拼接干涉检测中去倾斜处理技术[J],强激光与粒子束,2004,16(7): 879-882
    53.王孝坤,王丽辉,郑立功等,子孔径拼接技术在大口径高陡度非球面检测中的应用[J],强激光与粒子束,2007,19(7): 1144-1148
    54. Masashi Otsubo, Katsuyuki Okada, Jumpei Tsujiuchi.Measurement of large plane surface shapes by connecting small-aperture interferograms[J]. Opt. Eng., 1994, 33(2): 608-613.
    55. GUANH J, GONG Q R.Modern foundation ophthalmology [M]. Bei-jing: People‘s Military Medical Press, 1998: 309-310( in Chinese).
    56.孔梅梅,高志山,陈磊,李新华,人眼光学模型的研究与发展,激光技术,2008,32(4):370-373
    57.程少园,曹召良,胡立发,穆全全,李鹏飞,宣丽.用夏克-哈特曼探测器测量人眼波前像差,光学精密工程. 2010,18(5):1060-1067
    58.王杨,王肇圻,郭欢庆等.人眼的高级像差对视功能的影响[J].光学学报,2005,25(11):1519-1525.
    59.全薇,宋贵才,王肇圻等.人眼大视场波前像差特性研[J].光子学报,2007, 36(6 ): 1102-110.
    60. LIANG J Z, WILLIAMS D R, MILLER D T. Su-pernormal vision and high-resolution retinal imagingthrough adaptive optics[J]. J. Opt. Soc. Am. A, 1997, 14(11):2884-2892.
    61.薛丽霞,饶学军,王成等.人眼高阶像差校正和视觉分析系统[J].光学学报,2007,27(5): 893-897.
    62.叶寒,廖文和,沈建新.波前像差引导的角膜切削模型及实现技术的研究[J].光学精密工程,2004, 12(1): 31-36.
    63. LING N, RAO X J, YANG ZH P, etc. Wavefront sensor for measurement of vivid human eye[C]. The3rd International Workshop on Adap-tive Optics for Industry and Medicine, 2001, 85-90.
    64. LIANG J, GRIMM B, GOELZ S, etc. Objec-tive measurement of wavefront aberrations of the humaneye with the use of a hartmann-shack wave-frontsensor[J]. J. Opt. Soc. Am. A. 1994, 11:1949-1957.
    65. JIANG W H, XIAN H, YANG Z P, et a1.. Applications of Shack- Hartmann wavefront sensor[J]. Chinese Joumal of Quantum Electronics (量子电子学报), 1998, 15(2): 228-235(in Chinese).
    66. PFUND J, LINDLEIN N, SCHWIDER J, et a1.. Absolute sphericity measurements:a comparative study of the Use ofinterferometry and a Shack- Hartmann sensor[J]. Opt. Lett. , 1998, 23(10): 742-744.
    67. RAO C H, JIANG W H, LING N. Measuring the power law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wavefront sensor[J]. Opt. Lett. , 1999, 24(15): 1008-1010.
    68.曹正林,廖文和,沈建新. Zernike多项式拟合人眼波前像差的一种新算法[J].光学精密工程,2006,14(2):308-314.
    69.刘伯晗,张健,吴丽莹.液晶空间光调制器的纯相位调制特性研究[J].光学精密工程,2006,14(2):213-217.
    70.田志辉,刘伟奇,李霞,等.激光显示中散斑的减弱[J].光学精密工程,2007,15(9):1366- 1370.
    71.姜宝光,曹召良,穆全全,等.激光为光源的液晶自适应眼底成像系统[J].光学精密工程,2008,16(10):1805-1808.
    72.李抄,姜宝光,夏明亮,等.用于人眼视网膜成像照明的激光消散斑技术研究[J].光学学报,2008,28(12):2245-2249.
    73. T. J. Kane, B. M. Welsh, C. S. Gardner,―Wavefront detector optimization for laser guided adaptive telescope,‖Proc. SPIE. 1114, 160-171 (1989).
    74.沈锋,姜文汉.提高Hartmann波前传感器质心探测精度的阈值方法.光电工程,1997,24(3), 1-8.
    75. Bruno TL, Wirth A, Jankevics AJ. Applying Hartmann wavefront sensing technology to precision optical testing of the Hubble space telescope correctors. SPIE 1993, (1920): 328–36.
    76. Schmutz LE. Hartmann sensing at adaptive optics associates. SPIE1987, (779): 13–7.
    77. Welsh BM, Ellerbroek BL, Roggemann MC, Pennington TL. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-frontsensor. Appl Opt 1995, (34):4186–4195.
    78. Johnston DC, Ellerbro BL, Pompea SM. Curvature sensing analysis. SPIE 1994, (2201):528–538.
    79. Lofdahl MG, Scharmer GB, Wei W. Calibration of a deformable mirror and Strehl ratio measurements by use of phase diversity. Appl. Opt. 2000, (39):94–103.
    80. Irwan R, Lane RG. Analysis of optimal centroid estimation applied to Shack-Hartmann sensing. Appl. Opt .1999, (38):6737–6743.
    81. Yang D, Chen J, Zhou H, Buckley S. New algorithm to calculate the center of laser reflections. SPIE 1998, (3306):54–8.
    82. Lin PP, Kuo CT. A 3-D surface geometry measurement technique using optical fringe projection. Laser. Eng. 1999, (8):159–74.
    83. W. H. Southwell,―Wave-front estimation from wave-front slope measurements,‖J. Opt. Soc. Am. 70(8), 998-1006 (1980).
    84. Wenhan Jiang, Xian H, Shen F.―Detecting error of Shack-Hartmann Wavefront sensor,‖Chin J Quantum Electron. 1998, 15(2), 218- 227.
    85. Chao Li, Mingliang Xia, Zhaonan Liu, Dayu Li, Li Xuan. Optimization for high precision Shack–Hartmann wavefront sensor. Optics Communications, 2009(282): 4333-4338.
    86. Max Born, Emil Wolf. Interference and Diffraction of Light. Principles of Optics Electromagnetic Theory of Propagation, 1999(13): 334.
    87. BAR J, BRENNER K H. Realization of refractive continuousphase elements with high design freedom mask structured ionexchange[C]. SPIE, 2001(4437):50-59.
    88.任剑峰,饶长辉,李明全.一种Hartmann-Shack波前传感器图像的自适应阈值选取方法[J].光电工程,2002(29): 1-5.
    89.沈峰,姜文汉.提高Hartmann-shack波前传感器质心探测精度的阈值方法[J].光电工程,1997(24):1-8.
    90.姜文汉,鲜浩,沈峰.Shack-Hartmann波前传感器的探测误差[J].量子电子学报,1998(15):193-199.
    91.付忠良.图像阈值选取方法[J].计算机应用,2000(5):467-469.
    92.李卓,郭立红.快速图像处理中阈值选取方法的比较研究[J].微计算机信息,2006(22):224-225.
    93.李博,俞信,胡新奇.利用动态跟踪原理进行质心计算的新方法[J].北京理工大学学报,2002(01): 101-104.
    94. T. J. Kane, B. M. Welsh, C. S. Gardner. Wavefront detector optimization for laser guided adaptive telescope. Proc. SPIE, 1989(1114): 160-171.
    95. J. Stock, G. Keller. Astronomical seeing. Stars and Stellar Systems, 1960(1):138.
    96. F. Roddier. The effects of atmospheric turbulence in optical astronomy. Prog. Optics, 1981(19): 281-376.
    97. H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams. Dynamics of the eye‘s wave aberration. J. Opt. Soc. Am. A, 2001(18): 497-506 .
    98. W. Quan, Z. Wang, C. Zhang, G. Mu. The Use of Template Matching for Hartman Sensor Spot Centroid Detection Window. J. Opto-Electron. Laser. 2002(13): 1148-1151.
    99. X. Ma, C. Rao, H. Zheng. Error analysis of CCD-based point source centroid computation under the background light. Opt. Exp. 2009(17): 8525-8541.
    100. Sung-Hoon Baik, Seung-Kyu Park. Opt. Laser Tech. 2007(39): 262.
    101.周翔天,瞿佳.波前理论在视觉质量方面的应用极其意义[J].眼视光学,2000(2):182-184.
    102.王杨,王肇圻,郭欢庆,等.人眼的高级像差对视功能的影响[J].光学学报,2005,25(11):1519-1525
    103.全薇,宋贵才,王肇圻,等.人眼大视场波前像差特性研[J].光子学报, 2007(36) : 1102-110.
    104.LIANG J Z, WILLIAMS D R,MILLER D T. Su- pernormal vision and high-resolution retinal imaging through adaptive optics[J]. J. Opt. Soc. Am. A, 1997(14): 2884-2892.
    105.薛丽霞,饶学军,王成,等.人眼高阶像差校正和视觉分析系统[J].光学学报, 2007(27):893-897.
    106.叶寒,廖文和,沈建新.波前像差引导的角膜切削模型及实现技术的研究[J].光学精密工程, 2004(12): 31-36.
    107.周传清,余雷,陆培华,等.准分子屈光手术中非球面系数对球差以及切削深度的影响[J].光学精密工程, 2007(15):167-172.
    108.姜宝光,曹召良,穆全全,等.激光为光源的液晶自适应眼底成像系统[J].光学精密工程, 2008(16):1805-1809.
    109.WEBB R H, PENNEY C M, THOMPSON K P. Measurement of ocular local wave-front distortion with a spatially resolved refractometer[J]. Appl. Opt. 1992(31): 3678-3686.
    110.PALLIKARIS I G, PANAGOPOULOU S I, SI-GANOS C S,et al.. Objective measurement ofwavefront aberrations with and without Accommo-dation[J]. J. Refract. Surg.2001(17): 602-607.
    111.LIANG J, GRIMM B, GOELZ S,et al.. Objec-tive measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor[J].J. Opt. Soc. Am. A.1994,11:1949-1957.
    112.M.C.W.Cambell, P.Simonet. Video monitering of the pricipal ray of a MaxWllian view for the measurement of optical aberration, the Stilees-Crawford effect, retinal resolution, and for investigating coloe vision. Appl. Opt., 1990 (29): 1420-1426.
    113.C.Cui, V.Lakshminarayanan. Choice of reference axis in ocular wavefront aberration measurement. J.Opt. Soc. Am, A, 1997(15):2488-2496.
    114. van Norren D, Tiemeijer LF. Spectral Reflectance of the human eye. Vision Res. 1986(26): 313-320.
    115.American National Standard for the Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, Fla.,1993).
    116. E. A. Boettner and J. R. Wolter, Invest. Ophthalmol. Vision . Sci. 1962(1), 776–783.
    117. van Norren D, Tiemeijer LF. Spectral Reflectance of the human eye. Vision Res. 1986(26): 313-320.
    118. Van N D, Tiemeijer L F. Spectral reflectance of the human eye[J], Vision Res,1986(26): 313-320.
    119.J. Y. Wang, D. E. Silva, Wave-front interpretation with Zernike polynomials. Appl. Opt. 1980, 19: 1510-1516.
    120.Liang J, Grimm B, Goelz S, BIlle JF. Objective Measurement of Wave Aberrationof the Human eye with the Use of a Hartmann-Shack Wave-front Sensor. J. Opt. Soc. Am. A. 1994, 11: 1949-1957.
    121.J. Y. Wang, D. E. Silva, Wave-front interpretation with Zernike polynomials. Appl. Opt. 1980, 19: 1510-1516.
    122.Lifa Hu, Li Xuan, Yongjun Liu, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision OPTICS EXPRESS 2004, 12: 6403-6409.
    123.M. A. A. Neil, T. Wilson, and R. Juskaitis. Wavefront generator for complex pupil function synthesis and point spread function engineering. Journal of Microscopy 2000, 197: 219-223.
    124. Artal P, Ferro M, Miranda I,et al. Effects of Aging in Retinal Image Quality. J. Opt. Soc. Am. A. 1993, 10: 1656-1662.
    125. Guirao A, Gonzalez C, Redondo M, et al. Average Optical Performance of the Human Eye as a function of Age in a Normal Population. Invest. Ophthalmol. Vis. Sci. 1999 40 203-213.
    126.全薇,宋贵才,王肇圻,等.人眼大视场波前像差特性研[J].光子学报,2007,36 (6 ): 1102-110
    127. Larry . N. Thibos, Xin Hong, et al. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A 2002, 19: 2329-2349.
    128. Heidi Hofer, Pablo Artal, Ben Singer, et al. Dynamics of the eye‘s wave aberration. J. Opt. Soc. Am. A 2001, 18: 497-506.
    129. N. G. Iroshnikov, A. V. Larichev, Adaptive optics in ophthalmology, Proc. Of SPIE 2006, Vol. 6284: 62840B.
    130.Larry N. Thibos, Arthur Bradley,―Use of Liquid-Crystal Adaptive-Optics to Alter the Refractive State of the eye‖, Optom.Vis.Sci, 1997, 74(7).
    131.Pedro M. Prieto, et. al., Adaptive optics with a programmable phase modulator: applications in the human eye, Optics Express, Vol.12, No.17,
    132.Scott C. Wilks. High-Resolution Adaptive Optics Test-Bed for Vision Science, SPIE, Vol.4494:202.
    133.J. Y. Wang, D. E. Silva, Wave-front interpretation with Zernike polynomials. Appl. Opt. 1980, 19: 1510-1516.
    134.Lifa Hu, Li Xuan, Zhaoliang Cao, et al. A liquid crystal atmospheric turbulence simulator. OPTICS EXPRESS 2006, 14: 11911-11918.
    135.王杨,王肇圻,郭欢庆,等.人眼的高级像差对视功能的影响[J].光学学报, 2005, 25(11): 1519~1525.
    136.LN Thibos, Xin Hong, Arthur Bradley, et al. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A. 2002, 19: 2329-2348.
    137.Webb R H, Penney C M, Thompson K P. Measurement of Ocular Local Wave-front Distortion with a Spatially Resolved Refractometer. Appl. Opt. 1992; 31:3678–3686.
    138.Howland HC, Howland B. A subjective Method for the Measurement of Monochromatic Aberrations of the Eye. J. Opt. Soc. Am. A. 1977, 67: 1508-1518.
    139.Robert G. Belleman, Jeroen Be′dorf, Simon F. Portegies Zwart. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astronomy 2008 13: 103–112
    140.Wu EH, Liu YQ, Liu XH. An improved study of real-time fluid simulation on GPU. Journal of Computer Animation & Virtual World (CASA2004) 2004 15: 139~146
    141.薛丽霞,饶学军,王成等.人眼高阶像差校正和视觉分析系统[J].光学学报, 2007, 27(5): 893~897
    142.F. C. Delori and K. P. Pflibsen, Spectral reflectance of the human ocular fundus Applied Optics, 1989, 28:1061-1077.
    143.van Norren D, Tiemeijer LF. Spectral Reflectance of the human eye. Vision Res. 1986, 26: 313-320.
    144.Choi S, Doble N, Lin, J, et al.Effect of wavelength on in vivo images of human cone mosaic. J. Opt. Soc. Am. A. 2005, 22:2598-2605.
    145.A. Pallikaris, D.R. Williams, and H. Hofer, Invest. Ophthalmol. The Reflectanceof Single Cones in the Living Human Eye. Visual Sci. 2003, 44: 4580.
    146.程少园,曹召良,胡立发,穆全全,宣丽.消除角膜前表面反射杂散光方法的研究[J].中国光学与应用光学(待出版).
    147.Daniel X. Hammer et al., Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. OPTICS EXPRESS, 2006, 14: 3354-3367.
    148.Nikita G, Iroshnikov and Andrey V. Larichev Adaptive optics in ophthalmology. Proc. SPIE , 2006 , 6284,62840B-1–62840B-10.
    149.Jason Porter, et al. Adaptive optics for vision science. Published by A John Wiley and Sons, Inc.
    150.Q. Mu, Z. Cao, D. Li, L. Hu and L. Xuan. Liquid crystal based adaptive optics system to compensate both low and high order aberrations in model eye. Opt. Express 2007, 15: 1946-1953.
    151.程少园,胡立发,曹召良,穆全全,李鹏飞,李抄,宣丽.液晶自适应光学在人眼眼底高分辨率成像中的应用[J].中国激光, 2009,36(10).
    152.Nikita G, Iroshnikov and Andrey V. Larichev Adaptive optics in ophthalmology. Proc. SPIE , 2006 , 6284,62840B-1–62840B-10
    153.Thu-Lan Kelly and Jesper Munch. Wavelength dependence of twisted nematic liquid crystal phase modulators. Opt. Commun. 1998, 156: 252-258.
    154.Lifa Hu, Li Xuan, Yongjun Liu, Zhaogliang Cao, Dayu Li, and QuanQuan Mu. Phase-only liquid crystal spatial light modulator for wavefront correction with high precision. Opt. Express 2004, 12(26): 6403-6409.
    155.Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J Opt Soc Am A, 1997,14(11): 2884-2892.
    156.Q. Mu, Z. Cao, D. Li, L. Hu and L. Xuan. Liquid crystal based adaptive optics system to compensate both low and high order aberrations in model eye. Opt. Express 2007, 15: 1946-1953.
    157.Smirnov MS. Measurement of the Wave Aberration of the Human eye. Bio-physics. 1961, 6: 687-703.
    158.Hofer H,Artal P,Singer B,et a1.Dynamics of the eye s wave aberration. J. Opt.Soc. Am. A,2000,18:497-506.
    159.American National Standards Institute, Safe Use of Lasers, ANSI Z136.1-2000, ANSI, 2000, New York.
    160.F. C. Delori and K. P. Pflibsen, Spectral reflectance of the human ocular fundus Applied Optics, 1989, 28:1061-1077.
    161.van Norren D, Tiemeijer LF. Spectral Reflectance of the human eye. Vision Res. 1986, 26: 313-320.
    162.程少园,曹召良,胡立发,穆全全,宣丽.消除角膜前表面反射杂散光方法的研究[J].中国光学与应用光学(待出版).
    163.Jason Porter, et al. Adaptive optics for vision science. Published by A John Wiley and Sons, Inc.
    164.Sergio R. Restaino, David Dayton, Steve Browne, John Gonglewski, Jeff Baker, Sam Rogers, Scott McDermott, Joe Gallegos, and Mike Shilko. On the use of dual frequency nematic material for adaptive optics systems: first results of a closed–loop experiment. Opt. Express 2000 , 6: 2-6.
    165.G. D. Love, S. R. Restaino, R. C. Carreras, et al. Polarization insensitive 127-segment liquid crystal wavefront corrector. OSA summer topical meeting on adaptive optics (1996).
    166.R. Dou, M. K. Giles. Closed-loop adaptive-optics system with a liquid-cristal television as a phase retarder. Opt. Lett. 1995, 20: 1583-1585.
    167.S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. Mcdermott, J. Gallegos, and M. Shilko. On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment. Opt. Express 2000, 6: 2-6.
    168.Gonglewski, J. et al., MEMS adaptive optics: field demonstrations. Proc. SPIE 2003 ,4839: 783-791.
    169.Q. Mu, Z. Cao, L. Hu, D. Li and L. Xuan. Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Opt. Express 2006, 14: 8013-8018.
    170.Q. Mu, Z. Cao, D. Li, L. Hu and L. Xuan. Liquid crystal based adaptive opticssystem to compensate both low and high order aberrations in model eye. Opt. Express 2007, 15: 1946-1953.
    171.姜文汉,吴旭斌,凌宁等.37单元自适应光学系统.光电工程1995 22:38-45
    172.Katie M. Morzinski, Kennet B. W. Harps¢e, Don T. Gavel, and S. Mark Ammons. The open-loop control of MEMS: Modeling and experimental results. Proc. SPIE 2007, 6467: 64670G-1-64670G-10.
    173.戴阳,李发泉,程学武,蒋志凌,龚顺生. Hartmann-Shack传感器组装误差分析.强激光与粒子束,2006(18): 1469-1474.
    174.Macedonia M. The GPU enters computing‘s mainstream. IEEE Computer, 2003,36(10):106~108.
    175.Lindholm E, Kilgard MJ, Moreton H. A user-programmable vertex engine. In: Proc. of the SIGGRAPH 2001. Los Angeles, 2001 ,149~158.
    176.Wu EH, Liu YQ. General purpose computation on GPU. Chinese Journal of Computer Aided Design & Computer Graphics, 2004, 16(5):601~612 (in Chinese with English abstract).
    177.吴恩华,刘有权,基于图形处理器(GPU)的通用计算,计算机辅助设计与图形学学报,2004,16(5) 601~612
    178.张浩,李利军,林岚,GPU的通用计算应用研究,计算机与数字工程,2005,33(12), 60~62
    179.张杨,诸昌钤,何太军,图形硬件通用计算技术的应用研究,2005,25(9),2192~2195
    180.黄鑫,李胜,程惠阁,汪国平,基于GPU的B样条曲面加速计算,系统仿真学报,2006,18(增刊),1~4
    181.Govindaraju NK, Sud A, Yoon SE, Manocha D. SWITCH: Parallel occlusion culling for interactive walkthroughs using multiple GPUs. Technical Report, TR02-027, UNC-CH, 2002.
    182.Govindaraju NK, Redon S, Lin M, Manocha D. CULLIDE: Interactive collision detection between complex models in large environments using graphics hardware. In: Proc. of the Eurographics/SIGGRAPH Workshop on Graphics Hardware. 2003. 25~32.
    183.Sud A, Otaduy MA, Manocha D. DiFi: Fast 3D distance field computation using graphics hardware. In: Proc. of the Eurographics,2004.
    184.Tomov S, McGuigan M, Bennett R, Smith G, Spiletic J. Benchmarking and implementation of probability-based simulations on programmable graphics cards. Computers & Graphics, 2005,29(1).
    185.Larsen ES, McAllister D. Fast matrix multiplies using graphics hardware. In: Proc. of the Supercomputing. 2001. 55~60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700