可变燃烧室活塞的动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用仿真技术和模拟试验的方法对可变燃烧室(VCC:Variable Combustion Chamber)活塞的动力学特性进行了研究。提出了新的VCC活塞的技术方案,优化改进了VCC活塞的结构;通过扩充模型库进一步完善了VCC活塞动力学仿真分析平台;分析了影响VCC活塞动力学特性的关键控制参数及其它们之间的相互关系;采用VCC活塞的动力学仿真和发动机性能仿真的耦合迭代计算预测了VCC活塞的动态响应特性;分析了VCC活塞的温度场和热变形对机构预紧力的影响。
     新的VCC活塞的技术方案和优化设计主要包括有:提出了连杆小端复位凸轮的设计,保证VCC机构能在一个循环内及时复位;完成了支撑盘和限位盘的型线优化设计,进一步提高了VCC活塞的动态响应:改进了VCC机构的预紧方式,能够在不同预紧力的情况下保持预紧位置不变;此外,优化后的VCC活塞的质量减轻和结构更简单。
     进一步完善了VCC活塞的ADAMS动力学仿真分析平台,扩充了动力学仿真模型库。主要包括有:1)构建了新技术方案的动力学仿真模型;2)增加了连杆复位凸轮模块;3)增加了活塞整体运动模块;4)增加了连接螺栓结构细节仿真;5)提出和应用了VCC活塞动力学和VCC发动机工作过程相互之间的耦合仿真迭代计算方法。
     采用耦合仿真分析了影响VCC活塞动力学特性的控制参数及其它们之间的相互关系。主要的控制参数包括有:预紧力大小和预紧位置、材料参数、接触参数和结构参数等,通过对这些参数的仿真分析,确定这些参数的取值范围,有助于识别影响VCC活塞动力学特性的关键控制参数。同时还分析了活塞往复惯性力对VCC机构动态响应的影响。另外还采用热耦合有限元方法分析了VCC活塞温度场和热变形对VCC机构预紧力的影响。
     研究表明:1)所提出的VCC活塞技术方案能够基本满足汽车发动机各种工况对动态响应的要求;2)所提出的VCC活塞动力学和VCC发动机工作过程耦合仿真计算方法能够描述缸内压力和VCC机构位移的相互关系;3)动力学仿真模型库的扩充使仿真模型更加合理和更加完整;4)复位凸轮设计保证了VCC机构能够在一个循环内及时回复;5)支撑盘和限位盘的变角度设计使VCC机构具有更加快捷的动态响应;6)改进后的技术方案使VCC活塞的结构更加简单合理,质量进一步减轻,预紧位置更容易确定:7)VCC技术能够有效改善气缸压力循环波动,其压力波动范围约降低51%。
Using dynamical simulation in combination with analogue test, the dynamical characteristics of VCC (Variable Combustion Chamber) piston are studied. A new design is put forward, based on which the structural improvements are performed and the software platform of dynamical simulation is improved by adding modules and extending the model library. The parameters affecting the dynamical characteristics and relationships among these parameters are analyzed. The dynamical characteristics of VCC piston are forecasted through dynamical simulation combined with engine performance simulation. The effect of thermal deformation of VCC piston on the pre-tightening force of VCC piston is analyzed.
     The new structural designs of VCC piston mainly contain the following: that the design of reset cam on the rod small end is put forward to ensure the VCC mechanism can reset in one working cycle, and that the profiles of support disc and limit disc are optimally designed to improve the response of the VCC piston, ant that the pre-tightening style is improved and then the pre-tightening position can keep the same under different pre-tightening forces, and besides, the optimal designed VCC piston is lighter and simpler.
     The software platform of dynamical simulation is improved by adding modules and extending the model library. The improvements mainly include that (1) the dynamical simulation model of new design is established, and (2) the reset cam module is added, and (3) the movement of piston is added. And (4) the joint bolts module are added and (5) coupling dynamical simulation of VCC piston with the engine performance are introduced.
     The parameters affecting the dynamical characteristics and the relationship among them are analyzed by means of coupling simulations. The parameters include the pre-tightening force and pre-tightening position, and material parameters, and contacting parameters and structural parameters etc. Their value ranges can be defined by simulation, by which the key parameters can be identified. Besides, the effect of piston reciprocating inertia force on the dynamical response of the VCC mechanism is analyzed. Moreover, the effect of thermal deformation of VCC piston on the pre-tightening force is analyzed by finite element method.
     Research shows that (1) the new design of VCC piston can meet the demands of automobile engines on the dynamical response under all loads, and (2) the correlation between in-cylinder pressure and VCC displacement can be described by coupling dynamical simulations of VCC piston with the engine performance simulation, and (3) the model of dynamical simulation becomes more reasonable by extending the modules, and (4) the design of reset cam ensures that the VCC mechanism can reset in one working cycle, and (5) the profile design of support disc and limit disc can improve the response of the VCC piston, and (6) the optimal designed VCC piston is lighter and simpler and the pre-tightening position is easy to define and (7) the VCC technology can decrease the cycle fluctuation of in-cylinder pressure by about51%.
引文
[1]《节能与新能源汽车产业发展规划2011年-2020年》(草案)2011年9月,中国工业和信息化部.
    [2]李骏.汽车发动机节能减排先进技术[M].北京:北京理工大学出版社,2011.03.
    [3]周龙保,刘巽俊,高宗英.内燃机学[M].北京:机械工业出版社,2005.1-3.
    [4]岳丹婷.工程热力学和传热学[M].大连:大连海事大学出版社,2007.3
    [5]洪永强.高压缩比技术的发展趋势与今后的任务[J].世界汽车.1988
    [6]Alberto Boretti, Joseph Scalzo, Exploring the Advantages of Variable Compression Ratio in Internal Combustion Engines by Using Engine Performance Simulations[C], SAE 2011-01-0364
    [7]J.W.G. Turner, D.W. Blundell et al, Project Omnivore: A Variable Compression Ratio ATAC 2-Stroke Engine for Ultra-Wide-Range HCCI Operation on a Variety of Fuels[C], SAE Paper 2010-01-1249
    [8]Alberto Boretti, Joseph Scalzo, Exploring the Advantages of Variable Compression Ratio in Internal Combustion Engines by Using Engine Performance Simulations[C], SAE Paper 2011-01-0364
    [9]Yiliang Zhu, Richard Stobart, Analysis of the Impact on Diesel Engine Fuel Economy and Emissions by Variable Compression Ratio Using GT-Power Simulation[C], SAE Paper 2010-01-1113
    [10]Karsten Wittek- FEV Motorentechnik GmbH, Christof Tiemann, Stefan Pischinger, Two-Stage Variable Compression Ratio with Eccentric Piston Pin and Exploitation of Crank Train Forces[C], SAE Paper 2009-01-1457
    [11]Maurilio De Bortoli Cassiani, Marco Lucio Bittencourt, Luis Antonio Galli, Sergio Gradella Villalva, Variable Compression Ratio Engines[C], SAE Paper 2009-36-0245
    [12]Ryosuke Hiyoshi, Shunichi Aoyama, Shinichi, et al, A Study of a Multiple-link Variable Compression Ratio System for Improving Engine Performance[C], SAE Paper 2006-01-0616
    [13]Yoshiaki Tanaka, Ryosuke Hiyoshi, Shinichi Takemura, et al, A Study of a Compression Ratio Control Mechanism for a Multiple-Link Variable Compression Ratio Engine[C], SAE Paper 2007-01-3547
    [14]Sato, Kondo Masahiko, Hara Masayuki, A Study Concerning Booming Noise of a Multi-link Type Variable Compression Ratio Engine[C], SAE Paper 2009-01-0772
    [15]James Szybist, Matthew Foster, Wayne R. Moore, et al, Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends[C], SAE Paper 2010-01-0619
    [16]Alberto Boretti, Joseph Scalzo, Exploring the Advantages of Atkinson Effects in Variable Compression Ratio Turbo GDI Engines[C], SAE Paper 2011-01-0367
    [17]Koji Morikawa, Akio Yoshimatsu, Yasuo Moriyoshi, et al, A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation[C], SAE Paper 2011-01-1874
    [18]S. Ishikawa, M. Kadota, K. Yoshida, et al Advanced Design of Variable Compression Ratio Engine with Dual Piston Mechanism[C], SAE Paper 2009-01-1046
    [19]Masahisa Yamakawa, Takashi Youso, Tatsuya Fujikawa,et al. Combustion Technology Development for a High Compression Ratio SI Engine[C], SAE Paper 2011-01-1871
    [20]Charles Mendler, Roland Gravel. Variable Compression Ratio[C]. SAE 2002-01-1940.
    [21]Martyn Roberts. Benefits and challenges of variable compression ratio. SAE 2003-01-0398.
    [22]SAE Bosch Automotive handbook[M],1986.
    [23]26. Cross J(盛汉荣,泽者)SAAB公司VCR发动机[J].国外内燃机,2001年第1期
    [24]G Rapan, I Rapan, Variable compression ratio engine[P]. Romanian Patent RO115662B, 2000-04-28,
    [25]The Gomecsys website, The proven Gomecsys VCR Technology, http://www.gomecsys.com/uk/
    [26]The MCE website: http://www.mce-5.com/english/index.html
    [27]潘洋宇.法国发明MCE-5可变压缩比发动机[J], 现代制造工程,2005,9:11.
    [28]杨妙梁.以量产化为目标的新一代VCR发动机[J].汽车与配件,2006-5:32-34.
    [29]The Envera LLC website: http://www.vcrengine.com/
    [30]牛钊文,周斌,展靖华,王浩洁.可变压缩比技术的研究与展望[J].内燃机,2010.8
    [31]崔彪,常思勤,李子非,发动机可变压缩比技术的探讨[J], 内燃机.2011年第8期
    [32]The FEV website: http://www.fev.com
    [33]虞浏.可变压缩比技术[C]. China Academic Journal Electronic Publishing House, 1994-2009:201-210.
    [34]J R Clarke, R J Tabaczynski, Internal combustion engine withadjustable compression ratio and knock control[P], US Patent 6135086,2000-10-24,.
    [35]R G Sykes, Tickford, Methods to reduce the fuel consumption of gasoline engines[C]. Engines Expo 2000 paper,
    [36]J E Brevick, Variable compression ratio piston[P], US Patent 5755192, 1998-05-26.
    [37]Martyn Roberts, Benefits and Challenges of Variable Compression Ratio (VCR) [J], Society of Automotive Engineers,2002
    [38]杨妙梁,日产可变压缩比发动机[J].汽车与配件,2006-20:38-41
    [39]S Aoyama, H Fujimoto, K Moteki, Variable compression ratio mechanism of reciprocating internal combustion engine[P], European Patent 1170482,2002-01-09,.
    [40]杜慧起,,尤明福.可变压缩比技术对发动机性能影响的研究[J],上海汽车,2009.11,17-19.
    [41]华希诚.汽油机的未来趋势——VCR引擎[J],实用汽车技术,2006年第6期:
    [42]牛钊文.基于LabVIEW的点燃式发动机工作过程模拟及可变压缩比研究[D],西南交通大学,硕士学位论文.2010.5
    [43]林建生,张宝欢,付伟成,刘元阁,张霖,一种新型多杆内燃机的机构运动学与动力学的虚拟仿真研究[J],内燃机学报,第24卷(2006)第6期
    [44]Yan Zeshuang, Lin Jiansheng, et al, Research on A New Type of Multi-Link Variable Compression Ratio Engine[C], 2011 International Conference on Techtronic Science, Electric Engineering and Computer, August 19-22,2011, Jilin, China
    [45]崔彪,发动机可变压缩比技术方案研究[D],南京理工大学,硕士学位论文,2011
    [46]董健,李格升等.内燃机弹性活塞[P].中国实用新型专利.CN2718232,2005.08
    [47]阮见明.可变压缩比活塞结构设计与试验研究[D].武汉理工大学,硕士论文,2011.05
    [48]郑亮.可变压缩比活塞的力学仿真研究[D].武汉理工大学,硕士论文,2011.05
    [49]董健,李格升,潘志翔等.内燃机可变压缩比活塞[P].中国发明专利.CN101900056A,2010.12
    [50]董健,李格升,潘志翔,等.内燃机改进型可变压缩比活塞[P].中国发明专利.CN102269076A,2011.12
    [51]董健,李格升,欧阳林等.内燃机优化型可变压缩比活塞[P].中国发明专利.CN102364076A,2012.02
    [52]陈立平,张云清等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.1
    [53]张朝晖ANSYS 12.0热分析工程应用实战手册[M].北京:中国铁道出版社,20140.8.
    [54]J.B.Heywood. 《Internal Combustion Engine Fundamentals》[M], McGraw-Hill,1988
    [55]OZDORN, DULGERM, SHERE. An experimental study of the cyclic variability in spark ignition engines [J]. SAE Paper 960611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700