陡坡上高填石路堤稳定性和沉降预测理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部山区地形地质条件复杂,路线中存在不少深挖路堑和隧道工程。为了充分利用路堑和隧道开挖产生的石质弃渣,并减少弃渣对沿线生态环境的破坏和诱发地质灾害,高填石路堤已成为山区高等级公路较普遍的路基型式。但缺乏与之相关的设计方法和理论研究,尤其是对复杂环境中的高填石路堤缺乏系统研究。因此,本文结合沪蓉西高速公路填高70余m的干沟高填石路堤,通过室内试验、现场试验和监测、理论研究、数值计算等方法,对填石材料基本性能和填石路堤稳定性分析、沉降预测、质量控制技术与标准进行了系统研究,主要获得如下成果:
     (1)针对隧道弃渣用作路堤填料,引入分维数评价其粒度组成。当分维数介于1.887~2.631时,表明弃渣级配良好,符合路基填料对级配的要求;
     (2)提出用超粒径颗粒质量百分数修正用合适尺寸颗粒击实得到的密度,以修正后的密度作为含超粒径填石材料密度,从而为计算填石路堤压实度提供了新方法;
     (3)建立了2自由度填石路堤——振动压路机系统和完成现场试验,进一步验证了采用低频高幅振动压路机有利于填石路堤的压实;
     (4)基于极限平衡理论,系统研究了在复杂环境条件下,高填石路堤稳定性受水位变化、地表坡度变化、路堤高度变化、填筑过程的影响规律。其安全系数随水位上升、路堤高度增高、填筑高度增大和地表坡度的增加而降低。针对干沟高填石路堤,当水位高度高于地表20m、路堤高度超过34m、路堤填筑高度超过32m、地表坡度大于1:5时,路堤的安全系数显著降低;
     (5)高填石路堤的稳定性随填筑过程而变化。不仅要考虑路堤最小安全系数所在的具体位置,而且还应考虑安全系数变化最大位置。安全系数最小和安全系数变化最大位置都是施工动态控制的关键因素;
     (6)针对高填石路堤分级填筑时自重作用下的沉降引入龚帕斯生长曲线进行全过程沉降分析与预测。用龚帕斯成长曲线预测其工后沉降比用双曲线预测其工后沉降精度要高;
     (7)通过数值计算,研究了陡坡上高填石路堤受力和变形规律。竖向压力和横向压力均随路堤深度的增加而加大,其最大值均发生在填筑高度最大的地表附近区域。陡坡上高填石路堤在竖直方向和水平方向均产生不均匀沉降。不均匀沉降随路堤高度的增加而增加,横向变形随路堤深度的增加逐渐减小;路堤压实越密实,路堤模量越大,横向变形差异和不均匀沉降越小;
     (8)采用施工工艺参数与沉降差结合,是填石路堤压实质量检测的有效方法。当以沉降差作为质量控制标准时,采用激振力大于40吨的振动压路机碾压最后两遍后沉降差不大于2mm的标准是合适的。
The topographic and geological condition in the western mountainous area in our country is so complicated that there are many cutting and tunnel engineering while highway is constructed. In order to make full use of the waste rocky slag and reduce the damage to environment and cause geologic hazard, the high rock fill embankment has become one of the basic types of embankment structure. But corresponding design method and theory on these are lack, especially in complicated environment. Therefore, in this paper, combing with Gangou high rock fill embankment which high exceeds 70m in Hurongxi express highway, by means of laboratorial experiment, field experiment and monitoring, theoretical research and numerical calculation, the basic performance, the stability and settlement prediction theory, the controlling technology and standard for high rock fill embankment are researched and discussed. The main contents completed are as follows.
     (1)Aiming at tunnel waste slag as embankment filling material, fractal dimension is introduced to evaluate its granulometric composition. While the fractal dimension distributes from 1.887 to 2.631, the graduation is well and meet the requirement;
     (2)The method to calculate the field density of rock filling material by mass percent of over size measuring in field revising the density in the laboratorial experiment with suitable size is put forward, which provide a new method for compactness calculating;
     (3)By establishing rock fill embankment and vibratory roller system with 2 degree of freedom and completing field experiment, the vibratory roller operating with low frequency high amplitude is favorable for compacting rock fill embankment.
     (4)Based on ultimate equilibrium theory, applying 4 stability analyzing method, the changing discipline of stability of high rock fill embankment in complex environment influenced by water level, the earth's surface gradient, embankment high and filling courses are systematically researched. safety factor become smaller with water level rising, embankment high heightening, filling high going up and grade becoming steep.the safety factor decline markedly while water level exceed 20m, embankment high exceed 34m, filling high exceed 32m and grade exceed 1:5.
     (5)The stability of high rock fill embankment changes with filling course. Not only the position with minimum safety factor but also the position with maximum safety factor change should be considered. The minimum safety factor and maximum safety factor change all are key factors in dynamic state monitoring in construction.
     (6)Aiming at the settlement of Gangou high rock fill embankment caused by embankment weight with steps filling, Compertz Growth Curve is applied to analyze and predict the settlement in whole course. The precision of predicting settlement by Compertz Growth Curve exceeds that by hyperbola;
     (7)By numerical calculation, the stress and deformation discipline of high rockfill abrupt slope embankment are researched. Both Vertical stress and transverse stress increase with embankment depth. The maximum occur near the earth's surface area where the filling high is the maximum. Abrupt slope high rock fill embankment take places asymmetric settlement at both vertical direction and transverse direction. The asymmetric settlement value become greater with embankment’s high increasing, while the transverse deformation become smaller with embankment’s high increasing; the more closed, the modulus greater, the transverse deformation discrepancy and Asymmetric settlement become smaller.
     (8)Combing construction technics with settlement discrepancy to detect compacting quality of rock fill embankment is an effective means. While adopting settlement discrepancy as the standard to quality controlling, 2 mm settlement discrepancy after the vibratory roller with 40 ton exciting force compacted is appropriate.
引文
[1]雷位冰,方 彦,杨成忠.填石路堤研究进展与展望[J].华东交通大学学报,2007,24(4):8~12
    [2] Adam T P, Antonios Z.Simulation of multi-axial compaction of granular media from loose to high relative densities[J].Journal of the Mechanics and Physics of Solids,2005,53:1523~1551.
    [3] Campebell C S, Brennen C E.Computer simulation of chute flows of granular materials[J].Journal of Fluid Mechanics,1985,151:167~188.
    [4]Gili J A, Alonso E E. Microstructural deformation mechanisms of unsaturated granular soils[J]. International Journal for Numerical and Analytical Methods inGeomechanics,2002,26:433~468.
    [5]Kuhn M R. Structured deformation in granular materials[J].Mechanics of Materials,1999,31:407~429.
    [6] Zhang H W, Galvanetto U, Schrefler B A.Local analysis and global nonlinear behaviour of periodic assemblies of bodies in elastic contact[J].ComputationalMechanics,1999,24(4):217~229.
    [7] Storakers B, Biwa S, Larsson P L.Similarity analysis of inelastic contact[J].International Journal of Solid and Structures,1997,34:3061~3083.
    [8] Martin C L, Bouvard D,Shima S.Study of particle rearrangement during powder compaction by the discrete element method[J].Journal of the Mechanics and Physics of Solids,2003,51(4):667–693.
    [9] M. Zamam, D.chen, Jagorouos.Resilient moduli of granular matreials. Journal of Transportation Engineering,1999,120(6):12~18
    [10] Bardet J P,Vardoulakis I. The asymmetry of stress in granular media[J].International Journal of Solids and Structures,2001,38:353~367.
    [11]Jaeger H M, Nagel S R, Behringer R P.Granular solids,liquids,and gases[J].Reviews of Modern Physics, 1996,68(4):1259~1273.
    [12]Wittmer J P,et al.An explanation for the central stress minimum in sand piles[J]. Nature, 1996, 382: 336~ 338.
    [13]Silva M D,Rajchenbach J.Stress transmission through a model system of cohesionless elastic grains[J]. Nature,2000,406:708~710.
    [14]Bouchaud J P, Cates M E, Claudin P. Stress distribution in granular media and nonlinear wave equation[J].J Phys I,1996,5:639-656.
    [15]Liffman K,Nguyen M,et al.Forces in piles of granular material:an analytic and 3D DEM study[J]. Granular Matter,2001,3:165~176.
    [16]Kolymbas D. An outline of hypoplasticity[J].Archive of Applied Mechanics,1991,61(3):143~151.
    [17]Gudehus G. A comprehensive constitutive equation for granular materials[J].Soils and Foundations, 1996,36(1):1~12.
    [18]Bauer E. Calibration of a comprehensive hypoplastic model for granular materials[J].Soils and Foundations,1996,36(1):13~26.
    [19] Wolffersdorff V P A. A hypoplastic relation for granular materials with a predefined limit state surface[J].Mechanics of Cohesive-frictional Material,1996,1(3):251~271.
    [20]B auer E, Wu W. A hypoplastic model for granular soils under cyclic loading[C]//Proc.Int.Workshop Modern Approaches to Plasticity.[S.l.]:Elsevier Sciences Publishers B.V.,1993:247~258.
    [21]Bauer E,Zhu Y. Constitutive modeling of the influence of pressure,density and moisture content on the mechanical behavior of rockfill materials[C]//Proc.of the 4th Int.Conference on Dam Engineering.Rotterdam:A.A.Balkema,2004:129~146.
    [22]Goldscheider M.True triaxial tests on dense sand[C]//Results of the Int.Workshop on Constitutive Relations for Soils.Rotterdam:A.A.Balkema,1982:11~54.
    [23] 李昌彩.水布垭面板堆石坝前期关键技术研究[M]. 中国水利水电出版社,2005,1~7.
    [24] 中华人民共和国行业标准. 《公路路基施工技术规范》(JTG F10—2006)[S].北京:人民交通出社,1993.6:58~76.
    [25] 交通部标准. 公路工程质量检验评定标准》(土建工程) (JTG F80/1—2004) [S]. 北京:人民交通出版社,2004.9:58~76.
    [26] 中华人民共和国行业标准.公路土工试验规程(JTJ 051-93)[S].北京人民交通出版社,1993:54~76.
    [27] 赵久柄.西宝高速公路粗粒土路基压实度试验研究[J].国外公路,1996,(2):18~21.
    [28] 冯忠居,张永清.粗粒土路基的压实试验[J].长安大学学报:自然科学版,2004,24(3):9~12.
    [29] 李 哲,王芝银,谢永利.粗粒土类别的分形图解[J].长安大学学报:自然科学版,2004,24(6):15~19.
    [30] 刘丽萍,王东耀.土石混合料压实质量控制[J].长安大学学报(自然科学版),2006,26(1):35~37.
    [31] 张宜洛,郑南翔,顾炳其.中粗粒土路基压测定方法[J].中国公路学报,2006,19(5):29~33
    [32] 王东耀,刘丽萍,叶万军. 山渣料路用性能试验[J]. 长安大学学报(自然科学版),2007,27(1):15~18
    [33] 赵久炳,王正良.西一定高速公路粗料土路基压实度的试验研究[J].国外公路,1996,2:3~5.
    [34] 徐卫东,赵丽华.土石混合料非均质填方的压实质量控制方法初探[J].辽宁交通科技,1995,6:12~15
    [35] 武 明.土石混合非均质填料力学特性试验研究[J].公路,1997,5:12~13
    [36] 顾炳其 , 马荣贵 . 路基压实度快速测定的瞬态冲击频谱分析法 [J]. 西安公路交通大学学报,1997,17(4):37~41.
    [37] 杨世基.公路填石路基压实标准与检测方法总报告[R].北京:交通部公路科学研究所,1998:23~30.
    [38] 李丕武,冷元宝,袁江华.堆石体密度测定的附加质量法[J].地球物理学报,1999,42(3):422~427.
    [39] 郭庆国 , 将华安 . 测原位密 度的附加 质量法在 小浪底工 程中的应用与评价 [J]. 西北水电,1999,3:10~20.
    [40] 冯居忠,李玮,刘远征等.高等级公路填石路基压实实验研究[J].河南交通科技,2000,3:31~33.
    [41] 于晓飞.高速公路填石路堤施工方法及质量控制[J].东北公路,2001,2:30~34.
    [42] 徐立章,徐 刚.基于便携式计算机的路基压实度测定方法的实现[J].江苏理工大学学报,2001,17(4):69~72.
    [43] 张润利,张俊杰.振动压路机压实度连续检测仪[J].工程机械.2001,8:4~6.
    [44] 刘 宇 , 刘 大 超 , 吕 灿 光 . 粗 粒 径 石 料 填 筑 高 路 堤 的 施 工 质 量 控 制 与 检 测 [J]. 路 基 工程,2002,102(3):60~61.
    [45] 郑 治,漆光荣,陈礼彪.坚硬石料填石路堤修筑技术试验研究[J].公路交通科技,2002,19(6):13~16.
    [46] 於永和.填石路堤施工工艺与技术控制研究[J].广西交通科技,2002,27(1):30~32
    [47] 钟守宾.基于反分析方法的高填石路堤工期沉降计算[J].广西交通科技,2003,28(2):63~65
    [48] 谭智军,郑健龙,周志刚.土工合成材料综合处治填石路堤[J].公路与汽运,2002,4:33~34.
    [49] 贾 侃.填石路基施工工艺研究[D].西安:长安大学硕士学位论文,2003
    [50] 闫从军,杨士敏.填石路基振动压实试验[J].筑路机械与施工机械化,2003,5:8~9
    [51] 邓学欢,王太勇.压实度自动检测技术及其应用[J].西南交通大学学报,2003,38(5):505~508.
    [52] 李青山,张献民,李红英.路基压实度的瞬态瑞雷波检测法[J].河北工业大学学报,2003,32(5):27~30.
    [53] 孙党生,李国占.基于时频分析的瑞雷波相速度提取及其应用[J].勘察科学技术,2003,3:4~6.
    [54] 赵建三, 李 亭. 瑞雷波法应用于高速公路路基工程质量无损检测研究 [J]. 湖南大学学报,2003,30(1):107~112.
    [55] 于德阶,赵明华,赵 江.高填石路堤模型密度动测方法的研究[J].中国岩溶,2005,24(2):124~127.
    [56] 邵腊庚,傅志勇,李闯民.山区高速公路填石路堤压实质量控制[J].公路交通科技,2005,2:24~27.
    [57] 刘多文.填石路堤原位抗剪试验研究[J]. 中南公路工程,2005,30(2):6~9
    [58] 邓卫东.高路堤稳定性研究[D]. 西安:长安大博士学位论文学,2003.
    [59] 张 良.斜坡软弱土地基路堤的工程特性研究[D].成都:西南交通大学硕士学位论文,2003.
    [60] 黎 莉,刘代全,刘晓明.山区高速公路高填石路堤稳定性分析[J].公路,2003,1:72~76.
    [61] 吴超凡.高速公路浸水填石路堤设计与施工的探讨[J].公路,2003,4:82~83
    [62] 王爱红.浅谈土工格栅填石路堤质量控制[J].山西交通科技,2004,10:28~29.
    [63] 彭建国,刘小明,刘江波.填石路堤变形观测方案设计与实施[J].中国岩溶,2005,(24)2:135~139.
    [64] 邓英尔,刘慈群,黄润秋.高等渗流理论与方法[M].北京:科学出版社,2004:1~125.
    [65] 曾 革,郑俊杰.填石路基稳定性设计方案研究[J].公路交通科技,2004,21(5),43~52.
    [66] 陈 华.交通荷载作用下公路路基的动力有限元分析[D].兰州:兰州理工大学硕士学位论文,2004.
    [67] 陈昌富,龚晓南.启发式蚁群算法及其在高填石路堤稳定性分析中的应用[J].数学的实践与认识,2004,6:89~92.
    [68] 陈谦应,蒋树屏,柴贺军,杨建国.山区公路路基稳定理论与实践[J].北京:人民交通出版社,2005,12.
    [69] Kirsten HAD. Determination of rock mass elastic model by back analysis of deformation measurement. In: Proc Sym on Exploitation for Rock Eng.Johnnesburg, 1976,1154~1160.
    [70] Gioda G.Indirect identification of the average elastic characteristics of rock masses.In:Proc Int Conf on Structural Foundations on Rock.Sydney,1980,1,65~73.
    [71] Sakural S,Wasmongkol N Dees,Shinji M .Back analysis for determiniing material characteristics in cut slopes. In: Prnr Tnt Rvmn nn F.CRP.FteiiinP.Srience Press, 1986, 770~776.
    [72] 李 刚.填石路堤试验研究及填石体本构模型参数进化反演分析[D]. 长沙:湖南大学硕士学位论文,2005.
    [73] 李 鹏.高填石路堤蠕变模型与参数反演分析及其应用研究[D]. 长沙:湖南大学硕士学位论文, 2005.
    [74] 陈昌富,李 刚,曹文贵.高填石路堤参数进化反演研究[J].中国岩溶,2005,24(2):119~125.
    [75] 吴大志.路基沉降计算方法及高路堤沉降稳定分析验证[D].长沙:中南大学硕士学位论文,2004
    [76] 赵 江.路基路面在降雨条件下渗流分析及边坡稳定性研究[D]. 昆明:昆明理工大学硕士学位论文,2005.
    [77] 刘万忠,周志芳.基于 Geo-slope 的土石坝应力场-渗流场耦合分析[J].勘察科学与技术,2005,2:15~19.
    [78] 丁继红.国外地下水模拟软件的发展现状与趋势[J].勘察科学技,2002,1:37-42.
    [79] 吴浩东,胡建平.GEO-SLOPE 在岩土工程地下水中的模拟应用[J]. 广西师范学院学报(自然科学版),2006,23(3):49~53.
    [80] 唐晓松.应用 PLAXIS 有限元程序进行渗流作用下的边坡稳定性分析[J].长江科学院院报,2006,23(4):13~16.
    [81] 严绍军,唐辉明,项 伟.降雨对滑坡稳定性影响过程分析[J]. 文地质工程地质,2007,2:33~36
    [82] 钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电社,1996:56~71.
    [83] Mesri G,Febres-Cordero E,Shields D R,et al. Shear stress-strain-time behaviour of clays. Geotechnique, 1981,31(4):537-552
    [84] Lin H D,Wang C C. Stress-strain-time function of clays.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1998,124(GT4):289-296
    [85] Sridharan A, Murthy N S& Prskash K. Rectangular hyperbola method of Consolidation analysis Geotechnical, 1987, 37 (3): 355~368.
    [86] Houlsby G T,Sharma R S. A conceptual model for the yielding and consolidation of clays[J]. Geotechnique,1999,49(4):491–501
    [87]Niemunis A. A visco-plastic model for clay and its FE implementation[J].Soils and Foundations,1996, 36(1):39~43.
    [88]Wu W, Bauer E,Niemunis A,et al.Visco-hypoplastic models for cohesive soils[C]//Proceedings of International Workshop Modern Approaches to Plasticity.[S.l.]:Elsevier Sciences Publishers B.V.,1993:365~383.
    [89]Bauer E,Wu W. A hypoplastic model for granular soils under cyclic loading[C]//Proc.Int.Workshop Modern Approaches to Plasticity.[S.l.]:Elsevier Sciences Publishers B.V.,1993:247~258.
    [90]Main D. A hypoplastic constitutive model for clays[J].Int.J.Numer.Anal.Meth.Geomech.,2005,29(4): 311~336.
    [91] Akira Asaoka and Minoru Matsuo. An inverse problem approach to settlement prediction. Soils and Foundations, 1980,20 (4): 88~123.
    [92] Clough G W, Schmidt B. Design and performance of excavations and tunnels in soft clay [M] //Soft Clay Engineering. Amsterdam: Elsevier Scientific Publishing Company, 1981:569~634
    [93] Attewell P B. Engineering contract site investigation and surface movements in tunneling works [M]//Soft ground Tunneling-Failures and Displacement. Rotterdam: A.A.Balkeman, 1981:5~12.
    [94] Hamza N, Ata A, Roussin A. Ground movements due to the construction of cut and cover structures and slurry shield tunnel of the Cairo Metro [J].Tunneling and Underground Space Technology,1999,14(3): 47~58.
    [95] White T D,Zanghloul S M. Pavement analysis for moving aircraft load [J]. Journal of Transportation Engineering, 1997, 6:436~446
    [96] Walter R B.Non-linear finite element analysis of heavily loaded airfield [J]. Applications of the E1ement Method in Geotechnical CBR Engineering, 1972, 9:657~693.
    [97] Das B M.Advanced soil mechanics[M].New York:Hemisphere publishing corporation,1983.280-282.
    [98] EW Brand. Soft clay engineering. Elsevier Scientific PublishinCompany, Amsterdam, 1981.
    [99] BalesJN,GrangelCWJ.Combined Forecasting[J].Journal of operational Research,1969,20:25~29
    [100] 周传世,刘永清.变权重组合预测模型的研究[J].预测,1995(4):47~487
    [101] 常保平.软土路堤沉降历程预报的改进方法[J].中国公路学报,1993,8(3):5~9
    [102] 赵明华.软土路基固结沉降机理及其预测方法研究[J].铁道科学与工程学报,2005, 2(4):16~20
    [103] 曾 勇,唐小我.线性规划在非负权重最优组合预测计算中的应用 [J].预测,1994,13(3):55~57
    [104] 梁 军,刘汉龙,高玉峰.堆石蠕变机理分析与颗粒破碎特征研究[J].岩土力学,2003,24(3):479~483
    [105] 王志亮,郑明新,吴勇等.增加曲线模型在路基沉降预测中的应用研究[J].岩土力学,2004,25(6):901~ 903.
    [106] 冯 震,祝海涛,熊仲华.泊松曲线预测路基沉降.华东地质学院学报, 2003:26(4):364~366
    [107] 梅国雄,宰金珉,殷宗泽等.沉降时间曲线呈“S”型的证明[J].岩土力学,2004,25(1):20~22.
    [108] 孙常青.沉降观测曲线的拟合和最终沉降量的确定[J].长科学院院报, 2002,19(5):58~61
    [109] 宰金珉,梅国雄.成长曲线在地基沉降预测中的应用[ J].南京建筑工程学院学报, 2000, 2:8~13
    [110] 许永明,徐泽中.一种预测路基工后沉降量的方法[J].河海大学学报, 2000, 28(5):111~113
    [111] 祝海涛,冯 震.沉降观测在胶新铁路路基工程中的应用[J].铁道建筑, 2004, 9:52~54.
    [112] 赵明华,刘煜.软土路基沉降发展规律及其预测[J].中南大学学报, 2004, 35(1):157~161
    [113] 宇飞云,张文彤.泊松曲线在软土路基沉降预测中的应用研究[J].河北农业大学学报, 2004, 27(4):96 ~99
    [114] 黎 莉,赵明华,刘小明. 高填石路堤施工阶段地基沉降分析分析方法初探[J].公路,2002,(1):64~66.
    [115] 曹喜仁,钟守滨等.高填石路堤工后沉降分析及工程算法探讨[J].湖南大学学报(自然科学版),2002, 29(6):112~117.
    [116] 黎 莉,赵明华,钟守宾.填石路堤沉降观测数据分析[J].中南公路工程,2002,1:1~3
    [117] 梁军,刘汉龙.面板坝堆石料的蠕变试验研究[J].岩土工程学报,2002,24(2):257~259
    [118] 赵明华,刘江波,余 颜.高填石路堤沉降变权重组合预测方法研究[J].湖南科技大学学报(自然科学版),2005,4:53~56.
    [119] 沈珠江.鲁布革新墙堆石坝变形的反馈分析[J].岩土工程学报,1994,16(3):1~13
    [120] 蔡新,成峰,杨建贵等.土石坝流变非线性分析[J].河海大学学报,1999,27(6):20~24
    [121] 王勇.堆石流变的机理及研究方法初探[J].岩石力学与工程学报.2000,19(4):526~530
    [122] 程展林,丁红顺.堆石料蠕变特性试验研究[J].岩土工程学报,2004,26(4):473~476
    [123] 李国英,米展宽,傅华等.混凝土面板堆石坝堆石料流变特性试验研究[J].岩土力学,2004,25(11): 1712~1716
    [124] 朱元林,何 平,张家懿等.冻土在振动荷载作用下的三轴蠕变模型[J].自然科学进展,1998(1):60~62.
    [125] 朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12): 1791~1796
    [126] 龚选平.泥质粉砂岩含水率对其蠕变特性影响的研究[D].西安:西安科技大学,2006
    [127] Cheng ZH, Zhang JB and Zhu AN. Introducing fractal dimension to estimation of soil sensitivity to preferential flow. Pedosphere. 2002, 12 (3): 201~206
    [128] Bartoil F, Philippy R, et al. Structure and self-similarity in silty and sandy soils: the fractal approach. J.Soil Science, 1991, 42: 167~185.
    [129] 黄冠华,詹卫华.土壤颗粒的分形特征及应用[J].土壤学报,2002,4:490~496.
    [130] 冯 杰,郝振纯.分形理论在描述土壤大孔隙中的应用研究[J].地球科学进展,2004,19(增):270~274.
    [131] 杨更社.岩石爆破块度分布的分形与分维[J].有色金属:矿山部分,1994(3):41~43
    [132] 王谦源,张 清.不等概率分形破碎及有限尺度破碎体分形[J].岩石力学与工程学报,1994,13(2):109~ 117
    [133] 杨 群,郭忠印.级配碎石分形特征分析及其在路面工程中的应用[J].建筑材料学报,2004,19(4):418~ 422
    [134] 王明洋,钱七虎.颗粒介质的弹塑性动态本构关系研究[J].固体力学学报,1999,16(2):85~91
    [135] Bathurst R J, Rothenburg l. Micromechanical aspects of isotropic granular assemblies with linear contact interactions. Mech. Am. Soc. 1988.4
    [136] 钟晓雄,袁建新.散粒体的微观组构与本构关系[J].岩土工程学报,1992:14(A09):39~48.
    [137] 钟晓雄,袁建新.不同微观组构的颗粒体应力应变关系 [J].岩土力学,1992:13(2):14~23
    [138] 袁卓亚,何怀东,赵淑铭.山碴料路基的强度机理研究[J] .路基工程,2007,(4):3~4
    [139] 陆永清,计三有,戴诗亮.散体材料弹性参数的估计[J].武汉交通科技大学学报,1997:21(2):178~185
    [140] 杨更社.凿岩粉尘粒度分布的分形结构[J].阜新矿业学院学报(自然科学版),1994,13(1):118~120
    [141] 梁颂文,邓廷权,罗竟.填石路基填料分形特征的研究[J].公路与汽运,2006,4:77~80
    [142] 谢学斌,潘长良.排土场散体岩石粒度分布与剪切强度的分形特征[J]. 岩土力学,2004,25(2):287~ 29
    [143] Cooke.J.B.,Sheard J L ed. CFRD-Deing, Construction and Performance. Porceedings of a Symposium at the ASCE Convention in Detroit,1985
    [144] 张泓,闻邦椿.振动压路机压实机理的研究[J],建筑机械,2000,3:25~27.
    [145] 张润利,金萍等.振动压路机加载阶段机械阻抗分析[J].河北工业大学学报,2001,30(4):102~104
    [146] 张世英,陈元基.筑路机械工程[M].北京:机械工业出版社,1998:186~234
    [147] 殷宗泽.一个土体的双屈服面应力一应变模型[J].岩土工程学报,1988,10(4):
    [148] DuncnaJ.M., Byme P., Wong K.S., Mabry P., Strength, stress-srtain and bukl modulus parameters for finite element analysis of stress and movment in soil masses[R],Report No.UCB/80-01,University of California, Berkeley,1980
    [149] 郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [150] 郭庆国.关于粗粒土应力-应变特性及非线性参数的试验研究明[J].水利学报,1983,(11):44~50.
    [151]孔宪京,龙冈文夫等. しキの微小ひずみしべルでの变形特性Ⅱ-单调载荷试验での刚性率[R].1989.日本东京大学生产技术研究所生产研究, l4(ll):69~72.
    [152]孔宪京,龙冈文夫等. しキの微小ひずみしべルでの变形特性Ⅲ-单调载荷试验での刚性率[R].1990.日本东京大学生产技术研究所生产研究, l4(ll):38~41.
    [153] Tasuoka F, Shibuya S,et al.Discussion on “The use of hall effect semiconductors on geotechnical instrumentation” by CRI Clayton, et al[J].Geotechnieal Testing Journal.ASTM,1990,13(1):63~67.
    [154] Shibuya,F Tatsuoka, X J Kong. Elastic Deformation Properties of Geomaterials[J].Soils and Foundations, 1992,32(3):25~28
    [155] 贾革续.粗粒土工程特性的试验研究[D].大连:大连理工大学博士学位论文,2003.
    [156] 郭城谦,陈慧远.土石坝[M].北京:水利电力出版社,1992.
    [157] 吴世明等.土动力学[M].北京:中国建筑工业出版社,2000.
    [158] 陈祖煜.岩质边坡稳定分析-原理、方法、程序[M].北京:中国水利出版社, 2005:1~120.
    [159] 沈珠江.理论土力学[M]. 北京:中国水利水电出版社,2000
    [160] 汪益敏,苏卫国.土的抗剪强度指标对边坡稳定分析的影响[J].华南理工大学学报(自然科学版),2001,29(1):22~25
    [161] K.Kazimierowicz-Frankowska.Correlation between the results of creep and relaxation tests of geotextiles[J]. Geosynthetics International, 2005,5:269~276
    [162] A.McGown,A.J.Khan and J.Kupec.Determining the design parameters forgeosynthetic reinforcements subject to multi-stage actions using the isochronous strain energyapproach[J]. Geosynthetics International, 2004,6:455~469
    [163] R. K. Rowe and A. L. Li.Geosynthetic-reinforced embankments over softfoundations[J]. Geosynthetics International, 2005, 1:50~85
    [164] Sam M.B. Helwany, Jonathan T.H.Wu, Burkhard Froessl.GRS bridge abutments-an effective means talleviate bridge approach settlement[J]. Geotextiles and Geomembranes,2003,21:177~196
    [165] D.T.Bergado,N.Singh,S.H.Sirn.Improvement of Soft Bangkok Clay Using Vertical eotextile Band Drains Compared with Granular Piles[J]. Geotextiles and Geomembranes,1990,9:203~231
    [166] 仲济刚.土工织物加筋粉煤灰堤坝的理论及试验研究[D].南京:河海大学博士学位论文,2001
    [167] 谢应赞,杨成忠.高填石路堤沉降机理研究[J].公路交通科技(应用技术版),2007, (3):18~20
    [168] 徐芝纶.徐芝纶.弹性力学简明教程[M].北京:高等教育出版社.1995:45~86.
    [169] 黄文熙.土的工程性质[M].北京:水利电力出版社,1984:69~150
    [170] 洪毓康.土质学与土力学(第二版)[M].北京:人民交通出版社,2003:117~120
    [171] 刘成宇.土力学(第二版)[M]. 北京:中国铁道出版社,2006:238~242
    [172] 章根德.土的本构模型及其工程应用[M].北京: 科学出版社,1995
    [173] 方维凤.混凝土面板堆石坝流变特性研究[D].南京:河海大学博士学位论文,2003
    [174] 曹文贵,李 鹏,程 晔.高填石路堤蠕变本构模型及其参数反演分析与应用[J]. 岩土力学,2006:27(8):1299~1304
    [175] 黄 昶. Compertz 曲线对台背路基工后沉降预测的应用[J].路基工程,2007,6:57~58.
    [176] 刘小生,汪小刚,马怀发.旁压试验反演邓肯-张模型参数方法研究[J].岩土工程学报,2004,26(5):601-606.
    [177] 肖化文.邓肯-张E-B 模型参数对高面板坝应力变形的影响[J].长江科学院院报,2004,12(6) :41~44.
    [178] 黄玮征.堆石料的Duncan-Chang模型参数研究[D].南京:河海大学硕士学位论文,2006
    [179] 牛建东,徐林荣.邓肯-张E-B模型参数对软土路堤沉降计算结果的影响[J].工程地质学报,2005,13(4):563~567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700