流域地理过程分布式物理模型体系的集成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在以流域为研究单元,选择适宜的时间与空间尺度,综合研究气象、水文、地形、土壤、植被等主要地理因素之间各种相互作用,建立与之相关的数学模型(机理模型,即物理模型)体系,从而实现自然地理过程的定量化表达,最终用来指导生产管理与科学实践。
     在参与导师曾志远教授主持的国家自然基金项目“流域土壤和水资源模拟模型的集成和系统化及其应用”研究过程中,结合该项目之前多个项目工作积累的大量数据基础与模型基础,论文充分利用现有资源,研究模型结构、机理及模型间的相互关系,同时通过深入研究模型集成的理论与方法,用模块化的方法将之集成与系统化,成为可以利用的流域模拟与辅助决策工具。
     论文的主要研究内容和研究成果如下:
     (1)较为系统的研究了流域模拟和流域模型集成的理论、方法与技术,重点研究遥感技术、GIS技术以及相关学科较成熟的模型相结合的技术,实现了GIS技术进行部分参数自动赋值。实践证明,流域模型与GIS、遥感技术的集成促进了流域模拟技术的发展,并使得自然地理过程高度定量化成为可能。
     (2)在现有GIS技术基础上,以流域-子流域-水文响应单元方式对研究区进行了分布式空间离散,成功实现了产水、产沙、水库模块的同时段模拟计算以及流域汇流模拟技术,在部分参数无资料或缺资料的条件下也能进行模拟。
     (3)充分利用现有的数据基础,把研究区-江西潋水河流域划分为102个子流域、649个水文响应单元,以日为单位的时间尺度进行了10年的计算机模拟,取得了多种地理过程模拟结果。根据模拟结果分析,产水年平均精度为88.55%,确定性系数为71.16%,产水10年月平均精度为81.80%,确定性系数为95.40%;产沙的模拟结果虽然在趋势上已经与实测值相似,但模拟值的精度还不尽人意,有待进一步提高。
It is an effective way to realize the highly quantitative study on the geographical process that associates with main geographical factors such as climate, hydrology, topographic features, soil, vegetation and human activities with geographical process by selecting suitable spatial scales and using mathematic models based on computer.
    Distributed simulation study of multi-gegraphical process was carried out in the study area of Lianshui Basin, Xingguo County, Jiangxi province supported by RS ans GIS, using the model developed ourself. This project is funded by the national natural science fund titled "Integration and Systematization of Mathematic Models for Soil and Water Resources Study in a Basin and its Application", The model is developed to simulate the runoff and sediment yield of a small watershed and its frame is preliminarily built for simulating the processes of interception , snowmelt, infiltration , overland flow procerdure, groundwater flow, channel flow, water routing and sedimentation routing.
    The Main countents and research results are as follows:
    (1 )The characteristics and the development of models and simulation technology were systematically studied in this dessertation. The application of Basin simulation integrated with RS ans GIS technology was fully explained from theory to practice. It was proved by the practice that the integration of basin models, RS and GIS is indispensable for basin simulation technology shifting from thd lumped to the distributed system.
    (2) The method of distributed hydrological modelling based on raster Digital Elevation Models (DEM) was applied to generate basin network, to divide sub-basin and generate basin boundary automatically. 102 discrete sub-basins and 649 Hydrological response units were produced in the study area .
    (3)Parameters for model running including topography, soil, climate and land use were extracted by means of RS, GIS and statistics methods using present data of study area, spatial parameterization process of the basin was successfully realized and soil parameters calculation, temperature , precipitation spatial correction and land use supervised classification were studied in this dissertation.
    (4)The model parameters extracted from the GIS parameterization were managed in the database. According to the model reuqirement, the database fields were set up corresponding to the contents of parameters and tables relevant to spatial features were solved. According to the grading spatial integration of the simulation results were gradually realized.
    (5)Computer aided simulation of multi-geographical process in Lianshui basin was carried out using data of 10 years and quantivative simulation results were obtained. The simulation accuracy of annual water yield for spatial scales was above 88.55% and best simulation accuracy of monthly water yield was also above 81.80%. But the simulation accuracy of annual and monthly sediment yield were both unacceptably.
    (6)Since the distributed hydrological model can simulate the changes of water and sediment with the time and space in watershed, it is more advantaged than lumped model for the planning and improvement of soil and water conservation and calculating and forecasting the non-point pollution, etc. As the improvement and combinagion of GIS and RS technology, the distributed hydrological model will show a wide utilization in the future.
引文
[1] 卜兆宏,唐万龙,降雨侵蚀力(R)最佳算法及其应用的研究成果简介,中国水上保持,1999(6):16-17
    [2] 卜兆宏,唐万龙,潘贤章,土壤流失量遥感监测中GIS像元地形因子算法的研究.土壤学报,1994,31(3):322-329
    [3] 卜兆宏,等.降雨侵蚀力因子的算法[J].土壤学报,1992,29(4):408~417
    [4] 卜兆宏等,水土流失定量遥感方法及其应用的研究,土壤学报.1997a,34(3):235-245.
    [5] 卜兆宏等,水土流失定量遥感方法及其应用的研究,土壤学报,1997b,34(3):235-245
    [6] 卜兆宏等,水土流失定量遥感方法新进展及其在太湖流域的应用,土壤学报,2003,40(1):1-9
    [7] 卜兆宏等,用于土壤流失量遥感监测的植被因子算式的初步研究.遥感技术与应用,1993.8(4):16-22
    [8] 万洪涛,万庆,周成虎,流域水文模型研究的进展,地球信息科学.2000(1):46-50
    [9] 万洪涛,地理信息系统与水文模型集成研究述评,水科学进展,2001,12(4):560-568.
    [10] 马干程,闾国年,施毅,GIS支持下计算格网自动生成技术,水科学进展,1999.10(1):37-41.
    [11] 文康.李琪等,地表径流过程的数学模拟,北京:水利电力出版社.1994
    [12] 王万忠,黄土地区降雨特性与土壤流失量关系的研究Ⅱ—降雨侵蚀力指标R值的探讨水上保持通报.1983,(5):62-64
    [13] 王万忠,焦菊英黄土高原降雨侵蚀产沙与黄河输沙[A].科学出版社.北京,1996
    [14] 王中根,穆宏强,胡宇惠,分布式流域水文模型的一般结构,水文水资源,2001.22(1):12-25
    [15] 王桥,GIS中的应用模型及其管理研究,测绘学报,1997,26(3):280-283
    [16] 王燕生,遥感水文模型及其应用[J],水文,1989(5):20-24
    [17] 包为民小流域水沙耦合模拟概念模型,地理研究,1995,14(2):27-34。
    [18] 包为民,格林.安普特下渗曲线的改进和应用,人民黄河,1993,9:1-3
    [19] 卢元锰,吴蓉璋等,强对流降水云团的云团的图特征分析,应用气象学报,1997.8(3):269-275
    [20] 史衍玺,唐克丽,林地开垦加速侵蚀下土壤养分退化的研究.土壤侵蚀与水上保持学报,1996,2(4):26-33
    [21] 史德明,梁音,吕喜玺,杨艳生,江西省兴国县土壤侵蚀动态监测研究.长江流域资源与环境,1995,4(3):257-263
    [22] 叶青.刘衍洪,浅析兴国县农田养分现状及调整对策.土壤,2000(1):50-53
    [23] 任立良,刘新仁,基于DEM的水文物理过程模拟,地理研究,2000a,12(4):369—376
    [24] 任立良,刘新仁,数字高程模型在流域水系拓扑结构计算中的应用[J],水科学进展1999(6):129-134
    [25] 任立良.数字高程模型信息提取与数字水文模型研究进展,2000b.11(4):463-469
    [26] 刘宝元,史培军,WEPP水蚀预报流域模型,水土保持通报,1998.18(5):6-12
    [27] 刘保元.张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报.1999,14(4):345~350
    [28] 刘高焕,蔡强国,朱会义等,基于地块汇流网络的小流域水沙运移模拟方法研究,地理科学进展,2003,22(1):71-78
    [29] 刘琪景,汪宏清,生态恢复的卫星遥感监测—江西省兴国为例,江西科学.2003,2(3):147-150
    [30] 朱元竞,胡成达,甄进明等,微波辐射在人工影响天气研究中的应用,北京大学学报,1994,30(5),597-606
    [31] 朱雪芹,潘世兵.张建立,流域水文模型和GIS集成技术研究现状与展望.地理与地理信息科学,2003,19(3):10-13
    [32] 毕华兴.朱多兆,吴斌,晋西黄土区防护林体系水沙效益评价和预测系统的研究.土壤侵蚀与水上保持学报,1996.2(1):69-74。
    [31] 江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀时空变化定量研究[J].土壤侵蚀与水土保持学报.1996,2(1):1-10
    [34] 牟金泽,雨滴速度计算公式[J],中国水土保持,1983,(3):13-17。
    [35] 阮仁良,苏州河截流区外非点源污染调查,上海环境科学,1997,1(16):20-22
    [36] 吴伟明,李义天,一种新的河道—维水流泥沙运动数值模拟方法[J],泥沙研究.1992(1):1-8
    [37] 吴险峰.刘昌明,流域水文模型研究的若干进展,地理科学进展,2002,21(4):341-348
    [38] 张大弟,周建平,陈佩青,上海市郊4种地表径流尝试的测算.上海环境科学.1997.9(16):1-3,11
    [39] 张文建,卢乃锰,冉茂农,淮河流域试验中尺度强暴雨系统的卫星微流遥感研究(M),淮河流域能量与水分循环研究(一).北京:气象出版社,1999。102-108
    [40] 张世强,基于MapObjects的GIS应用开发浅析.遥感技术与应用.2000.15(3):194-198
    [41] 张光辉,土壤水蚀预报模型研究进展[J],地理研究.2001.20(3):274-281.
    [42] 张建云,何惠,应用地理信息进行无资枓地区流域水文模拟研究,水科学进展.1998,9(4):345-350.
    [43] 张勇传,数字流域.数字地球的一个重要层次[J],水电能源科学.2001,19(3):1-3
    [44] 张宪奎.黑龙江省土壤流失预报方程中R指标的研究[C].水上保持保持科学理论与实践,北京:林业出版社.1992,63~66
    [45] 李万义.适用于全国范围的水面蒸发量计算模型的研究,水文,2000,20(4):14-17,63
    [46] 李万彪,刘盈辉,朱元竞等,GMS-5红外资料反演大气可降水量,北京大学.1998,43(5),631-638
    [47] 李兰等.流域水文分布动态参数反问题模型[A],朱尔明编.中国水利学会优秀论文集[C],北京:中国三峡出版社,2000b,48-54
    [48] 李兰等,流域水文数学物理耦合模型[A],朱尔明编,中国水利学会优秀论文集[C],北京:中国三峡出版社,2000a,322-329。
    [49] 李本纲.陶澍,用数字高程模型进行地表径流模拟中的几个问题,水上保持通报,2000,20(3):47-49
    [50] 李纪人.遥感和地理信息系统在分布式流域水文模型研制中的应用[J],水文,1997(3):8-12.
    [51] 李硕,GIS和遥感辅助下流域模拟的空间离散化与参数化研究与应用,南京师范大学博士论文.2002
    [52] 李琪.全国水文预报技术竞赛流域水琪文模型分析,水科学进展.1998(2):187-195
    
    
    [53] 李德仁,李清泉,地球空间信息学与数字地球,地球科学进展[J],1999,14(6):535-540.
    [54] 李德成,史德明,应用卫星遥感技术监测兴国县水土流失动态演变,中国水土保持,1998(2):29-32
    [55] 杨艳生,史德明.关于土壤流失方程中K因子的探讨[J],中国水土保持,1982,(4):39-42
    [56] 杨勤科,李锐,LISEM:一个基于GIS的流域土壤流失预报模型.水土保持通报,1998,18(3):83-89
    [57] 芮孝芳,地貌瞬时单位线研究进展,水科学进展,1999,10(3):345—350
    [58] 芮孝芳,姜广斌,产流理论与计算方法的若干进展及评述冰文.1997.4:16-20
    [59] 陈一兵,Trouwborst,K.O.,土壤侵蚀建模中ANSWERS及地理信息系统的应用研究.土壤侵蚀与水上保持学报,1997,3(2):1-13.
    [60] 陈亚宁,刘兴文.GIS技术在上壤侵蚀量模拟计算中的应用,土壤侵蚀与水土保持学报.1995,1(1):73-78.
    [61] 陈明华,周伏建,黄炎和.等.土壤可蚀性因子的研究[J].水土保持学报,1995.9(1):19~24
    [62] 陈赞廷等,黄河流域的水文预报方案,人民黄河.1988(6):14—18
    [63] 周伏建等,福建省降雨侵蚀力指标的探讨,福建水土保持,1989,(2):58-60.
    [64] 周斌,浅谈水土流失遥感定量模型及其因子算法,地质地球化学,2000,28(1):72-77
    [65] 周慧珍,中国土壤信息共享研究—1:400万中国土壤分布式查询数据库,土壤学报,2002,39(4):483-489.
    [66] 郑一,王学军.非点源污染研究的进展与展望.水科学进展,2002,13(1):105-110.
    [67] 郑粉莉,刘峰等,土壤侵蚀预报模型研究进展,水土保持通报,2001,21(6):16-18,32
    [68] 贺根宝,周乃晟,高效江等.农田非点源污染研究中的降雨径流关系.SCS法的修正,环境科学研究,2001.14(3):49-51
    [69] 赵人俊.流域水文模拟,北京:水利电力出版社,1983:18-19
    [70] 赵其国,21世纪土壤科学展望,地球科学进展[J],2001,16(5):704-709
    [71] 郝振纯,黄土地区降雨入渗模型初探.水科学进展.1994,5(3):186-192
    [72] 闾国年,AM/FM/GIS应用系统建设中若干问題的探讨[J].中国图象图形学报2001,6A(9):895-899.
    [73] 闾国年.钱亚东.陈钟明.黄土丘陵沟壑区沟谷网络自动制图技术研究[J].测绘学报,1998,27(2):131-137.
    [74] 倪绍祥,可视化与GIS[J],地图.1996,(1):36-38.
    [75] 唐政洪.蔡强国,侵蚀产沙模型研究进展和GIS应用,泥沙研究,2002(5):59-66
    [76] 唐锡晋.模型集成[J],系统工程学报,2001,16(5):322-329
    [77] 徐雨清等,遥感和地理信息系统在半干旱地区降雨.径流关系模拟中的应用[J],遥感技术与应用,2000.
    [78] 郭生练,熊立华等,基于DEM的分布式流域水文物理模型,武汉水利电力大学学报.2000(6):1—6
    [79] 郭瑛,一种非饱和产流模型的探讨[J],水文,1982,1:1-7
    [80] 钱亚东.阊国年等,基于格点数字高程模型生成流域水沙运移路径图的研究,泥沙研究,1997,(3):24-31
    [81] 符素华.刘宝元,吴敬东等,北京地区坡面径流计算模型的比较研究.地理科学,2002,22(5):604-609
    [82] 黄洪峰,土壤.植被.大气相系作用原理及模拟研究,北京:气象出版社.1997
    [83] 黄梯云,吴菲,卢涛,模型自动选择方法研究的进展.计算机应用研究,2001,(4):6-8
    [84] 傅国斌,刘昌明,遥感技术在水文学中的应用与研究进展[J],水科学进展,2001,12(4):547-559
    [85] 曾志远.潘贤章.杨艳生等,江西潋水河流域自然过程的计算机模拟研究:Ⅰ模型和方法及模拟输入研究。流域管理科学化的探索与实践.江西科学技术出版社.2000a,70—78
    [86] 曾志远,潘贤章.杨艳生等,江西潋水河流域自然过程的计算机模拟研究:Ⅱ 结果和分析兼论自然地理过程的高度定量化。流域管理科学化的探索与实践,江西科学技术出版社,2000b,79—89.
    [87] 游松财,李文卿,GIS支持下的上壤侵蚀量估算—以江西省泰和县灌溪乡为例,自然资源学报,1999.(14(1):62-68
    [88] 窦保章,周佩华,雨滴的观测与计算方法[J],水土保持通报,1982.(2):43-47
    [89] 雷志栋,土壤水动力学[M],清华大学出版社.北京:1988
    [90] 蔡强国,王贵平,陈永宗,黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社.1998:188-199
    [91] 蔡强国,陈浩,影响降雨击溅侵蚀过程的多元正交试验研究[J],地理研究,1989,8(4):28-36
    [92] 潘剑君,赵其国.张桃林.江西省兴国县、余江县土壤侵蚀时空变化研究.土壤学报,2002.39(1):58-64
    [93] 魏文秋,谢淑琴.遥感资料在SCS模型产流计算中的应用[J],环境遥感,1992(4):243-250.
    [94] Singh V.P.水文系统 流域模拟[M],赵卫民等译,郑州:黄河水利出版社,2000。
    [95] Abbott M.B., Bathurst J.C. et al., An introduction to the European Hydrological System-Systeme Hydrologique European, "SHE.", 1: History. and philosophy of a physically based distributed modeling system[J], Journal of Hydrology, 1986a.87:45-59
    [96] Abbott M.B., Bathurst J.C. et al.. An introduction to the European Hydrological System-Systeme Hydrologique European, "SHE.", 2: Structure of a physically based distributed modeling system[J], Journal of Hydrology, 1986b,87:61-77.
    [97] Acock, B., Reddy, V.R.. Designing an object-oriented structure for crop models. Ecology Modelling, 1997, 94, 33-44
    [98] Aizen. V.B., Aizen, E.M., Melack. J... Snow distribution and melt in Central Tien Shah, Susamir Valley. J. Arctic Alpine Res. 1997. 29 (4): 403-413.
    [99] Allen R,G, Jensen M.E., Wright J.L., et al.. Operational estimates of evaportanspiration[J]. Agron. J. 1989.81: 650-662.
    [100] Allen, P.M., Arnold. L. Jakubowski. E.. Prediction of stream channel erosion potential. Environmental and Engineering Geoscience, 1999.5:339-351.
    [101] Angima S.D., Stott D.E. et al., Soil erosion prediction using RUSLE for central Denyan highland conditions, Agriculture. Ecosystems and Environment, 2003(97): 295-308
    
    
    [102] Amold, J. G, E M. Allen, and G Bernahardt. A comprehensive surface groundwater flow model[J]. Journal of Hydrology, 1993,142: 47-69.
    [103] Arnold, J.G.and Williams, J.R., 1995a. SWRRB—A watershed scale model for soil and water resources management. pp. 847-908. In: Singh. V.E(ed) computer models of watershed hydrology, Water Rrdources Publications.
    [104] Arnold, J.G., Allen, EM., Estimating hydrologic budgets for three Illinois watersheds[J]. Journal of Hydrology, 1996,176(1-4), 5777
    [105] Amold. J.G, J.R. Williams, A.D. Nicks, and N.B. Sammons. SWRRB, a basin scale simulation model for soil and water resources management. Texas A&M University Press, College Station, TX, 1990.
    [106] Arnold, J.G, EM. Allen,. Validation of automated methods for estimationg base flow and groundwater recharge from stream flow records[J]. J. Am. Water Resour. Assoc. 1999.35(2), 411-424.
    [107] Arnold, J.G.. Williams J.R. and Maidment D.R., Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering, 1995b, 121 (2): 171-183.
    [108] Arnold. J.G.,Muttiah. R.S.. Srinivasan. R. et al., Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. Journal of Hydrology,2000.227:21-24.
    [109] Bancrjee, S.. Basu A., Model Type Selection in Integrated DSS Environment. Decision Support Systems, 1993,9: 75-89.
    [110] BI(?)schl, G, Kimbauer R,, Gutknecht D.. Distributed snowmelt simulations in an alpine catchment. 1, model evaluation on the basis of snow cover pattern, Water Resour. Res. 1991,27:3171-3179.
    [111] Bolton, D., The computation of equivalent potential temperature[J]. Mon. Weath. Rev. 1980,108:1046-1053.
    [112] Bristow. K.L.. Campbell, G.S., On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984,31: 159-166.
    [113] Brutsaert W., Comments on surface roughness parameters and the height of dense vegetation. J. Meteroi. Soc. Japan 53:96-97.
    [114] Chow V.T., Maidment D.R,. Mays L.W., Applied hydrology. McGraw-Hill Book Company, 1988,109.
    [115] Cline, D.W., Effect of seasonality of snow accumulation and melt on snow surface energy exchanges at a continental alpine site[J]. J. Appl. Meteorol. 1997,36: 32-51.
    [116] Conway, H., Gades, A.. Raymond, C.F., Albedo of dirty snow conditions of melt. Water Resour. Res. 1996,32(6): 1713-1718.
    [117] De Bruin, H.A.R., Temperature and energy balance of a water reservoir determined from standard weather data of a land station, Journal of hydrology, 1982,59:261-274.
    [118] Dolk D.R., Kottemann J.E,, Model integration and a theory of models[J], Decision Support Systems, 1993.9(1): 51-63
    [119] Drake. N.A., Zhang, X.Y.. Berkhout, E. et al., Modelling Soil Erosion at Global and Regional Scales Using Remote Sensing and GIS Techniques, Advances in Remote Sensing and GIS Analysis. Chichester: John Wiley & Sons. 1999: 241-261.
    [120] Duchou, C.E. and O'Malley, M.S.. Estimating cloud type from pyranometer observations[J], J. Appl. Meteor.. 1999. 38:132-141.
    [121] Eckhardt K., Arnold J.G.. Automatic calibration of a distributed catchment model, Journal of Hydrology. 2001,251: 103-109
    [122] Edinger, J.E.. Duttweiler. D.W., Geyer, J.C., The response of water temperature to meteorololical conditions[J]. Water Resour. Res. 1968,4:137- 1143.
    [123] Elder, K., Dozier, J.. Michaelsen. J.. Snow accumulation and distribution in an alpine watershed[J]. Water Resour. Res. 1991,27(7): 1541-1552.
    [124] Evans, R.D., Interactions between sediments and water: summary of the Eighth International Symposium. The science of the Total Environment .2001,266: 1-5
    [125] Finch, J.W. A comparison between measured and modeled open water evaporation from a reservoir in south-east England. Hydrol. Process.. 2001. 15.
    [126] Finch. J.W., Gash J.H.C., Application of a simple finite difference model for estimating evaporation from open water. Journal of Hydrology, 2002,255:253-259
    [127] Flanagna D.D.. Nearing M.A., 1995, USDA-Water erosion prediction project hillslpoe profile and watershed model documentation. NSERL Report No.10, USDA-ARS National Soil Erosion Research Laboratory West Lafayette. Indiana.
    [128] Fontaine T.A.. Cruickshank T.S., Arnold J.G. et al., Development of a snowfall-snowmelt routine tbr mountainous terrain for the soil water assessment tool(SWAT), Journal of Hydrology, 2002.262:209-223.
    [129] Foster. G.R. 1987. User requirements: USDA-Water erosion prediction project.
    [130] Freeze R.A.. Harlan R.L.. Blueprint of a physically-based digitally-simulated hydrological response model. Journal of Hydrology, 1969,9: 237—258.
    [131] Friend, A.D.. 1998. Parameterisation of a global daily weather generator for terrestrial ecosystem modeling. Ecol. Model. 109, 121-140.
    [132] Gardner. W.R.. Dynamic aspects of water availability to plants[J]. Soil Sci. 1960..89: 63-73.
    [133] Ghosh D., Agarwal R., Model Selection and Sequencing in Decision Support Systems.OMEGA Internationl Journal of Management Science. 1991,19(2/3): 57-167.
    [134] Glassy. J.M.. Running, S.W., Validation diurnal climatology logic of the MT-CLIM model across a climatic gradient in Oregon. Ecol. Appl. 1994, 4:248-257.
    [135] Green. W.H. and CA. Ampt. 1911. Studies on soil physics, I. The flow of air and water through soils, Journal of Agricultural Sciences 4:11-24.
    
    
    [136] Gu, J., Smith, E.A., High-resolution estimates of total solar and PAR surface fluxes over large-scale BOREAS study area from GOES measurements. J. Geophys. Res. 1997,102:29685-29705.
    [137] Gyasi A.Y,,Willgoose G, de Troth F P. Effects of vertical resolution and map scale of digital elevationmodels on geomorphological parameters used in hydrology. Hydrol Proc, 1995,9(3/4)
    [13g] Hank Becker. WEPP: spilling the Secrets of Water Erosion. Agricultural Research Magazine, 1997,45(4), http://www.ars.usda.gov/is/AR/archive/apr97/
    [139] Hanson, C.L., distribution and stochastic generation of annual and monthly precipitation on a mountainous watershed in southwest Idaho. Water Resour. Bull. 1982,18:875-883.
    [140] Hanson, G.J.. Development of a jet index method to characterize erosion resistance of soils in earthen spillways. Trans. ASAE, 1991, 34: 2015-2020.
    [141] Hargreaves G.H. and Samani Z.A.. Reference crop evapotranspiration from temperature, Applied Engineering in Agriculture, 1985,1:96-99.
    [142] Harrison, L.P. 1963. Fundamental concepts and definitions relating to humidity. In A.Wexler (ed.) Humidity and moisture, Vol. 3. Reinhold Publishing Company, N.Y.
    [143] Hartman, M.D., Baron, J.S., Lammers. R.B., Cline, D.W., et al., Simulations of snow distribution and hydrology in a mountain basin[J]. Water Resources Research, 1999. 35(5); 1587-1603.
    [144] Hession, W.C.. et al., A geographic information system for targeting nonpoint-source agricultural pollution.Joumal of Soil and Water Conservation, 1988,43(3): 264-266.
    [145] Hunt E.R. Jr., Martin, F.C., Running, S.W., Simulating the effects of climatic variation on stem carbon accumulation of a ponderosa pine stand: comparison with annual growth increment data. Tree Physiol. 1991, 9:161 o 17 I.
    [146] Hunt E.R. Jr., Piper, S.C., Nemani. R.R., Keeling, C.D., Otto, R.D., Running,S.W. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by and ecosystem process model and three-dimensional atmospheric transport model, Glob. Bilgeochem. Cycles 1996,10:431-456.
    [147] Hutchinson M,F,, A new procedure for gridding elevation and stream line data with automatic removal of spurious pits, Journal of Hydrology, 1989,106:211-232.
    [148] Jacobson, I., Booch, G., Rumgaugh, J., The Unified Software Development Process. Addison Wesley, Reading,1998, MA, USA.
    [149] Jensen, M.E., Burman. R.D., Allen. R.G,1990. Evapotranspiiration and irrigantion water requirements . ASCE manuals and Reports on Engineering Practice No. 70, ASCE, N.Y. pp.332
    [150] Jurgens, C. and Flander, M.. Soil-erosion assessment and simulation by means of SGEOS and ancillary data. International Journal of Remote Sensing, 1993,14:2847-2855.
    [151] Keith, F., Kreider, J.F., 1978. Principles of Solar Engineering. Hemisphere, WA.
    [152] King K.W., Arnold J.G., Bingner R.L., Companson of Green-Ampt and curve number methods on Goodwin Greek watershed using SWAT. Trans, ASAE. 1999,42(4): 1-7.
    [153] Kite G.W., Kouwen C.D., Land cover. NDVI, LAI, and evaportanspiration in hydrological modeling, In: Application of Remote Sensing in Hydrology[A].ed. G.W. Kite, A. Pietroniro, T.D. Pultz,.Proc.Symp[C]. NHRI, Saskatoon. Canada, 1995,14:223-240.
    [154] Kite G.W.. Kouwen N. Watershed modeling using land classification[J]. Water Resources Research. 1992,28(12):3193-3200.
    [155] Klein, S.A., Calculation of monthly average insulationon tilted surface[J]. Sol. Energy, 1977,19:325-329.
    [156] Knight, D.W., Shiono, K., 1996. River channel and floodplain hydraulics. In: Anderson. M.G., Walling, D.E., Bates, P.D.(Eds.). Floodplain Processes, Wiley, Chichester, pp. 139-182.
    [157] Kouwen N. Soulis E.D., Pietroniro A., et al., Grouped response units for distributed hydrological modeling[J], Journal of Water Resources Plan Manage ASCE, 1993,119(3):289-305.
    [158] Krysanova V., Dirk-ingmar M(?)ller-Wohlfeil, Alfred Becker, Development and test of a spatially distributed hydrological: water quality model for mesoscale watersheds, Ecological Modelling, 1998,106:261-289.
    [159] Krysanova V., Meiner, A., Roosaare. J., et al., Simulation modeling of the coastal waters pollution from agricultural watershed. Ecol. Modelling, 1989,49:7-29
    [160] Kuchment, L.S.. Gelfan, A.N.,. The determination of the snowmelt rate and the meltwater outflow from a snowpack for modeling river runoff generation[J]. J. Hydrol. 1996,179:23-26.
    [161] Lai, C.T., Katul. G., The dynamic role of root-water uptake in coupling potential to actual transpiration. Adv. Water Resour. 2000,23: 427-439.
    [162] Lane, L.J. 1983. Chapter 19: Transmission Losses. p. 19-1-19-21. In Soil Conservation Service. National engineering handbook, section 4: hydrology. U.S. Government Printing Office, Washington, D.C.
    [163] Lane, L.J., Hemandez, M.. Nichols, M.. Processes controlling sediment yield from watersheds as func lions of spatial scale. Evnironmental Modelling & Software, 1997,12(4): 355-369.
    [164] Li, K. Y., De Jong, Boisvert J.B., An exponential root-water-uptake model with water stress compensation. Joumal of Hydrology, 2001,252:, 189-204.
    [165] Li, K.Y., Boisvert, J.B.. De Jong, R.. An exponential root-water-uptake-model. Can. J. Soil Sci. 1999.79: 333-343.
    [166] Liu, B.Y., Nearing, M.A., Risse, L.M., Slope gradient effects on soil loss for steep slopes. Transactions of the American Society of Agricultural Engineers, 1994,37(6): 1827-1840.
    [167] Liu, D.L.. Scott, B.J., 2001. Estimation of solar radiation in Australia from rainfall and temperature observations. Agric. For. Meteorol. 106, 41-59.
    [168] Lu, X.X., Ashmore, P., Wang, J., Sediment yield mapping in a large river basin: the Upper Yangtze, China, Environment Modelling & Software.2003, 18: 339-353.
    [169] Madsen, H., Automatic calibration of a conceptual rainfall-runoff model using multiple objectives[J]. Joumal of Hydrology, 2000, 235:276-288
    
    
    [170] Males, R.M. and Grayman. W.M.,1992,. Past, Present and Future of Geographic Information Systems, in: Water Resources(Water Resources Geographig Information Systems Issue) no, 87, The Universities Council on Water Resources.
    [171] Martz W., Garbrecht J., Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 1992, 18(6): 747-761.
    [172] McCown, R,L., Hammer, G.L., Hargreaves, J.N.G, Holzworth, D.P., Freebalrn, D.M., 1996. APSIM: a monel sottware system for model development, model testing, and simulation in agricultural systems research. Agric. Systems 50, 255-271.
    [173] Mein R.G, Larson C.L., Modelling infiltration during a steady rain, Water Resour. Res., 1973,9(2): 384-394
    [174] Memon, B,A., Quantitative analysis of springs[J]. Environ. Geol. 1995,26:111-120.
    [175] Meyer L.D., Evaluation of the universal soil loss equation[J], Journal of Soil and Water Conservation. 1984.39: 99-104.
    [176] Monteith, J.L.. Evaporation and surface temperature[J], Quart. J. Roy. Meteorol. Soc. 1981.107:1-27.
    [177] Muhanna W.A.. An object-oriented framework for model management and DSS development[J]. Decision Support Systems, 1993,9:217-229
    [178] Murray F.W.. On the computation of saturation vapor pressure. J. Appl. Meteor. 1967,6:203-204
    [179] Nanthan, R.J., McMahon, A.T., Evaluation of automated techniques for baseflow and recession analysis[J]. Water Resources Research, 1990,26(7): 1465-1473,
    [180] Nearing M.A., L iu B.Y., Risse L.M. et al., Curve numbers and Green-Ampt effective hydraulic conductivities. Water Resources Bulletin, 1996,32(1): 125-136.
    [181] Neitsch, S.L., Arnold J.G.. Williams J.R., Soil and Water Assessment Tool Theoretical Documentation, Version 2000. Grassland, Soil and Water Research Laboratory of Agricultural Resrarch Service. 2001
    [182] Nikolov. N.T.. Zeller, K.F.. A solar radiation algorithm for ecosystem dynamic models[J]. Ecol. Model. 1992,61:149-168.
    [183] Nov(?)k V., A Canopy Resistance Estimaton Method to Calculate Transpiration. Phys. Chem. Earth. 1998,23(4): 449-452.
    [184] Penman H.L.. Evaporation: An introductory survey[J]. Netlaertands Journal of agricultural Science, 1956,4:7-29.
    [185] Perrin de Brichambaut, Chr. 1975. Cahiers A.F.E.D.E.S., supplément au no I. Editions Européennes Thermique et Industrie, Paris.
    [186] Philip J.R., The theory of infiltration: I. the infiltration equation and its solution, soil Scicence. 1957.8(3): 345-357
    [187] Pinker, R.T., Laszlo, I.. Modeling surface solar irradiance for satellite applications on a global scale. Journal of Application Meteorology. 1992.31: 194-211.
    [188] Prasad, R., A linear root water uptake model[J]. Journal of Hydrology. 1988, 99:297-306
    [189] Price, K.P., Detection of soil erosion within Pinyon-Juniper woodlands using Thematic MapperTM Data, Remote Sensing of Environment. 1993, 45:233-248
    [190] Priestley C.H.B. and Taylor R.J., On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather. Rev. 1972.100:81-92.
    [191] Rango, A.,Martinec, J., Revisting the degree-day method rfor snowmelt computations[J], Water Resour, Bull. 1995.31(4): 657-669.
    [192] Rawls W.J.. Brakensiek D.L., Comparison between Green-Ampt and curve number runoff predictions. Trans. Asae., 1983, 29(6): 1597-1599.
    [193] Reay, W.G,, Gallagher. D.L., Simmons Jr., GM., Groundwater discharge and its impact on surface water quality in a Chesapeake Bay inlet[J]. Groundwater, 1992.28(6): 1121-1133.
    [194] Reginatok R.J.. Jackson. R,D., Pinter, P.J., Evapotranspiration Calculated from Remote Multispectral and Ground station Meteorological Data. Remo.Sens.Envi. 1985,18: 75-89.
    [195] Roberts, J.M.,Cabral, O.M.R.. Fish. Ct et al., Transpiration from and Amazonian rainforest calculated from stomatal conductances measurements. Agricultural and Forest Meteorology, 1993,65, 175-196.
    [196] Running S.W., Nemani, R.R., Hungerford, R.D., Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res. 1987,17:472-483
    [197] Running, S.W. Coughlan. J.C., A general model of forest ecosystems processes for regional applications - I: hydrologic balance, canopy gas exchanges and primary production processes. Ecological Modeling . 1988,42: 125-154.
    [198] Running, S.W., Nemani R.R.. Peterson, D.L. et al., Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulatin. Ecology, 1989.70:1090-1101.
    [199] Rutter A.J., Kershaw. K.A.. Robins, P.C. et al., 1971. A predictive model of rainfall interception in forest. I Derivation of the model from observation in a plantation of Corsican pine, Agricultural Meteorology, 9, 367-384
    [200] Sangrey D.A., Harrop-Williams K.O., Klaiber J.A.. Prediction groundwater response to precipitation[J], ASCE J. Geotech. Eng. 1984,110(7):957-975.
    [201] Sellers, W.D,, Physical Climatology. The University of Chicago Press, Chicago, 1965,IL PP.272.
    [202] Shook. K. Gray, P.M., Synthesizing shallow seasonal snow cover[J]. Water Resour. Res. 1997.33(3): 419-426
    [203] Shu Tung Chu. Infiltration during an unsteady rain. Water Resource Research. 1978,14(3): 461-466.
    [204] Singh.V. P.. ed.. Computer Models of Watershed Hydrology. Highlands Ranch. CO, Water Resources Publications, 1995
    [205] Sivapalan M.. Beven K.. Wood E.F., On hydrologic similarity. 2. A scaled model of storm runoff prounction[J]. Water Resources Research, 1987,23(2):2266-2278.
    [206] Strasser U., Mauser W.. Modelling the spatial and temporal variations of the water balance for the Weser catchment 1965-1994, Journal of Hydrology.2001,254:199-214
    
    
    [207] Tao T., Kouwen N., Remote sensing and fully distributed modeling for flood forecasting[J], Journal of water resources plan manage ASCE, 1989,115(6):809-823.
    [208] Thornes, J.B., The ecology of erosion[J], Geography, 1985, 70:222-234.
    [209] Thornthwaite C.W., An approach toward a rational classification of climate. Geographical Review. 1948,38:55-94.
    [210] Thornton, P.E., Running, S.W., An improved algorithm for estimationg incident daily solar radiation from measurements of temperature, humidity and precipitation. Agric. For. Meteorol. 1999, 93:211-228.
    [211] Thornton, P.E., Running, S.W., White, M.A., Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology, 1997,190. 214-251.
    [212] Tribe A., Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method. Journal of Hydrology, 1992,139: 263-293.
    [213] Ulrich Strasser and Wolfram Mauser. Modelling the spatial and temporal variations of the water balance for the Weser catchment 1965-1994. Journal of Hydrology 2001,254:199-214.
    [214] Wallace, J.S., Calculating evaporation: Resistance to factors[j]. Agric. Fortst Meteorol., 1995,73:353-366
    [215] Williams, J.B., Pinder Ill, J.E.. Groundwater flow and runoff in a coastal plain stream. Water Resour. Bull. 1990. 726(2): 343-352.
    [216] Williams, J.R. 1995. Chapter 25: The EPIC model, p. 909-1000. In V.P. Singh (ed.) Computer models of watershed hydrology. Water Resources Publications.
    [217] Williams, J.R. Flood routing with variable travel time or variable storage coefficients. Trans. ASAE, 1969. 12(1):100-103.
    [218] Williams, J.R., and Harm, R.W., 1973. HYMO: Problem oriented computer language for hydrologic modeling. USDA ARS-S-9. pp. 76
    [219] Winslow J.C.. Hunt E.R. Jr., .Piper S.C., A globally applicable model of daily solar irradiance estimated from air temperature and precipitation data[J]. Ecological Modelling, 2001,143:227-243
    [220] Wischmeier, W.H. and D.D. Smith. 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook 282. USDA-ARS
    [221] Wood E.K, Sivapalan M., Beven K. Band L., Effects of spatial variability and scale with implications to hydrologic modeling[J].Journal of Hydrology, 1988,102:29-47.
    [222] Wood E.F., Sivapalan M., Beven K., Similarity and scale in catchment storm response[J].Rev. Geophys., 1990,28(1):1-18.
    [223] Wood, W.W., Santbrd, W.E., Chemical and Isotopic methods for quantifying groundwater recharge in a regional semiarid environment. Groundwater 1997, 33: 458-468.
    [224] Woods, E.F., Lettenmaier D.P. & Zartarian V.G, 1992, A land-surface hydrology parameterization with subgrid variability for GCM, Journal of Geophysical Research. Vol. 97. No. D3, 2717-2728, Feb
    [225] Wu, Jinquan, Zhang Renduo, Wang JinZhong, Analysis of rainfall-recharge relationships[J]. J. Hydrol. 1996,177:143-160.
    [226] Yin, X., Reconstruction monthly globlal solar radiation trom air temperature and precipitation records: a general algorithm for Canada. Ecol. Model. 1996,88:38-44.
    [227] Young R.A., Onsad C.A., Bosch D.D., et al., AGNPS: A non-point source pollution model for evaluating agricultural watersheds, Soil and Water Conservation Society, 1989,44(2): 168-173.
    [228] Zeng Z.Y., A.M.J. Meijerink, Water yield and sediment simulation for Teba catchment in Spain using SWRRB model: Ⅰ. Model input and simulation experiment. Pedosphere. 2002a, 12(1): 41-48.
    [229] Zeng Z.Y., A.M.J. Meijerink, Water yield and sediment simulation for Teba catchment in Spain using SWRRB model: Ⅱ. Simulation result. Pedosphere. 2002b, 12(1): 49-58.
    [230] Zhang, L., Dawes, W.R., Hatton, T.J.. Modeling Hydrologic processes using a biophysically based model -application of WAVES to FIFE and HAPEX-MOBILHY. Journal of Hydrology, 1996,185:147-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700