分子筛封装金属Schiff-base配合物修饰电极的制备及其电化学和电催化氧还原反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属Schiff-base配合物能模拟细胞色素生物单加氧酶中的活性部位,在温和条件下能够催化多种类型的化学反应,这已是不争的事实。但金属Schiff-base配合物在均相介质中很容易形成μ-oxo和μ-peroxo二聚或多聚物而导致金属配合物的催化活性随时间延长而明显下降。为此,人们用无机分子筛载体来模拟细胞色素P-450的蛋白质壳体,用分子筛的孔穴封装金属Schiff-base配合物,制备分子筛封装金属Schiff-base配合物的复合材料,以求从结构与功能上模拟天然酶的催化作用。结果显示,这类催化反应具有反应条件温和、选择性高、易与产物分离、可重复使用等特点,因而受到催化领域的广泛重视。
     目前有关该类复合材料的研究报道已经很多,主要集中在制备、表征以及催化活性的评价上。但是,这些催化剂到底是如何催化氧化反应发生的?参与反应的氧化剂与催化剂是如何作用的?都是一些尚待解决的问题。而电化学技术是获得催化反应动力学数据很好的方法。另一方面,分子氧作为有机物氧化反应的氧化剂表现出比其它氧化剂更低的活性,使得氧气这种绿色环保、廉价氧化剂的使用受到了极大的限制。所以在理论上寻找能够活化氧气分子的催化剂也是化工过程需要解决的又一问题。而M(Salen)配合物又被认为是一种分子氧的携带者,具有好的与分子氧的亲和力。基于以上事实,我们对封装过渡金属Salen配合物的微孔分子筛复合材料进行了电化学及其电催化氧还原的研究。
     本文所作的主要工作是,首先采用自由配体法制备了各种封装金属Salen配合物的沸石分子筛的复合材料,并用红外光谱、紫外光谱和XRD对它们进行了物理表征;其次,以此复合材料为修饰剂,制备了封装金属salen配合物的分子筛修饰电极,并采用循环伏安法对其自身的电化学性质进行了研究;然后运用循环伏安法、计时电流法或计时库仑法研究了分子氧在这些修饰电极上发生的电催化还原反应的动力学行为,并提出分子氧在此类修饰电极上的电催化还原反应机理。本论文的主要结论如下:
     1.采用自由配体法制备了七种不同金属(Cr,Mn,Fe,Co,Ni,Cu,Zn)的Salen配合物封装于NaY分子筛中形成分子筛复合材料,并由此制备的分子筛修饰电极具有良好的电化学稳定性和重现性。
     2.在中性缓冲溶液中,七种复合分子筛催化剂M(Salen)/Y均表现出对氧还原反应的电催化活性;其中Co(Salen)/Y的催化活性最高,其次,Fe(Salen)/Y,Mn(Salen)/Y,Cu(Salen)/Y也具有较好的催化作用。
     3.在所研究的不同pH值(4.0-10.0)的电解质体系中,中性(pH=6.86)或接近中性(pH=7.4,8.0)的电解质溶液更有利于M(Salen)/Y修饰电极的电催化活性的提高。
     4.根据Randles-Sev?ik方程计算所得的动力学参数和氧还原反应转移的表观电子数,提出氧气在M(Salen)/Z修饰电极上的电催化还原的反应机理为ECE机理。而且,氧气在M(Salen)/Y分子筛修饰电极上pH在6.86~8.0缓冲溶液中均被彻底还原为水(除Mn(Salen)修饰电极在9.18缓冲液中氧气被还原为过氧化氢外)。
     5.CoL/Y (L: salen,salpn,salbn,salcn,salphen,tBu4salen)复合材料的修饰电极电催化氧还原的活性按下列顺序依次减弱:Co(salen)>Co(salpn)>Co(salcn)>Co(salbn)>Co(tBu4salen)>Co(salphen)t它与金属配合物在分子筛的骨架静电作用下结构变形的程度大小密切相关。
     6.根据氧气在CoL/Y修饰电极上还原反应转移的电子数不同,其电催化反应机理也不同。其中,除氧气在Co(salphen)/Y上较难被还原外,在Co(salen),Co(salpn),Co(salcn),Co(salbn)的分子筛修饰电极上氧均被催化还原为水,而在Co(tBu4salen)修饰电极上氧被还原为过氧化氢。
     7.M(Salen)/AlPO4-5 (M=Fe, Co, Mn)的磷铝分子筛修饰电极对氧气的电化学还原表现出良好的催化活性,在中性电解质溶液中其电催化活性大小按以下顺序递增: Mn(Salen)/AlPO4-5 , Fe(Salen)/AlPO4-5 ,Co(Salen)/AlPO4-5;即Co(Salen)/AlPO4-5的电催化活性最高。
     8.根据循环伏安法和计时电流法计算得出氧气在M(Salen)/ AlPO4-5 (M=Fe, Co, Mn)修饰电极上的总的电极反应转移的表观电子数,推断氧还原反应机理为不可逆扩散控制的ECE机理,而且氧气被彻底还原为水;pH值的变化只改变氧还原反应的峰电位和峰电流,而不改变反应的动力学机理和氧还原反应的产物。此外,中性(pH 6.86)电解质缓冲溶液更有利于提高催化剂的电催化活性。
     9.封装金属Salen配合物的沸石分子筛硅铝比越高,其修饰电极自身的电化学反应的可逆性就越好,由此导致该修饰电极对氧还原反应的电催化活性就越高。
     10.在M(Salen)/Z(M=Co, Fe, Z=Y, X, LSX)修饰电极上电催化氧还原反应的E1CE2催化机理中,虽然E1不是控制步骤,但是E1反应是否参与反应和反应可逆性的好坏,直接影响着金属配合物催化剂的电催化活性。
     总之,金属的性质是决定金属salen配合物/分子筛复合材料对氧还原反应的电催化活性的主要因素;其次,配体的结构导致配合物在分子筛孔腔中的构型变化也是影响催化活性的重要因素;此外,分子筛骨架的硅铝比同样也是影响封装在其中的金属配合物催化活性的又一因素。
It is a fact that metal complexes of Schiff-base can mimic the active site of cytocrome P-450 and catalyze a serious of chemical reaction under mild condition. But the catalytic activities of the Schiff-base metal complexes in homogeneous solution will decrease with time due to formation of dimericμ-oxo and/orμ-peroxo complexes. The encapsulation of metal Schiff-base complexes into micropores or cages of zeolites is a good method to isolate the complexes to prevent the dimerization and to obtain a serious of model catalysts mimicking the catalysis of nature enzymes about molecular structure and function. It has been showed from the research reports up to now that these encapsulated complexes are of many advantages of high selectivity, reaction under mild conditions, reusability and separation from products with ease.
     Now there are lots of reports which focus on preparation, characterization and evaluation of the catalytic activities of these hybrid catalysts. But the details of mechanism for the catalytic oxidation reaction are not yet clear. Zeolite (Y, X, LSX, AlPO4-5)-encapsulated transition metal complexes of Schiff-base have been used as catalysts of oxidation reactions of hydrocarbons with oxidants including dioxygen. But the molecular oxygen as oxidant did not show good activity compared with other oxidants such as TBHP, PhIO and H2O2 in the above processes. It has restricted the use of oxygen as a green and environment-friendly, cheap oxidant.
     In present work, zeolite-encapsulated M(Salen) [Salen: N, N’-bis(salicylidene)ethyleneediamine and its derivatives] complexes modified glassy carbon electrodes [M(Salen)/Z/GCEs (M=Cr, Mn, Fe, Co, Ni, Cu, Zn etc. and Z= Y, X, LSX, AlPO4-5)] were prepared and studied on their electrochemical behaviors in different pH buffer solution so as to evaluate the catalytical effect of the hybrid materials on the process of activating molecular oxygen. Then these zeolite-modified electrodes were used as electrocatalysts for oxygen reduction reaction (ORR) in aqueous solutions to check the electrocatalysis of the encapsulated complexes for ORR. The electrocatalytic reduction of dioxygen was investigated by cyclic voltammetry (CV) and chronocoulometry (CC) and chronoamperometry (CA) at glassy carbon electrodes (GCEs) modified with transition metal complexes of Salen encapsulated inside NaY, NaX, LSX and AlPO4-5 in a wide range of different pH aqueous solutions (4.0~10.0). The kinetic parameters were obtained for oxygen reduction on the modified electrodes and the elctrocatalytic mechanism of ORR was first proposed in aqueous solutions based on cyclic voltammetry and double-step technique of chronocoulometry and chronoamperometry.
     The conclusions of this dissertation are listed as follows:
     1. Zeolite Y encapsulated metal (Cr, Mn, Fe, Co, Ni, Cu, Zn) Salen complexes were prepared by flexible ligand method and characterized by XRD, FT-IR and UV-vis. And the zeolite modified glassy carbon electrodes were prepared with these hybrid catalysts as the major modifier by zeolite/polymer step-by-step coating method and showed well electrochemical stability and reproducibility.
     2. The M(Salen)/Y/GCEs (M: Cr, Mn, Fe, Co, Ni, Cu, Zn) all behave moderate to good electrocatalytic activities. The Co(Salen)/Y/GCE is showed the best electrocatalytic activity for ORR among these different transition metal complexes, followed by Fe(Salen)/Y, Mn(Salen)/Y, Cu(Salen)/Y about their catalytic activity in neutral electrolyte.
     3. The neutral electrolyte of pH 6.86 solution or near neutral solution such as pH 7.4 and/or 8.0 is more propitious to increase in electrocatalytic activity of M(Salen)/Y modified electrode.
     4. The E1CE2 mechanism was first proposed for ORR on the M(Salen)/Y/GCEs according to kinetic parameters and the apparent numbers of electrons transferred obtained from Randles-Sevcik equation of the irreversible and diffusion-controlled reaction. And dioxygen is reduced to water on the M(Salen)/Y in neutral buffer solution.
     5. The electrocatalytic activity of CoL/Y decreases in the order of Co(salen)>Co(salpn)>Co(salcn)>Co(salbn)>Co(tBu4salen)>Co(salphen), and it is related to that the configuration between square planar and tetrahedral of encapsulated complexes into the cage of zeolite.
     6. Oxygen was reduced to water on the electrode modified with Co(salen)/Y, Co(salpn)/Y, Co(salcn)/Y and Co(salbn)/Y but to H2O2 on Co(tBu4salen)/Y modified electrode, while oxygen is hard to be reduced on Co(salphen)/Y electrode.
     7. M(Salen)/AlPO4-5 (M=Fe, Co, Mn) also show good electrocatalysis for ORR and their activity increases in the order: Mn(Salen)/AlPO4-5, Fe(Salen)/AlPO4-5, Co(Salen)/AlPO4-5. So Co(Salen)/AlPO4-5 is best for ORR in neutral buffer solution.
     8. E1CE2 mechanism is proposed for ORR on the M(Salen)/ AlPO4-5 (M=Fe, Co, Mn) modified electrodes based on the experiment data from CV and CA. The different pH value of electrolyte only change the peak potential and peak current but does change the kinetic mechanism. Also the pH 6.86 solution is the best system in this case.
     9. The higher the ratio of SiO2:Al2O3, the better the reversibility of the couple MⅢ/MⅡof metal Salen complexes, and then the higher the electrocatalytic activity of metal Salen complexes.
     10. The reversibility of E1 reaction in E1CE2 mechanism remain crucial for the electrocatalytic activity of M(Salen)/Z (M=Co, Fe, Z=Y, X, LSX) although the E1 reaction is not the speed-controlled step.
     In conclusion, the nature of metal is the primary factor to determine the electrocatalytic activities of M(Salen) complexes encapsulated into zeolite for ORR. The ligand’s structure of complexes which result in the configuration change of metal complexes and ratio of SiO2:Al2O3 are also important impact factors on the electrocatalytic activity for ORR.
引文
[1] Vismes B. de, Bedioui F., Devynck J. et al. Zeolite-porphyrin modified electrodes [J]. J. Electroanal. Chem., 1985, 187 (1): 197-202.
    [2] Bedioui F. Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview [J]. Coordin. Chem. Rev., 1995, 144: 39-68.
    [3] Bijttcher A., Grinstaff Mark W., Labinger Jay A., Gray H. B. Aerobic oxidation of hydrocarbons catalyzed by electronegative iron salen complexes [J]. J. Mol. Catal. A: Chem., 1996, 113: 191-200.
    [4] Gupta K.C., Sutar A. K. Catalytic activities of Schiff base transition metal complexes [J]. Coordin [J]. Chem. Rev., 2008, 252: 1420-1450.
    [5] Wilson S T, Lok B M , Messina C A , Cannan T R, Flanigen E M. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids[J]. J. Am. Chem. Soc., 1982, 104(4): 1146-1147.
    [6]戴逸云.沸石分子筛技术展望[J].精细石油化工进展,2000,1(3):33-37.
    [7]陈连璋编著.沸石分子筛催化[M].大连:大连理工大学出版社,1990:41-42.
    [8] Vismes B. de, Bedioui F., Devynck J. et al. Zeolite-porphyrin modified electrodes [J]. J. Electroanal. Chem., 1985, 187: 197-202.
    [9] Balkus K.J. Jr., Ferraris J.P. Application of differential scanning calorimetry in the study of intrazeolite metallophthalocyanines [J]. J. Phys. Chem., 1990, 94: 8019-8020.
    [10] Bowers C., Dutta P.K. Olefin Oxidation by zeolite-encapsulated Mn(salen)+ complexes under ambient conditions [J]. J Catal., 1990, 122: 271-279.
    [11] Ernst S., Disteldorf H., Yang X. Liquid-phase hydrogenation of 1,5-cyclooctadiene on zeolite-encapsulated noble metal-salen complexes[J]. Micropor. Mesopor. Mater., 1998, 22: 457-464.
    [12] Ernst S., Fuchs E., Yang X. Enantioselextive hydrogenation on zeolite-encapsulated chiral palladium-salen complexes [J]. Micropor. Mesopor. Mater., 2000, 35-36: 137-142.
    [13] Haber J., Pamin K., Po?towicz J. Cationic metalloporphyrins and other macrocyclic compounds in zeolite matrix as catalysts for oxidation with dioxygen [J]. J. Mol. Catal. A: Chem., 2004, 224: 153-159.
    [14] Saha P. K., Dutta B., Jana S. et al. Immobilization of a copper-Schiff base complex in a Y-zeolite matrix: Preparation, chromogenic behavior and catalytic oxidation [J]. Polyhedron, 2007, 26: 563-571.
    [15]晋春.分子筛中对称与不对称金属配合物的结构与催化性能研究[D].太原:太原理工大学,2006.
    [16] Herron N., A cobalt oxygen carrier in zeolite Y. A molecular“ship in a bottle”Inorg. Chem., 1986, 25(26): 4714-4717.
    [17] Gaillon L., Sajot N., Bedioui F. et al. Electrochemistry of zeolite-encapsulated complexes Part 3. Characterization of iron and manganexe SALEN entrapped in Y faujasite type zeolite [J]. J. Electroanal. Chem., 1993, 345: 157-167.
    [18] Chen P., Fan B., Song M. et al. Zeolite-encapsulated Ru(III) tetrahydro-Schiff base complex: An efficient heterogeneous catalyst for the hydrogenation of benzene under mild conditions [J]. Catal. Commun., 2006, 7: 969-973.
    [19] Jacob C. R., Varkey S. P., Ratnasamy P. Zeolite-encapsulated copper (X2-salen) complexes [J]. Appl.Catal. A: Gen., 1998, 168: 353-364.
    [20] Dutta B., Jana S., Bera R. Immobilization of copper Schiff base complexes in zeolite matrix: Preparation, characterization and catalytic study [J]. Appl. Catal. A: Gen., 2007, 318: 89-94.
    [21] Sabater M. J., Corma A., Domenech A. et al. Chiral Salen manganese complex encapsulated within zeolite Y: a heterogeneous enantioselective catalyst for the epoxidation of alkenes [J]. J. Chem. Soc. Chem. Commun., 1997, pp1285-1286.
    [22] Romanovsky B.V., Gabrielov A.G. Zeolite-included phthalocyanines : synthesis, characterization and catalysis in ox-red reactions[J]. J. Mol. Catal., 1992, 74: 293-303.
    [23] Balkus K.J. Jr., Gabrielov A.G., Bell S.L. et al. Zeolite Encapsulated Cobalt(II) and Copper(II) Perfluorophthalocyanines-Synthesis and Characterization [J]. Inorg. Chem. 1994, 33: 67-72.
    [24] Vinod M. P., Das T.Kr., Chandwadkar A.J. et al. Catalytic and electrocatalytic properties of intraaeolitically prepared iron phthalocyanine [J]. Mater. Chem. Phys., 1999, 58: 37-43.
    [25] Gabrielov A.G., Balkus K.J. Jr., Bell S.L. Faujasite-type zeolites modified with iron perfluorophthalocyanines: Synthesis and characterization [J]. Micropor. Maters., 1994, 2: 119-126.
    [26] Zhan B. Z. Li X. Y. A novel‘build-bottle-around-a-ship’method to encapsulate metalloporphyrins in zeolite-Y, An efficient biomimetic catalyst [J]. J. Chem. Soc. Chem. Commun., 1998, pp 349-350.
    [27]范彬彬,宋明纲,晋春.磷铝分子筛APO-5固载金属配合物复合材料的合成[P].中国专利: CN 1308077C, 2007.
    [28] Saha P. K., Dutta B., Jana S., et al. Immobilization of a copper-Schiff base complex in a Y-zeolite matrix: Preparation, chromogenic behavior and catalytic oxidation [J]. Polyhedron 2007, 26: 563-571.
    [29] Lu, X.-H.; Xia, Q.-H.; Zhan, H.-J.; Yuan, H.-X.; Ye, C.-P.; Su, K.-X.; Xu, G. Synthesis, characterization and catalytic property of tetradentate Schiff-base complexes for the epoxidation of styrene. J. Mol. Catal. A: chem., 2006, 250: 62-69.
    [30] Vinod M.P., Das T. Kr., Chandwadkar A. J. Catalytic and electrocatalytic properties of intrazeolitically prepared iron phthalocyanine [J]. Mater. Chem. Phys., 1999, 58(1): 37-43.
    [31] Seelan S., Sinha A. K., Srinivas D., et al. Spectroscopic investigation and catalytic activity of copper (Ⅱ) phthalocyanine encapsulated in zeolite Y [J]. J. Mol. Catal. A: Chem., 2000, 157(1-2): 163-171.
    [32] Balkus Jr. K.J., Kanmamedova A. K., Dixon K. M., et al. Oxidations catalyzed by zeolite Ship-in-a-bottle complexes [J]. Appl. Catal. A: Gen., 1996, 143(1): 159-173.
    [33] Deshpande S., Srinivas D., Ratnasamy P. EPR and catalytic investigation Cu(salen) complexes encapsulated in zeolite.[J]. J. Catal., 1999, 188, 261-269.
    [34] Rolisson D.R. Zeolite-modified electrodes and electrode-modified zeolites Chem. Rev., 1990, 90: 867-878.
    [35] Bard A.J., Mallouk T.E., in R.W. Murray (ed.), Molecular Design of Electrode Surfaces, Wiley, New York: 1992, p 271.
    [36] Shaw B.R., Creasy K.E., Lanczycki C.J., et al. Voltammetric Response of Zeolite-Modified Electrode. J. Electrochem. Soc., 1988, 135(4): 869-876.
    [37] Bedioui F., RouéL., Briot E., et al. Electrochemistry of chemically modified zeolites: discussion and new trends [J]. J. Electroanal. Chem., 1994, 373: 19-29 (and references cited therein).
    [38] Vismes B. de, Bedioui F., Devynck J. et al. Zeolite-poprphyrin modified electrodes [J]. J. Electroanal. Chem., 1985, 187(1): 197-202.
    [39] Senaratne C. Zhang J, Baker M.D, et al. Zeolite-modified electrodes: Intra- versus Extrazeolite electron transfer [J]. J. Phys. Chem. 1996, 100:5849-5862.
    [40] K. Mesfar, B. Carre, F. Bedioui, et al. Electrochemistry of zeolite-encapsulated complexes. Part 4: Characterization of transition-metal polypyridinediyl and phenanthroline complexes entrapped in Y faujasite-type zeolite [J]. J. Mater. Chem., 1993, 3: 873-876.
    [41] Bedioui F., Boysson E. De, Devynck J. et al. Eelctrochemistry of zeolite-encapsulated Cobalt Salen complexes in acetonitrile and dimethyl sulphoxide solution [J]. J. Chem. Soc. Faraday Trans., 1991, 87(24): 3831-3834.
    [42] Corrêa R. J., Salom?o G. C., Olsen M. H. N.,et al. Catalytic activity of MnⅢ(salen) and FeⅢ(salen) complexes encapsulated in Zeolite Y.Appl. Catal. A: Gen., 2008, 336(1-2): 35-39.
    [43] Jin C., Fan W., Jia Y., et al. Encapsulation of transition metal tetrahydro-schiff base complexes in zeolite Y and their catalytic properties for the oxidation of cycloalkanes [J]. J. Mol. Catal. A: Chem., 2006, 249(1-2): 23-30.
    [44] Saha P. K., Dutta B., Jana S., et al. Immobilization of a copper–Schiff base complex in a Y-zeolite matrix: Preparation, chromogenic behavior and catalytic oxidation [J]. Polyhedron. 2007, 26(3): 563-571.
    [45] Knops-Gerrits P., Vos D. E. De, Jacobs P. A.Oxidation catalysis with semi-inorganic zeolite-basedMn catalysts [J]. J. Mol. Catal. A: Chem., 1997, 117(1-4): 57-70.
    [46] Silva M., Freire C., Castro B. de, et al.Styrene oxidation by manganese Schiff base complexes in Zeolite structures [J]. J. Mol. Catal. A: Chem., 2006, 258(1-2): 327-333.
    [47] Mahdavi V., Mardani M. Malekhosseini M. Oxidation of alcohols with tert-butylhydro- peroxide catalyzed by Mn (II) complexes immobilized in the pore channels of mesoporous hexagonal molecular sieves (HMS) [J]. Catal. Commun.2008, 9: 2201-2204.
    [48] Niasari M. S., Shaterian M., Ganjali M. R., et al. Oxidation of cyclohexene withtert- butylhydroperoxide catalysted by host (nanocavity of Zeolite-Y)/guest (Mn(‖), Co(‖), Ni(‖) and Cu(‖) complexes of N,N’-bis(salicylidene) phenylene-1,3-diamine) nanocomposite materials (HGNM)[J]. J. Mol. Catal. A: Chem., 2007,261(2): 147-155.
    [49] J. C. Medina, N. Gabriunas, E. Páez-Mozo, Cyclohexene oxidation with an iron cyclam- tupe complex encapsulated in Y-zeolite [J]. J. Mol. Catal. A: Chem., 1997, 115(2): 233-239.
    [50] Zsigmondá., Horváth A., Notheisz F. Effect of substituents on the Mn(III)Salen catalyzed oxidation of styrene [J]. J. Mol. Catal. A: Chem., 2001, 171(1-2): 95-102.
    [51] Po?towicz J., Pamin K., Tabor E., et al. Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane [J]. Appl. Catal. A: Gen., 2006, 299: 235-242.
    [52] Haber J., Pamin K., Po?towicz J.Cationic metalloporphyrins and macrocryclic compounds in zelite matrix as catalysts for oxidation with dioxygen [J]. J. Mol. Catal. A: Chem., 2004, 224: 153-159.
    [53] Jacob C.R., Varkey S. P., Ratnasamy P. Oxidation of para-xylene over zeolite-encapsulated copper and manganese complexes [J]. Appl. Catal. A: Gen., 1999, 182: 91-96.
    [54] Wang F., Hu S. Electrochemical reduction of dioxygen on carbon nanotubes- dihexadecyl phosphate film electrode [J]. J. Electroanal. Chem., 2005, 580: 68-77.
    [55] Obradovi? M. D., Grgur B.N., Vracar L.M. Adsorption of oxygen containing species and their effect on oxygen reduction on Pt3Co electrode [J]. J. Electroanal.Chem., 2003, 548: 69-78.
    [56] Zhang J., Anson F.C., Eletrochemistry of the Cu(‖) complex of 4,7-diphenyl-1,10- phrnanthrolinedisulfonante absorbed on graphite electroades and its behavior as an electrocaralyst for the reduction of O2 and H2O2[J]. J. Electroanal. Chem., 1992, 341: 323-341.
    [57] Zhang J., Anson F.C., Complexes of Cu(‖) with electroative chelating ligands adsorbed on on graphite electrodes:surface coordination chemistry and electrocatalysis [J]. J. Electroanal. Chem., 1993, 348: 81-97.
    [58] Zhang J., Anson F.C., Coordination of Fe3+ by“alizarin complexone”adsorbed on graphite electrodes to produce electrocatalysts for the reduction of O2 and H2O2[J]. J. Electroanal. Chem., 1993, 353: 265-280.
    [59] Zagal J.H., Auirre M.J., Paez M.A. O2 reduction kinetics on a graphite electrode modified with adsorbed vitamin B12 [J]. ,J. Electroanal. Chem., 1997, 437(1-2): 45-52.
    [60] Abe T., Kaneko M. Reduction catalysis by metal complexes confined in a polymer matrix [J] Prog. Polym. Sci., 2003, 28 (10): 1441-1488.
    [61] Kinoshita K., Electrochemical oxygen technology. New York: Wiley; 1992.
    [62] Mukerjee S., Srinivasan S., Soriaga M. P. Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and Electrocatalytic Activities for Oxygen Reduction - XRD, XAS, and Electrochemical Studies [J]. J. Phys. Chem., 1995, 99: 4577-4589.
    [63] Paulus U.A., Wokaun A. , Scherer G.G., et al. Oxygen redution on carbon-supported Pt-Ni and Pt-Co alloy catalysts [J]. J. Phys. Chem. B, 2002,106(16): 4181-4191
    [64] Shao M. H., Sasaki K., Adzic R. R. Pd?Fe Nanoparticles as Electrocatalysts for Oxygen Reduction [J]. J. Am. Chem. Soc., 2006, 128: 3526-3527.
    [65] El-Deab M. S., Osaka T., An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes [J]. Electrochem. Commun. 2002, 4: 288-292.
    [66] Markovic N. M., Ross P. N. A Study of Bismuth Ruthenate as an Electrocatalyst for Bifunctional Air Electrodes[J]. J. Electrochem. Soc., 1994, 141: 2590-2597.
    [67] Wlodarczyk R., Chojak M., Miecznikowski K., et al. Electroreduction of oxygen at polyoxometallate-modified glassy carbon-supported Pt nanoparticles [J]. J. Power Sources. 2006, 159(2): 802-809.
    [68] Shi Y., Yang R., Yuet Pak K. Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst [J]. Carbon., 2009, 47: 1146-1151.
    [69] Santhosh P., Manesh K. Uthayakumar M., et al. Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers [J]. Bioelectrochem. 2009, 75: 61-66.
    [70] Qu D. Investigation of oxygen reduction on activated carbon electrodes in alkaline solution [J].Carbon, 2007, 45 (6): 1296-1301.
    [71] Dewi E. L., Oyaizu K., Tsuchida E., Four-electron reduction of dioxygen catalyzed by adecavanadium complex[J]. Inorg. Chim. Acta., 2003, 342: 316-318.
    [72] Oyaizu K., Dewi E. L., Tsuchida E. Structure and redox properties of a novel decavanadium cluster [(V=O)10(μ2-O)9(μ3-O)3(C5H7O2)6] in dichloromethane [J]. J. Electroanal., Chem. 2001, 498: 136-141.
    [73] Golabi S.M., Baoof J.B. Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives [J]. J. Electroanal. Chem., 1996, 416: 75-82.
    [74] Manisankar P., Gomathi A. Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbon electrode in anthraquinone solutions [J]. J. Mol. Catal., A: Chem. 2005, 232(1-2): 45-52.
    [75] Zhang G., Yang F. Electrocatalytic reduction of dioxygen at glassy carbon electrodes modified with polypyrrole/anthraquinonedisulphonate composite film in various pH solutions [J]. Electrochim. Acta., 2007, 52(24): 6595-6603.
    [76] Kullapere M., Seinberg J.-M., Maeorg U., et al. Electroreduction of oxygen on glassy carbon electrodes modified with in situ generated anthraquinone diazonium cations [J]. Electrochim. Acta., 2009, 54: 1961-1969.
    [77] Lai M.E., Bergel A., Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase [J]. J. Electroanal. Chem., 2000, 494: 30-40.
    [78] Lu H., Li Z., Hu N. Direct voltammetry and electrocatalytic properties of catalase incorporated in polyacrylamide hydrogel films [J]. Biophys. Chem., 2003, 104(3): 623-632.
    [79] Manisankar P., Pushpalatha A. Vasanthkumar M., et al. Riboflavin as an electron mediator catalyzing the electrochemical reduction of dioxygen with 1, 4-naphthoquinones [J]. J. Electroanal. Chem., 2004, 571: 43-50.
    [80] El-Deab M.S., Ohsaka T., Quasi-reversible two-electron reduction of oxygen at gold electrodes modified with a self-assembled submonolayer of cysteine [J]. Electrochem. Commun., 2003, 5: 214-219.
    [81] Wang Q., Lu G., Yang B. Myoglobin/Sol-Gel Film Modified Electrode: Direct Electrochemistry and Electrochemical Catalysis [J]. Langmuir, 2004, 20: 1342-1347.
    [82] Wang F., Zhao J., Xu Y. et al. Electroreduction of dioxygen on Aunano–DNA film electrode in acidic electrolyte [J]. Bioelectrochemistry, 2006, 69: 148-157.
    [83] Hu D.D., Shui Q.Z., Tang Z.X., et al. CoSalen immobilized to chitosan and its electrochemicalbehavior [J]. Carbohyd. Polym., 2001, 45: 385-393.
    [84] Amini M.K., Khorasani J.H., Khaloo S.S., et al. Cobalt (II) salophen-modified carbon-paste electrode for potentiometric and voltammetric determination of cysteine [J]. Anal. Biochem., 2003, 320: 32-38.
    [85] Miomandre F., Audebert P., Maumy M., et al. Electrochemical behaviour of iron(III) salen and poly(iron–salen). Application to the electrocatalytic reduction of hydrogen peroxide and oxygen [J]. J. Electroanal. Chem., 2001, 516: 66-72.
    [86] Mouahid O. El, Coutanceau C., Belgsir E.M. et al. Electrocatalytic reduction of dioxygen at macrocycle conducting polymer electrodes in acid media [J]. J. Electroanal. Chem., 1997, 426(1-2): 117-123.
    [87] Jiang J, Kucernak A. A Novel electrocatalyst for the oxygen reduction reaction in acidic media using electrochemically activated iron 2, 6-bis(imino)-pyridyl complexes [J]. Electrochim. Acta., 2002, 47(12):1967-1973.
    [88] Guo P., Wong K.-Y. Enantioselective electrocatalytic epoxidation of olefins by chiral manganese Schiff-base complexes. Electrochem. Commun., 1999, 1(11): 559-563.
    [89] Yilmaz I., Arslan S., Guney S., et al. Synthesis, electro-spectroelectrochemical characterization and electrocatalytic behavior towards dioxygen reduction of a new water-soluble cobalt phthalocyanine containing naphthoxy-4-sulfonic acid sodium salt [J]. Electrochim. Acta., 2007, 52(24): 6611-6621.
    [90] Choi A., Jeong H., Kim S., et al. Electrocatalytic reduction of dioxygen by cobalt porphyrin-modified glassy carbon electrode with single-walled carbon nanotubes and nafion in aqueous solutions [J]. Electrochim. Acta., 2008, 53(5): 2579-2584.
    [91] Abe T., Shoji K., Tajiri A., Electrocatalysis of molecular aggregate composed of an osmium complex and a polymer membrane for dioxygen reduction [J]. J. Mol. Catal. A: Chem., 2004, 208(1-2): 11-15.
    [92] Abe T., Kubota J., Tanaka T., et al. Voltammetric study of electrocatalysis for dioxygen reduction by trinuclear rutheniumammine complex confined in a polymer membrane [J]. Electrochim. Acta., 2002, 47(24) :3901-3907.
    [93] Varkey S.P., Ratnasamy C., Ratnasamy P.Zeolite-encapsulated manganede (Ⅲ) complex into mesoporous [J]. J Mol. Catal. A: Chem., 1988, 135: 295-306.
    [94] Fuerte A., Corma A., Iglesias M. et al. Approaches to the synthesis of heterogenised metalloporphyrins: Application of new materials as electrocatalysts for oxygen reduction [J]. J. Mol.Catal. A: Chem., 2006, 246: 109-117.
    [95]齐丹华.聚合物薄膜和纳米材料化学修饰电极的制备及应用的研究[D].吉林延吉:延边大学,2007.
    [96]董绍俊,车广礼,谢远武著.化学修饰电极(修订版)[M].北京:科学出版社,2003.
    [97]谭忠印,周丹红编著.电化学分析原理及技术[M].沈阳:辽宁师范大学出版社,2001.
    [98] Baker M.D., Zhang J. Molecular-optical viscometer based on fluorescence depolarization [J]. J. Phys. Chem., 1990, 94: 8703-8706.
    [99] Li J., Calzaferri G. Silver zeolite 4A modified electrodes: intrazeolite effect [J]. J. Chem. Soc., Chem. Commun., 1993, 1430-1432.
    [100] Walcarius A., Lamberts L. Voltammetric response of the hexammino-rethenium complex incorporated in zeolite-modified carbon paste electrode [J]. J. Electroanal. Chem., 1997, 422: 77-89.
    [101] Varkey S.P., Ratnasamy C., Ratnasamy P. Zeolite-encapsulated manganese (Ⅲ)salen complexes [J]. J. Mol. Catal. A: Chem., 1998, 135: 295-306.
    [102]周益明,周志华,孟中岳etc.分子筛修饰电极的研究(Ⅰ) [J].高等学校化学学报,1994,15(5):659-662.
    [103]姜艳霞.无极功能材料修饰电极的研究[D].吉林:吉林大学,1999.
    [1] House H. O., Feng E., Peet N. P., A comparison of various tetraalkylammonium salts as supporting electrolytes in organic electrochemical reactions [J]. J. org. chem. 1971, 36(16): 2371-2375.
    [2] B?ttcher A., Grinstaff Mark W., Labinger Jay A., et al. Aerobic oxidation of hydrocarbons catalyzed by electronegative iron salen complexes. J. Mol. Catal. A: Chem. 113 (1996) 191-200.
    [3]朱东霞,王悦,邵奎占等.双水杨醛缩环己二胺类希夫碱及其配合物的合成、性质研究[J].分子科学学报[J]. 2004, 20(3): 12-17.
    [4]袁淑军,方海林,吕春绪.双水杨醛缩乙二胺合铜[Cu(Salen)]/O2催化氧化安息香[J].化学世界, 2004, 45(5):233-250.
    [5] Salomao G. C., Olsen M. H.N., Drago V. et al. Oxidation of cyclohexane promoted by [Fe(III)(Salen)Cl] and [Mn(III)(Salen)Cl] [J]. Catal. Commun. 2007,8:69-72
    [6] Suzuki M., Ishikawa T., Harada A., et al. Chemical mechanism of dioxygen activation by manganese (III) Schiff base compound in the presence of aliphatic aldehydes [J]. Polyhedron. 1997, 16: 2553-2561.
    [7] Jin C., Fan W., Jia Y., et al. Encapsulation of transition metal tetrahydro-schiff base complexes in zeolite Y and their catalytic properties for the oxidation of cycloalkanes [J]. J. Mol. Catal. A: Chem., 2006, 249(1-2): 23-30.
    [8]范彬彬,宋明纲,晋春.磷铝分子筛APO-5固载金属配合物复合材料的合成[P].中国专利: CN 1308077C, 2007.
    [9] Chandana S, Zhang J, Baker M.D, et al. Zeolite-modified electrodes: Intra- versus Extrazeolite electron transfer [J]. J. Phys. Chem. 1996, 100:5849-5862.
    [1] Saha P. K., Dutta B., Jana S., et al. Immobilization of a copper-Schiff base complex in a Y-zeolite matrix: Preparation, chromogenic behavior and catalytic oxidation [J]. Polyhedron 2007, 26: 563-571.
    [2] Po?towicz J., Pamin K., Tabor E., et al. Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane [J]. Appl. Catal. A: Gen. 2006, 299: 235-242.
    [3] B. Fan, H. Li, W. Fan, et al. Oxidation of cyclohexane over iron and copper salen complexes simultaneously encapsulated in zeolite Y [J].Appl. Catal. A: Gen. 2008, 340: 67-75.
    [4] Bedioui F., Boysson E. De, Devynck J. et al. Eelctrochemistry of zeolite-encapsulated Cobalt Salen complexes in acetonitrile and dimethyl sulphoxide solution [J]. J. Chem. Soc. Faraday Trans., 1991, 87(24): 3831-3834.
    [5] Zhang G., Yang F. Electrocatalytic reduction of dioxygen at glassy carbon electrodes modified with polypyrrole/anthraquinonedisuphonate composite film in various pH solutions [J]. Electrochim. Acta.2007, 52: 6595-6603.
    [6] Gaillon L., Sajot N., Bedioui F., et al. Electrochemistry of zeolite-encapsulated complexes: Part 3. Characterization of iron and manganese SALEN entrapped in Y faujasite type zeolite [J]. J. Electroanal. Chem. 1993, 345(1-2): 157-167.
    [7] Greef R., Peat R., Peter L.M., et al. Southampton Electrochemistry Group, Instrumental methods in electrochemistry, Chinese version, 1992, pp. 186-191.
    [8] Kumar S.A., Chen S.-M. Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes [J]. J. Mol. Catal. A: Chem., 2007, 278: 244-250.
    [9]白燕,阮湘元,莫金垣.聚血红素修饰电极上氧还原的电催化研究[J].催化学报, 2001, 22(3): 255-258.
    [10]巴德阿伦. J.,福克纳拉里.R.著.邵元华,朱果逸,董献堆etc.译.电化学方法原理和应用[M].北京:化学工业出版社,2005,pp133-137.
    [1] Bedioui F., Boysson E. De, Devynck J. et al. Eelctrochemistry of zeolite- encapsulated Cobalt Salen complexes in acetonitrile and dimethyl sulphoxide solution [J]. J. Chem. Soc. Faraday Trans., 1991, 87(24): 3831-3834.
    [2] Saha P. K., Dutta B., Jana S., et al. Immobilization of a copper-Schiff base complex in a Y-zeolitematrix: Preparation, chromogenic behavior and catalytic oxidation [J]. Polyhedron 2007, 26: 563-571.
    [3] Deshpande S., Srinivas D., Ratnasamy P. EPR and catalytic investigation Cu(salen) complexes encapsulated in zeolite.[J]. J. Catal., 1999, 188, 261-269.
    [4] Gosser D. K. Jr. Cyclic Voltammetry: Simulation and analysis of reaction mechanisms [M]. New York: VCH Publishers, Inc., 1993: 7-8.
    [5]郑东红,陆天虹,张存中,等.维生素B12修饰电极及其催化氧还原性质的研究.物理化学学报, 1997, 13(9): 797~801.
    [6] Dutta B., Jana S., Bera R. Immobilization of copper Schiff base complexes in zeolite matrix: Preparation, characterization and catalytic study [J]. Appl. Catal. A: Gen., 2007, 318: 89-94.
    [7] Sykey A. G. Active-site properties of the blue copper proteins [J]. Adv. Inorg. Chem., 1991, 36: 377-408.
    [8] Jacob C.R., Varkey S. P., Ratnasamy P. Oxidation of para-xylene over zeolite-encapsul- ated copper and manganese complexes [J]. Appl. Catal. A: Gen., 1999, 182: 91-96.
    [9]巴德阿伦. J.,福克纳拉里.R.著.邵元华,朱果逸,董献堆etc.译.电化学方法原理和应用[M].北京:化学工业出版社,2005,pp133-137.
    [10] Lu W., Wang C., Lv Q., et al. Electrocatalytic reduction of dioxygen on the surface of glassy carbon electrodes modified with dicobolt diporphyrin complexes [J]. J. Electroanal. Chem. 558 (2003) 59-63.
    [11] Zhang G., Yang F. Electrocatalytic reduction of dioxygen at glassy carbon electrodes modified with polypyrrole/anthraquinonedisuphonate composite film in various pH solutions [J]. Electrochim. Acta. 2007, 52: 6595-6603.
    [12] Kumar S.A., Chen S.-M. Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes [J]. J. Mol. Catal. A: Chem., 2007, 278: 244-250.
    [1]白崎,高保等.催化剂制造[M].北京:石油工业出版社,1981: 306-307.
    [2]胡玥.离子热合成磷铝分子筛[D].大连:大连轻工业学院,2006.
    [3]范彬彬,宋明纲,晋春等.金属配合物磷铝分子筛复合材料的制备[P].中国专利:CN 1308077C,2007.
    [4]张蓉,唐丽华,范彬彬等. Co(Salen)AlPO4-5复合材料的制备及其电催化还原氧的性能[J].电化学,2010, 16(2): 68-75.
    [5]张瑞珍,董梅,秦张峰,等.杂原子磷铝CoAlPO4-5和MnAlPO4-5分子筛的合成、表征及在环己烷选择氧化反应中的应用[J].燃料化学学报, 2007, 35(1): 98-103.
    [6] Jin Chun, Fan Weibin, Jia Yingjuan. et al Encapsulation of transition metal tetrahydro-Schiff base complexes in zeolite Y and their catalytic properties for the oxidation of cycloalkanes[J]. J. Mol. Catal. A: Chem. 2006, 249:23-30.
    [7] Haber J, Pamin K, Po?towicz J. Cationic metalloporphyrins and other macrocyclic compounds in zeolite matrix as catalysts for oxidation with dioxygen [J]. J. Mol. Catal. A: Chem., 2004, 224: 153-159.
    [8] Vishnuvarthan M, Murugesan V, Gianotti E. et al Coexistence of framework Co2+ and non framework Co0 in CoAlPO4-5 [J]. Micropor. Mesopor. Mat. 2009, 123: 91-99.
    [9] Yuan X, Li F, Wang L. et al Synthesis, characterization of Co(Salen)/NaY and the catalytic performance for aerobic oxidation of cyclohexane Lat. Am. Appl. Res., abr./Jun. 2007, 37(2): 151-156.
    [10] Ortiz Bertha, Su-Moon Park, Electrochemical and Spectroelectrochemical Studies of Cobalt Salen andSalophen as Oxygen Reduction Catalysts [J]. Bull. Korean Chem. Soc. 2000, 21(4): 405-411.
    [11]张杰,郭星翠等.杂原子磷铝分子筛的合成及表征[J].精细石油化工进展. 2004,5(10): 36-40.
    [12]郑东红,陆天虹,张存中,等.维生素B12修饰电极及其催化氧还原性质的研究[J].物理化学学报, 1997, 13(9): 797-801.
    [13] Sponer J., Cejka J., Dedecek J., et al. Coordination and properties of cobalt in the molecular sieves CoAPO-5 and -11 [J]. Micropor. Mesopor. Mat. 2000, 37(1-2): 117-127.
    [14] Bedioui F, Boysson Elisabeth De, Devynck Jacques. Electrochemistry of Zeolite-encapsulated Cobalt Salen Complexes in Acetonitrile and Dimethyl Sulphoxide Solution [J]. J. Chem. Soc. Faraday Trans., 1991, 87(24): 3831-3834.
    [15]任永利,王亚权,米镇涛. Fe-AlPO4-5分子筛的水热晶化过程研究[J].化学反应工程与工艺, 2004, 20(3): 209-212.
    [16] Greef R, Peat R, Peter L M. et al Instrumental Methods In Electrochemistry[M].柳厚田,徐品弟译.上海:复旦大学出版社, 1992. p 186-191.
    [17] Woo-Seong Kim,Yong-Kook Choi. Electrocatalytic effects of thionyl chloride reduction by polymeric Schiff base transition metal(Ⅱ) complexes [J]. Applied Catalysis A:General 252(2003)167-168.
    [18] Guofang Zuo, Huiqing Yuan, Jiandong Yang,ect. Study of orientation mode of cobalt-porphyrin onthe surface of gold electrode by electrocatalytic dioxygen reduction [J]. Journal of Molecular Catalysis A:Chemical 269 (2007) 46–52.
    [19] Kumar S.A., Chen S.-M. Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes [J]. J. Mol. Catal. A: Chem., 2007, 278: 244-250.
    [20]巴德阿伦. J.,福克纳拉里. R.著.邵元华,朱果逸,董献堆等译.电化学方法原理和应用[M].北京:化学工业出版社,2005,pp133-137.
    [21] Herron N. A Cobalt oxygen carrier in zeolite Y. A molecular“ship in a bottle”[J]. Inorg. Chem. 1986, 25: 4714-4717.
    [22] Musie G., Wei M., Subramaniam, B. et al Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases [J]. Coordin. Chem. Rev., 2001, 219–221: 789–820.
    [1] Bedioui F., Boysson E. De, Devynck J. et al. Eelctrochemistry of zeolite-encapsulated Cobalt Salen complexes in acetonitrile and dimethyl sulphoxide solution [J]. J. Chem. Soc. Faraday Trans., 1991, 87(24): 3831-3834.
    [2] Dutta B., Jana S., Bera R. Immobilization of copper Schiff base complexes in zeolite matrix: Preparation, characterization and catalytic study [J]. Appl. Catal. A: Gen., 2007, 318: 89-94.
    [3] Saha P. K., Dutta B.,Jana S.,et al.Immobilization of a copper-Schiff base complex in a Y-zeolite matrix: preparation, chromogenic behavior and catalytic oxidation [J]. Polyhedron, 2007, 26: 563- 571.
    [4] Sykey A. G. Active-site properties of the blue copper proteins [J]. Adv. Inorg. Chem., 1991, 36: 377-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700