铑膦(Rh-P)催化剂的制备、固载化及其在丙烯制丁醛/辛烯醛中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,催化剂的研究和开发是现代化学工业的核心问题之一。目前工业上4套丁辛醇装置都存在高能耗、高污染等问题,在呼唤节能减排、绿色催化和绿色生产工艺的今天,该问题显得尤为突出。因此,开发出应用于丁辛醇装置的绿色环保催化工艺是一项有挑战性但又势在必行的研究。
     本文首先采用一步法制备了铑膦配合物催化剂HRh(CO)(PPh_3)_3,考察了不同氢源对催化剂结构的影响。结果表明:以氢氧化钾为氢源能够高效的合成目标催化剂HRh(CO)(PPh_3)_3,铑的利用率为95%左右;以硼氢化钠为氢源,产物为trans-RhCl(CO)(PPh_3)_2和HRh(CO)(PPh_3)_3的混合物,甲醛的滴加速度对两种产物的组分有着重要的影响,随甲醛滴加速度的逐渐减慢,目标催化剂HRh(CO)(PPh_3)_3含量逐渐增多,trans-RhCl(CO)(PPh_3)_2的含量逐渐减少,铑的利用率为85%左右;常压下,以氢气作为氢源不能合成目标催化剂HRh(CO)(PPh_3)_3,产物为trans-RhCl(CO)(PPh_3)_2;
     其次,利用丙烯加氢甲酰化反应对所制备催化剂HRh(CO)(PPh_3)_3的催化性能进行评价,并和工业上所用的催化剂ROPAC进行对比;考察了膦铑比、铑浓度、温度和一氧化碳分压等工艺条件对催化剂催化性能的影响。结果表明:该催化剂在丙烯加氢甲酰化反应中表现出较好的催化性能,在同等条件下其催化性能要优于工业上所用的ROPAC催化剂;其催化丙烯加氢甲酰化反应的较佳工艺条件为:温度为90℃,一氧化碳的分压为0.1 MPa,膦铑比为300,铑的浓度为300 ppm,该条件下2 h内丙烯的转化率为71.7%,产物的正异构比为8.10,平均反应速率为0.042 mol·L~(-1)·min~(-1),丙烯转化为丁醛的转化频率为864 h~(-1);
     最后,本文通过在分子筛MCM-41表面嫁接有机胺官能团和锚定铑膦配合物催化剂HRh(CO)(PPh_3)_3制备双功能催化剂,考察了负载胺类型、氮和铑的负载量对催化剂催化性能的影响。结果显示:通过该法可以制得双功能催化剂MCM-41-NR1R2-Rh-P,制备过程中载体分子筛MCM-41的晶体结构未被破坏,但比表面积及孔道直径降低;该催化剂能够实现丙烯一锅法制备辛烯醛反应;两种活性组分的合适配比为氮(伯胺)的负载量为1.73%左右,铑的负载量为0.19%左右,该条件下6 h内辛烯醛的收率高达75.0%。
As we all know, study and development of catalyst are one of the core issues of the modern chemical industry. Nowadays, there are many problems in 4 sets of octanol devices in the current industry such as high energy consumption and high pollution, which is especially prominent in the days of calling energy conservation, green catalysis and green production processes. Therefore, it is a challenging but imperative research to develop a green catalytic process used in octanol devices.
     First, a rhodium-phosphine complex catalyst HRh(CO)(PPh_3)_3 was prepared in one-step process. The effects of different hydrogen were investigated on the structure of catalyst. The results showed that with potassium hydroxide as a hydrogen source, HRh(CO)(PPh_3)_3 can be efficiently synthesized and the utilization ratio of Rh reached about 95%. While with sodium borohydride as a hydrogen source, the product was the mixture of trans-RhCl(CO)(PPh_3)_2 and HRh(CO)(PPh_3)_3. The dropping rate of formaldehyde had a significant impact on components of the two products. As the dropping rate of formaldehyde gradually slowed down, the concentration of HRh(CO)(PPh_3)_3 gradually increased, while the content of trans-RhCl(CO)(PPh_3)_2 gradually decreased, and the utilization rate of Rh was about 85%. Using hydrogen as a hydrogen source under atmospheric pressure, HRh(CO)(PPh_3)_3 can not be synthesized, and the product was trans-RhCl(CO)(PPh_3)_2.
     Second, the activity of the as-prepared catalysts has been evaluated by hydroformylation of propylene, which was compared with ROPAC used as the industrial catalyst. The ratio of phosphine and rhodium, the concentration of rhodium, temperature and partial pressure of carbon monoxide had great impact on catalytic performance. As-synthesized HRh(CO)(PPh_3)_3 had better catalytic performances for the hydroformylation of propylene, which was better than ROPAC used as the industrial catalyst under the same conditions. The better conditions of HRh(CO)(PPh_3)_3 in catalyzing hydroformylation of propylene were that temperature was 90℃, the partial pressure of carbon monoxide was 0.1 MPa, the ratio of phosphine and rhodium was 300 and the concentration of rhodium was 300 ppm. Under these conditions, the conversion of propylene was 71.7% within 2h and the n/i of product was 8.10 while the average reaction rate was 0.042 mol·L~(-1)·min~(-1) and the conversion frequency of propylene to butyraldehyde was 864 h-1;
     Last, the dual-function catalyst was prepared by grafting organoamine and rhodium-phosphine HRh(CO)(PPh_3)_3 on the MCM-41 surface. And the impact of types of amines, nitrogen amount and the amount of rhodium on the catalyst properties was investigated. The results were summarized as follows: dual-function catalyst MCM-41-NH_2-Rh-P was obtained by grafting method, and the crystal structure of MCM-41 had not been destroyed, but the surface area and pore diameter were reduced. One-pot preparation of 2-ethylhexenal from propylene was achieved by as-mentioned catalyst. The appropriate ratio of two active species was that the content of nitrogen (primary amine) was about 1.73% and rhodium content was about 0.19%. And the field of 2-ethylhexenal was up to 75.0% within 6h under this condition.
引文
[1] P. Ger. Rhodium Complex for Olefin Hydroformylation [P]. US: 849548, 1938.
    [2]王锦惠,王蕴林,刘光宏,郭浩然.羰基合成[M].北京:化学工业出版社, 1987.
    [3] F. P. Pruchnik. Organometallic Chemistry of Transition Elenents [N]. Plenum Press, New York 1990, 692.
    [4]陈贵斌.异丁醛氢甲酰化合成异戊醛用担载型铑膦配合物催化剂研究[D].四川大学, 2005.
    [5] D. S. Glueck. Catalytic Asymmetric Synthesis of Chiral Phosphanes [J]. Chem. Eur. J., 2008, 14, 7108-7117.
    [6] P. Scafato, G. Cunsolo, S. Labano, C. Rosini. Asymmetric Activation of Tropos Catalysts in the Stereoselective Catalytic Conjugate Additions of R2Zn toα,β-Enones: an Efficient synthesis of (-)-Muscone [J]. Tetrahedron, 2004, 60, 8801-8806.
    [7] Y. Sun, M. Ahmed, R. Jackstell, M. Beller, W. R. Thiel. Phosphine Ligands Bearing Donor Sites for the Binding of Lewis Acids: Synthesis, Characterization, and Application in Homogeneous Catalysis [J]. Organometallics, 2004, 23, 5260-5267.
    [8] K. Nozaki, N. Sakai, T. Nanno, T. Higashijima, S. Mano, T. Horiuchi, H. Takaya. Highly Enantioselective Hydroformylation of Olefins Catalyzed by Rhodium(I) Complexes of New Chiral Phosphine-Phosphite Ligands [J]. J. Am. Chem. Soc., 1997, 119, 4413-4423.
    [9] H. Klein, R. Jackstell, K. D. Wiese, C. Borgmann, M. Beller. Highly Selective Catalyst Systems for the Hydroformylation of Internal Olefins to Linear Aldehydes [J]. Angew. Chem. Int. Ed., 2001, 40, 3408-3411.
    [10] R. Paciello, L. Siggel, M. R?per. Chelated Bisphosphites with a Calix[4] Arene Backbone: New Ligands for Rhodium-Catalyzed Low-Pressure Hydroformylation with Controlled Regioselectivity [J]. Angew. Chem. Int. Ed., 1999, 38, 1920-1923.
    [11] R. F. Heck, D. S. Breslow. The Reaction of Cobalt Hydrotetracarbonyl with Olefins [J]. J. Am. Chem. Soc., 1961, 83, 4023-4027.
    [12] D. Evans, J. A. Osborn, G. Wilkinson. The Reaction of Hydridocarbonyltris(triphenylphosphine)rhodium with Carbon Monoxide, and of the ReactionProducts, Hydridocarbonylbis(triphenylphosphine)rhodium and Dimeric Species, with Hydrogen [J]. J. Chem. Soc. (A), 1968, 3, 3133-3142.
    [13]金子林,梅建庭,蒋景阳.两相(水-有机)烯烃氢甲酰化研究与开发进展[J].大连理工大学学报, 1999, 39, 221-227.
    [14] P. J. Baricelli, D. Baricelli, E. Lujano, L.G. Melean, M. Borusiak, F. L. Linares, L. J. Bastidas, M. Rosales. Catalytic Hydrogenation of Olefins and Their Mixtures Using HRh(CO)(TPPMS)3 Complex in an Aqueous Biphasic Medium [J]. J. Mol. Catal. A: Chem., 2007, 271, 180-184.
    [15]陈华,刘海超,黎耀忠,程博明,李贤均.水溶性铑-膦配合物催化长链烯烃氢甲酰化反应研究-反应条件的影响[J].分子催化, 1995, 9, 145-151.
    [16] H. H. Y. Unveren, R. Schomacker. Rhodium Catalyzed Hydroformylation of 1-Octene in Microemulsion: Comparison with Various Catalytic Systems [J]. Catal. Lett., 2006, 110, 195-201.
    [17] B. T. Li, X. H. Li, K. Asami, K. Fujimoto. Low-Pressure Hydroformylation of Middle Olefins over Co and Rh Supported on Active Carbon Catalysts [J]. Energ. Fuel., 2003, 17, 810-816.
    [18] J. Wrzyszcz, M. Zawadzki, A. M. Trzeciak, J. J. Ziólkowski. Rhodium Complexes Supported on Zinc Aluminate Spinel as Catalysts for Hydroformylation and Hydrogenation: Preparation and Activity [J]. J. Mol. Catal. A: Chem., 2002, 189, 203-210.
    [19] R. Augustine, S. Tanielyan, S. Anderson, H. Yang. A New Technique for Anchoring Homogeneous Catalysts [J]. Chem. Commun., 1999, 1257-1258.
    [20] K. Mukhopadhyay, R. V. Chaudhari. Heterogenized HRh(CO)(PPh3)3 on Zeolite Y Using Phosphotungstic Acid as Tethering Agent: a Novel Hydroformylation Catalyst [J]. J. Catal., 2003, 213, 73-77.
    [21] Q. R. Peng, Y. Yang, Y. Z. Yuan. Immobilization of Rhodium Complexes Ligated with Triphenyphosphine Analogs on Amino-Functionalized MCM-41 and MCM-48 for 1-Hexene Hydroformylation [J]. J. Mol. Catal. A: Chem., 2004, 219, 175-181.
    [22] J. Q. Zhao, Y. C. Zhang, J. P. Han, Y. J. Jiao. Preparation and Performance of Anchored Heterogenized Rhodium Complex Catalyst for Hydroformylation [J]. J. Mol. Catal. A: Chem., 2005, 241, 238-243.
    [23] R. Giordano, P. Serp, P. Kalck, Y. Kihn, J. Schreiber, C. Marhic, J. L. Duvail. Preparation of Rhodium Catalysts Supported on Carbon Nanotubes by a Surface Mediated Organometallic Reaction [J]. Eur. J. Inorg. Chem., 2003, 610-617.
    [24] L. Huang, Y. He, S. Kawi. Catalytic Studies of Aminated MCM-41-Tethered Rhodium Complexes for Hydroformylation of 1-Octene and Styrene [J]. J. Mol. Catal. A: Chem., 2004, 213, 241-249.
    [25] P. Li, S. Kawi. Dendritic SBA-15 Supported Wilkinson’s Catalyst for Hydroformylation of Styrene [J]. Catal. Today, 2008, 131, 61-69.
    [26] R. A. Reziq, H. Alper, D. S. Wang, M. L. Post. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts [J]. J. Am. Chem. Soc., 2006, 128, 5279-5282.
    [27]吴毓林,麻生明,戴立信.现代有机合成化学进展[M].化学工业出版社, 2005.
    [28] H. Sun, F. Z. Su, J. Ni, Y. Cao, H. Y. He, K. N. Fan. Gold Supported on Hydroxyapatite as a Versatile Multifunctional Catalyst for the Direct Tandem Synthesis of Imines and Oximes [J]. Angew. Chem. Int. Ed., 2009, 48, 4390-4393.
    [29] S. K. Sharma, V. K. Srivastava, R. S. Shukla, P. A. Parikh, R. V. Jasra. One-Pot Synthesis of C8 Aldehydes/Alcohols From Propylene Using Eco-Friendly Hydrotalcite Supported HRhCO(PPh3)3 Catalyst [J]. New J. Chem., 2007, 31, 277-286.
    [30] V. K. Srivastava, S. K. Sharma, R. S. Shukla, R. V. Jasra. Rhodium Metal Complex and Hydrotalcite Based Environmentally Friendly Catalyst System for the Selective Synthesis of C8-Aldehydes from Propylene [J]. Ind. Eng. Chem. Res., 2008, 47, 3795-3803.
    [31] S. K. Sharma, R. S. Shukla, P. A. Parikh, R. V. Jasra. The Multi-Step Reactions for the Synthesis of C8 Aldehydes and Alcohol from Propene in a Single Pot Using an Eco-Friendly Multi-Functional Catalyst System: Kinetic Performance for Parametric Optimization [J]. J. Mol. Catal. A: Chem., 2009, 304, 33-39.
    [32] A. J. Sandee, L. A. V. D. Veen, J. N. H. Reek, P. C. J. Kamer, M. Lutz, A. L. Spek, P. W. N. M. V. Leeuwen. A Robust, Environmentally Benign Catalyst for Highly Selective Hydroformylation [J]. Angew. Chem. Int. Ed., 1999, 38, 3231-3235.
    [33] D. J. C. Hamilton, et al. Homogeneous Catalysis-New Approaches to Catalyst Separation, Recovery, and Recycling [J]. Science, 2003, 299, 1702-1706.
    [34]吕顺丰,彭斌.一种三(三苯基膦)羰基氢化铑的制备方法[P]. CN: 101172987A, 2008.
    [35]易敏,徐士伟,储伟,陈贵斌.异丁烯氢甲酰化用负载型PPh3-Rh-Co/SiO2配合物高效催化剂[J].分子催化, 2005, 6, 486-489.
    [36] N. Ahmad, S. D. Robinson, M. F. Uttley. Triphenylphosphine Complexes of Transition Metals [J]. Inorg. Syn., 1974, 15, 45-64.
    [37] K. Mukhopadhyay, A. B. Mandale, R. V. Chaudhari. Encapsulated HRh(CO)(PPh3)3 in Microporous and Mesoporous Supports: Novel Heterogeneous Catalysts for Hydroformylation [J]. Chem. Mater., 2003, 15, 1766-1777.
    [38] L. Yan, Y. J. Ding, L. W. Lin. Ligand Modified Real Heterogeneous Catalysts for Fixed-Bed Hydroformylation of Propylene [J]. J. Mol. Catal. A: Chem., 2005, 234, 1-7.
    [39] J. M. Du, W. W. Kuang, D. Y. Zhao. The In?uence of Precursors on Rh/SBA-15 Catalysts for N2O Decomposition [J]. Appl. Catal. B: Environ., 2008, 84, 490-496.
    [40] G. R. Kosmambetova, P. E. Strizhak, V. I. Gritsenko, S. V. Volkov, L. B. Kharkova, O. G. Yanko, O. M. Korduban. Methane Oxidative Carbonylation Catalyzed by Rhodium Chalcogen Halides over Carbon Supports [J]. J. Nat. Gas Chem., 2008, 1, 1-7.
    [41] I. G. Casella, M. Contursi. Rhodium-Modified Gold Polycrystalline Surface as Anode Material in Alkaline Medium: an Electrochemical and XPS Investigation [J]. J. Electroanal. Chem., 2007, 606, 24-32.
    [42]陈贵斌,徐士伟,储伟.担载型铑配合物催化异丁烯氢甲酰化反应的研究[J].合成化学, 2004, 14, 193-195.
    [43]蒋福宏,黎耀忠,李贤均. 1-丁烯氢甲酰化反应的研究[J].精细石油化工进展, 2003, 2, 5-7.
    [44] D. C. Roe. Mechanistic Investigation of Olefin Insertion into the Rhodium-Hydrogen Bond [J]. J. Am. Chem. Soc., 1983, 26, 7770-7771.
    [45] A. H. G. Cents, D. W. F. Brilman, G. F. Versteeg. Mass-Transfer Effects in the Biphasic Hydroformylation of Propylene [J]. Ind. Eng. Chem. Res., 2004, 23, 7465-7475.
    [46] A. G. Abatjoglou, E. Biilig, D. R. Bryant. Mechanism of Rhodium-Promoted Triphenylphosphine Reactions in Hydroformylation Processes [J]. Organometallics, 1984, 3, 923-926.
    [47] A. Hershman, K. K. Robinson, J. H. Craddock, J. F. Roth. Continuous PropyleneHydroformylation in a Gas-Sparged Reactor [J]. Ind. Eng. Chem. Prod. Res. Dev., 1969, 4, 372-375.
    [48]南光明,熊伟.均相烯烃氢甲酰化进展研究[J].伊犁师范学院学报, 2002, 1, 89-91.
    [49]呈佳,王继东.丙烯氢甲酰化进展研究[J].化工科技市场, 2007, 30, 30-32.
    [50]郭亚军,刘训稳,曾群英,郎万中,褚联峰,杨春基,王斯晗.合成催化剂HRh(CO)(PPh3)3反应中不同氢源对配合物结构的影响[J].上海师范大学学报(自然科学版), 2009, 38, 331-336.
    [51]张寿春,黎耀忠,李贤均.铑-膦配位催化烯烃氢甲酰化反应研究[J].化学研究与应用, 2001, 13, 273-276.
    [52] M. D. F. V. Marques, C. C. Pombo, R. A. Silva, A. Conte. Binary Metallocene Supported Catalyst for Propylene Polymerization [J]. Eur. Polym. J., 2003, 39, 561-567.
    [53] M. L. Jia, H. F. Bai, R. G. T. Zhao, Y. Shen, Y. F. Li. Preparation of Au/CeO2 Catalyst and its Catalytic Performance for HCHO Oxidation [J]. J. Rare Earth., 2008, 26, 528-531.
    [54] H. F. Xiong, Y. H. Zhang, K. Y. Liew, J. L. Li. Ruthenium Promotion of Co/SBA-15 Catalysts with High Cobalt Loading for Fischer-Tropsch Synthesis [J]. Fuel Process. Technol., 2009, 90, 237-246.
    [55] W. L. Dai, Y. Cao, L. P. Ren, X. L. Yang, J. H. Xu, H. X. Li, H. Y. He, K. N. Fan. Ag-SiO2-Al2O3 Composite as Highly Active Catalyst for the Formation of Formaldehyde from the Partial Oxidation of Methanol [J]. J. Catal., 2004, 228, 80-91.
    [56] I. L. Mello, F. M. B. Coutinho. Neodymium Ziegler–Natta catalysts: Evaluation of Catalyst Ageing Effect on 1,3-Butadiene Polymerization [J]. Eur. Polym. J., 2008, 44, 2893-2898.
    [57] F. Somodi, I. Borbath, M. Hegedus, K. Lazar, I. E. Sajo, O. Geszti, S. Rojas, J. L. G. Fierro, J. L. Margitfalvi. Promoting Effect of Tin Oxides on Alumina-Supported Gold Catalysts Used in CO Oxidation [J]. Appl. Surf. Sci., 2009, 256, 726-736.
    [58] G. H. Posner. Multicomponent One-Pot Annulations Forming Three to Six Bond [J]. Chem. Rev., 1986, 66, 831-844.
    [59] J. C. Wasilke, S. J. Obrey, R. T. Baker, G. C. Bazan. Concurrent Tandem Catalysis [J]. Chem. Rev., 2005, 105, 1001-1020.
    [60] N. Hall. Chemists Clean up Synthesis with One-Pot Reactions [J]. Science, 1994, 266, 32-34.
    [61] L. F. Tietze. Domino Reactions in Organic Synthesis [J]. Chem. Rev., 1996, 96, 115-136.
    [62] L. F. Tietze, U. Beifuss. Sequential Transformations in Organic Chemistry: a Synthetic Strategy with a Future [J]. Angew. Chem. Int. Ed., 1993, 32, 131.
    [63] C. Khosla. Harnessing the Biosynthetic Potential of Modular Polyketide Synthases [J]. Chem. Rev., 1997, 97, 2577-2590.
    [64] P. F. Leadlay. Combinatorial Approaches to Polyketide Biosynthesis [J]. Curr. Opin. Chem. Biol., 1997, 1, 162-168.
    [65] J. Staunton, B. Wilkinson. Biosynthesis of Erythromycin and Rapamycin [J]. Chem. Rev., 1997, 97, 2611.
    [66] G. J. Kelly, F. King, M. Kett. Waste Elimination in Condensation Reactions of Industrial Importance [J]. Green Chem., 2002, 4, 392-399.
    [67] V. K. Diez, J. I. D. Cosimo, C. R. Apesteguia. Study of the Citral/Acetone Reaction on MgyAlOx Oxides: Effect of the Chemical Composition on Catalyst Activity, Selectivity and Stability [J]. Appl. Catal. A: Gen., 2008, 345, 143-151.
    [68] H. A. Patel, S. K. Sharma, R. V. Jasra. Synthetic Talc as a Solid Base Catalyst for Condensation of Aldehydes and Ketones [J]. J. Mol. Catal. A: Chem., 2008, 286, 31-40.
    [69] H. C. Greenwell, P. J. Holliman, W. Jones, B. V. Velasco. Studies of the Effects of Synthetic Procedure on Base Catalysis Using Hydroxide-Intercalated Layer Double Hydroxides [J]. Catal. Today, 2006, 114, 397-402.
    [70] R. K. Zeidan, S. J. Hwang, M. E. Davis. Multifunctional Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids [J]. Angew. Chem. Int. Ed., 2006, 45, 6332-6335.
    [71] R. K. Zeidan, M. E. Davis. The Effect of Acid–Base Pairing on Catalysis: an Efficient Acid–Base Functionalized Catalyst for Aldol Condensation [J]. J. Catal., 2007, 247, 379-382.
    [72] B. J. S. Johnson, A. Stein. Surface Modification of Mesoporous, Macroporous, and Amorphous Silica with Catalytically Active Polyoxometalate Clusters [J]. Inorg. Chem., 2001, 40, 801-808.
    [73] X. G. Wang, Y. H. Tseng, J. C. C. Chan, S. Cheng. Catalytic Applications of Aminopropylated Mesoporous Silica Prepared by a Template-Free Route in Flavanones Synthesis [J]. J. Catal., 2005, 233, 266-275.
    [74]张一平,周春晖,王学杰,杨彤,徐羽展.有机功能化介孔氧化硅的制备和表征[J].化学进展, 2008, 20, 33-41.
    [75] M. Llusar, G. Monrós, C. Roux, J. L. Pozzo, C. Sanchez. One-Pot Synthesis of Phenyl- and Amine-Functionalized Silica Fibers through the Use of Anthracenic and Phenazinic Organogelators [J]. J. Mater. Chem., 2003, 13, 2505-2514.
    [76] G. Sartori, F. Bigi, R. Maggi, R. Sartorio, D. J. Macquarrie, M. Lenarda, L. Storaro, S. Coluccia, G. Martra. Catalytic Activity of Aminopropyl Xerogels in the Selective Synthesis of (E)-Nitrostyrenes from Nitroalkanes and Aromatic Aldehydes [J]. J. Catal., 2004, 222, 410-418.
    [77] J. M. Sun, D. Ma, H. Zhang, X. M. Liu, X. W. Han, X. H. Bao, G. Weinberg, N. Pfander, D. S. Su. Toward Monodispersed Silver Nanoparticles with Unusual Thermal Stability [J]. J. Am. Chem. Soc., 2006, 128, 15756-15764.
    [78] Y. B. Yuan, J. Nie, Z. B. Zhang, S. J. Wang. MCM-41-Supported Metal Bis[(per?uoroalkyl)sulfonyl]imides as Heterogeneous Catalysts for Aromatic Nitration [J]. Appl. Catal. A: Gen., 2005, 295, 170-176.
    [79] Y. W. Xie, K. K. Sharma, A. Anan, G. Wang, A. V. Biradar, T. Asefa. Efficient Solid-Base Catalysts for Aldol Reaction by Optimizing the Density and Type of Organoamine Groups on Nanoporous Silica [J]. J. Catal., 2009, 265, 131-140.
    [80] C. Zhang, W. Zhou, S. X. Liu. Synthesis and Characterization of Organofunctionalized MCM-41 by the Original Stepped Templated Sol-Gel Technology [J]. J. Phys. Chem. B, 2005, 109, 24319-24325.
    [81] S. L. Hruby, B. H. Shanks. Acid–Base Cooperativity in Condensation Reactions with Functionalized Mesoporous Silica Catalysts [J]. J. Catal., 2009, 263, 181-188.
    [82] J. D. Bass, A. Solovyov, A. J. Pascall, A. Katz. Acid-Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis: a Comparative Investigation of Model Primary Amine Catalysts [J]. J. Am. Chem. Soc., 2006, 128, 3737-3747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700