南京地区中新世沉积物源示踪和古环境分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江发源于青藏高原,是亚洲第一大河,它与新生代青藏高原隆升和亚洲季风演化密切相关。长江作为连接构造隆升与季风系统的纽带一直是地质学家和地貌学家研究的热点。众多学者对长江的形成与演化过程和时限至今未达成共识,这些问题的研究将有助于解决新生代亚洲地形格局和季风气候格局的形成与演化的过程与时限,具有重大科学意义。
     本文采用碎屑锆石U-Pb年代学的沉积物源示踪方法,将南京地区新生代沉积物和现代长江南京地区河砂沉积物对比分析进行物源示踪研究,并结合两者的重矿物特征,探讨了新生代长江的地质演化历史。同时利用粒度、磁化率和Rb/Sr值探讨了南京地区六合灵岩山剖面玄武岩下伏松散沉积物的成因及气候意义;利用X射线衍射方法对中新世以来长江三角洲沉积物、黄土高原红粘土和黄土-古土壤的粘土矿物组成变化进行了研究并探讨了其古环境意义。取得了以下结论:
     1)南京地区广泛分布的新生代沉积物,结合前人对其生物化石的研究和本文中对其上覆玄武岩Ar/Ar定年,表明其时代为中新世。根据地形分析,江宁方山剖面和浦口江浦砂矿剖面均位于白垩纪以来的古隆起区背离长江一侧,这两个剂面很可能与古长江无关;六合小盘山剖面、六合桂子山剖面、六合唐公山剖面发育的大型平行层理、交错层理,应是中新世的大河形成,结合前人研究把这条大河称为古长江。
     2)碎屑锆石U-Pb年龄谱系特征:南京地区六合小盘山、灵岩山、唐公山和桂子山剖面的中新世河流沉积物与现代长江南京地区河砂沉积物整体上相似。
     重矿物组合特征:南京地区中新世沉积物重矿物组合与现代长江南京地区河砂沉积物重矿物组合相似,但是其重矿物含量较低,且没有角闪石和辉石,化学风化系数较高,反映了其可能经过较强的风化作用。
     综合沉积物碎屑锆石U-Pb年龄和重矿物组合特征认为,中新世时长江应该贯通了三峡。南京地区中新世积物重矿物含量和组合与现代长江南京地区河砂沉积的差异不应是物源上的差异可能是风化的差异的结果。
     3)六合灵岩山剖面玄武岩下伏松散沉积物:从野外沉积剖面特征看,其20-110cm段非常类似黄土沉积,没有层理、质地均一、垂直节理发育,钙结核可见,应该不是流水作用和坡面过程作用下的沉积物。20-110cm段松散沉积物粒度分布特征与黄土高原黄土有很大的相似性。代表化学风化强度的Rb/Sr比值表明,20-110cm段松散沉积物Rb/Sr比值远大于第四纪黄土高原黄土,反映其历了较强的化学风化作用过程。
     综上所述,认为南京市六合区灵岩山剖面玄武岩下伏20cm-110cm段松散沉积物为风尘沉积,时代在10.32Ma以前,为迄今中国东部发现的新生代最老的风尘沉积物,其时代与秦安红粘土剖面的15-13Ma相当。
     4)长江三角洲和黄土高原中新世以来的沉积物粘土矿物都为伊利石+绿泥石+高岭石+蒙脱石组合,两地各连续沉积剖面沉积物粘土矿物存在伊利石逐渐增多的变化趋势,各地质时期长江三角洲和黄土高原不同沉积剖面沉积物有不同的粘土矿物组成。中新世以来两地逐渐增加的伊利石含量反映逐渐变冷的气候。伊利石/高岭石、伊利石/(蒙脱石+高岭石)可作为气候环境暖湿-干冷演化矿物学标志。中新世以来长汀三角洲、黄河高原由相对暖湿环境逐渐演变为相对干冷环境。
The Yangtze River originates from the Tibetan Plateau and is the longest river in Asia. As the product of both tectonics and climate, the evolution history of the Yangtze River has been of great interest to many geologists and geomorphologists. Much work has been carried out, but the history of Yangtze River is still a mysterious problem owing to the complex of the river.
     In this thesis, the author focused on the provenance change of sediments near Nanjing in the lower Yangtze valley using combined methods of detrital zircon U-Pb ages and heavy minerals in order to discover some clues for the evolution of the Yangtze River. In order to investigate the palaeoclimate, the proxy of grain-size, susceptibility and the value of Rb/Sr was applied to study the sediments near Nanjing, and the X-ray diffraction analysis (XRD) was applied to study the clay minerals in the sediments in the Yangtze Delta and the red clay-loess sequences in the Chinese Loess Plateau (CLP)
     1) Late Cenozoic fluvial sediments are widely distributed near Nanjing. Most of them are overlain by basalts, from which preventing the underlain to be eroded. Lingyanshan section (LYS)、Xiaopanshan section (XPS)、Tanggongshan section (TGS)、Guizishan section (GZS)、Jiangpu sections (JP) and Jiangning Fangshan section (FS) around Nanjing are all covered by basalts with the age of 12.2-8.6 Ma. Because of the terrain and geographical location of JP and FS, we think that the sediments in JP and FS were not formed from the ancient Yangtze River. According to the typical sedimentary strata and sedimentary facies of large river, we believe that the Miocene fluvial sediments of the XPS、GZS and TGS should be the product of the ancient Yangtze River at that time.
     2) In order to uncover the characteristics and provenance of these sediments, heavy mineral composition and detrital zircon U-Pb ages were measured. Compared with the modern deposits of the Yangtze River, we found the detrital zircon U-Pb age patterns, especially XPS、GZS and TGS, are similar to the modern Yangtze sediments, with slightly difference.
     The content of heavy minerals in the Miocene fluvial sediments was lower than the modern sediments of the Yangtze River. At the same time no hornblende and pyroxene had been found in the Miocene fluvial sediments, which is contrary to the modern sediments of the Yangtze River;
     As hornblende, pyroxene and other heavy minerals are unstable and easy to be reconstructed by post-diagenesis and weathering, it is hard to justify the difference of provenance between ancient and modern Yangtze River. As the resistance of detrital zircon in the process of physical and chemical weathering, its U/Pb ages are a common tool in provenance studies for fluvial sediments. The patterns of detrital zircon U-Pb age of XPS、GZS and TGS are similar to the modern sediment, which indicated that the Three Gorge must have been cut through and sediments originated from the upper Yangtze Block could be carried to the Yangtze delta through the Three Gorges.
     3) On the basis of field investigation near Nanjing, the section of Lingyanshan (LYS) Hill was discovered and the loose sediment layer was covered with basalt layers of the age of 10.32Ma. Field investigation and sampling were carried out on the whole sedimentary section. Under the basalt layer were loose sediments. A general analysis about the loose-like sediments was carried on the proxies of grain size, magnetic susceptibility and the value of Rb/Sr.According to the sedimentary characteristics of the loose sediments and laboratory analysis results, the loose sediment was mainly composed of silt and clay, and no level bedding in the upper part of loose sediment. The 1.1m thick deposits in the section of LYS Hill were regarded as the Aeolian sediments of the age more than 10.32Ma, which was the earliest Aeolian deposits in east China. The deposit was corresponding with the 15-13Ma strong deposition of Acolian sediments in the Qin'an section in Loess Plateau.
     4) The X-ray diffraction analysis (XRD) was applied to study the clay minerals in the Yangtze Delta and the red clay-loess sequences in the Chinese Loess Plateau (CLP). The results show that the clay mineral compositions of the Yangtze and Yellow River drainages are mainly consisted of illite, chlorite, kaolinite and smectite. During each geological time, the sediments of different deposition profiles along the Yangtze River and Yellow River have different combinations of clay minerals. In each continuous deposition profile, there exists a phenomenon that illite trends to gradually increase which reflects the gradual cooling of climate. The ratios of illite to kaolinite (Ⅲ/Kao) and illite to smectite plus kaolinite(Ⅲ/(Sm+Kao)) may serve as a proxy to evaluate the paleoclimate.
引文
[1]Andersen T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chem. Geol.,192:59-79.
    [2]Bacon C R, Persing H M, Wooden J Let al.2000. Late Pleistocene granodiorite beneath crater lake caldera, oregon, dated by ion microprobe[J]. Geology,28:467-470.
    [3]Barbour G B.1936. Physiographic history of the Yangtze[J]. Geogr. J.,87:17-34.
    [4]Biscaye, P.E.,1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geol. Soc, Am. Bull.,76:803-831.
    [5]Blaise B.1989. Clay minerals assemblages from late Quaternary deposition Vancouver Island, Southwestern British Columbia, Canada[J]. Quaternary Research,31:41-56.
    [6]Black L P, Gulson B L.1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory[J]. BMR J. Aust. Geol. Geophys.,3:227-232.
    [7]Bowring S A, Erwin D H, Jin YG, et al.1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction[J]. Science,280:1039-1045.
    [8]Chen Jun, An Zhisheng and Head J.1999.Variation of Rb/Sr rations in the loess-paleosal sequences of central China during the last 130000 years and their implications for monsoon paleoclimatology[J]. Quatermary Research,51:215-219.
    [9]Chamley H.1980. Clay sedimentation and paleoenvironment in the area of Daito Ridge (Northwest Philippine Sea) since the Early Eocene[J], Washington:Initial Reports DSDP,58. U. S. Gov. Print. Off,683-690.
    [10]Chen Z, Stanley D.1995. Quaternary subsidence and river channel migration in the Yangtze delta plain, eastern China[J], J Coastal Res.,11:927-945.
    [11]Clark M K, Schoenbohm LM, Royden L H, et al.2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics,23:TC1006, doi:10.1029/ 2002TC001402.
    [12]Clift P D, Blusztajin J, Due N,A 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24Ma inferred from sediments of the Hanoi Basin, Vietnam[J]. Geophys. Res. Lett.,33:L19403, doi:10.1029/2006GL027772.
    [13]Compston W, Williams I S, Kirschvink J L, et al.1992. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Geol. Soc. London,149:171-184.
    [14]Deconinck J F, Blanc-Valleron M M, Rouchy J M, et al.2000. Palaeoenvironmental and diagenetic control of the mineralogy of Upper Cretaceous-Lower Tertiary deposits of the Central Paleo-Andean basin of Bolivia (Potosi area)[J]. Sediment. Geol.,132(3-4):263-278.
    [15]Dodson M H, Compston W, Williams I S, et al.1988. Asearch for ancient detrital zircons[J]. Geol. Soc. London,145:977-983.
    [16]Drewery S R, Cliff P A, Leeder M R.1987. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons[J]. Nature,325:50-53.
    [17]Geslin J K, Link P K, Fanning C M.1999. High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho[J]. Geology,27:295-298.
    [18]Jackson S, Pearson N, Griffin W, et al.2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology[J]. Chem. Geol., 211:47-69.
    [19]James Zachos, Mark Pagani, Lisa Sloan. et al.2001. Trends, Rhythms, and Aberrations in Global Climate 65Ma to Preaent[J]. Paleoclimate,292:686-693.
    [20]Karlin R, Levi S.1983. Diagenesis of magnetic m inerals in recent hemipelagic sediments [J]. Nature,303:327-330.
    [21]Kong P, Granger D E, Wu F Y, et al.2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake-Implications for evolution of the Middle Yangtze River[J]. Earth Planet. Sci. Lett.,278:131-141.
    [22]Lee C.1934. The development of the upper Yangtze valley[J]. Bull. Geol. Soc. China,13: 107-118.
    [23]Lee J S, Chao YT.1924. Geology of the the Gorge district of the Yangtze(from Ichang to Tzekuei) with special refefence to the development of the Gorges[J]. Bull. Geol. Soc. China, 3:351-391.
    [24]Lee J, Williams I, Ellis D.1997. Pb, U and Th diffusion in nature zircon[J], Nature,390: 159-162.
    [25]Leslie B W,Lund S, Hammond D E.1990. Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California continental Borderland[J]. Geophys. Res.,95:4437-4452.
    [26]Li J J, Xie S Y, Kuang M S.2001. Geomorphic evolution of the Yangtze gorges and the time of their formation[J]. Geomorphology,41:125-136.
    [27]Li Z X, Li X H.2007. Formation of the 1300 km-wide intra-continental orogen and post-orogenic magmatic province in Mesozoic South China:Aflat-slab subduction model[J]. Geology,35:179-182.
    [28]Ludwig K R.2003.ISOPLOT 3.0-A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication,4:1-70.
    [29]Morton A C, Halls worth C R.1994. Identifying p rovenance specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology.90 (3):241-256.
    [30]Pettijohn F. J. Poter P.E., Siever R.1972. Sand and Sandstone. Springer-Verlag, New York, 1-200.
    [31]Singer A.1980. The paleoclimatic interpretation of clay minerals in soils and weathering pro files[J]. Earth Science Reviews,15:303-326.
    [32]Singer A.1984. The paleoclimatic interpretation of clay minerals in sediment-a Review[J]. Earth-Science[J]. Reviews,21:251-293.
    [33]Thiry M.2000. Paleoclimatic interpretation of clay minerals in marine deposits:an outlook from the continental origin[J]. Earth-Science[J]. Reviews,49 (1-4):201-221.
    [34]Vermeesch P.2004. How many grains are needed for a provenance study?[J]. Earth Planet. Sci. Lett.,224:441-451.
    [35]Weislogel A L,Graham S A, Chang E Z, et al.2006. Detrital zircon provenance of the Late Triassic Songpan-Ganze complexes:Sedimentary record of collision of the North and South China blocks[J]. Geology,34:97-100.
    [36]Weltje G J, Eynatten H V 2004. Quantitative provenance analysis of sediments:review and outlook[J]. Sediment. Geol.,171:1-11.
    [37]Willis B, Blackwelder E, Sargent R H, et al.1907. Research in China[J]. Washington:Press of Gibson Brothers,278-339.
    [38]Xu Y G, Luo Z Y, Huang X L.2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J], Geochim. Cosmochim. Acta,72: 3084-3104.
    [39]Yang S Y, Li C X, Yokoyama K, et al.2006. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta:implications for sediment provenance and development history of the Changjiang River[J]. Earth Planet. Sci. Lett.,245:762-776.
    [40]Zheng H B, Wang P X, Liu Z F, et al.2007. Carving the History of East Asia's East-Tilting Topography and East Asian Monsoon:[IODP Proposal 683]. Shanghai:Tongji University, 1-32.
    [41]Zheng YF, Zhao Z F, Wu Y B, et al.2006a. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chem. Geol., 231:135-158.
    [42]Zheng Y F, Wu Y B, Chen F K, et al.2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochim. Cosmochim. Acta,28:4145-4165.
    [43]毕治国,于振汀,邱占祥.1977.南京附近哺乳动物化石与上第三系的划分[J].古脊椎动物与人类,15(2):121-128.
    [44]陈涛,王河锦,张祖青,等.2005.浅谈利用粘土矿物重建古气候[J].北京大学学报(自然科学版),41(2):309-316.
    [45]陈涛,王欢,张祖青,等.2003.粘土矿物对古气候指示作用浅析[J].岩石矿物学杂志22(4):416-420.
    [46]程捷,唐德翔,张绪教,等.2003.粘土矿物在黄河源区古气候研究中的应用[JJ.现代地质,17(1):47-50.
    [47]陈道公,彭子成.1988.皖苏若干新生代火山岩的钾氩年龄和铅锶同位素特征[J].岩石学报,4(2):3-12.
    [48]陈华慧,马祖陆.1987.江汉平原下更新统[J].地球科学-中国地质大学学报:2().
    [49]陈静,王哲,王张华,等.2007.长汀三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J].第四纪研究,27(5):700-708.
    [50]陈旸,陈骏,刘连文,等.2003.最近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J].中国科学(D辑),33(6):519.
    [51]范代读,李从先,Yokoyama K,等.2004.长江三角洲晚新生代地层独居石年龄与长江贯通时间研究[J].中国科学D辑:地球科学,34(11):1015-1022.
    [52]范代读,李从先.2007.长江贯通时限研究进展[J].海洋地质与第四纪地质,27(2):121-131.
    [53]范德江,杨作升,毛登,等.2001.长江与黄河沉积物中粘土矿物及地化成分的组成[J].海洋地质与第四纪地质,21(4):7-12.
    [54]高山,Qiu Yuming,凌文黎.2001.崆岭高级变质地体单颗粒钻石SHRIMP U-Pb年代学研究-扬子克拉通>3.2Ga陆壳物质的发现[J].中国科学D辑:地球科学,31(1):27-35.
    [55]耿元生,杨崇辉,上新社,等,2007,扬子地台西缘结晶基底的时代[J].高校地质学报,13(3):429-441.
    [56]郭正堂,彭淑贞,魏兰英,等.1999.二十二万年以来东亚季风的千年尺度变化及其在不同时期的差异[J].第四纪研究,299-305.
    [57]何良彪.1989.中国海及其邻近海域的粘土矿物[J].中国科学,(1):75-83.
    [58]何良彪.1992.南海沉积岩芯中粘土矿物的研究[J].青岛海洋大学学报[J],22(3):73-81.
    [59]洪汉烈.粘土矿物古气候意义研究的现状与展望[J].地质科技情报,2010,29(1):1-8.
    [60]黄湘通,郑洪波,杨守业,等.2008.长江三角洲DY03孔磁性地层研究及其意义[J].海洋地质与第四纪研究,28(6):87-93.
    [61]黄润,朱诚,王升堂.2007.天堂寨泥炭地层的磁化率、Rb/Sr值及其反应的古气候意义[J].地理科学,27(3):385-389.
    [62]黄润,朱诚,郑朝贵,等.2004.长江三峡中坝遗址地层中Rb和Sr的分布特征及其古气候演变[J].第四纪研究,24(5):531-536
    [63]金海燕,剪知泯.2007.南海北部ODP1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J].地球科学进展,22(9):914-921.
    [64]贾军涛,郑洪波,黄湘通等.2010.长汀三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长汀贯通的指示[J].科学通报,55(4-5):350-358.
    [65]简平,张自超,朱家平,等.1997.大别基底老于2800Ma-黄土岭麻粒岩锆石测年证据[J].地球学报,18(增刊):65-67.
    [66]江苏省地质矿产局.1989.宁镇山脉地质志[M],南京:江苏科学技术出版社:164-170.
    [67]江苏省地质矿产局.1997.江苏省岩石地层.北京:地质出版社,1-150.
    [68]康春国,李长安,等.2009.江汉平原沉积物重矿物特征及其对三峡贯通的指示[J].地球科学-中国地质大学学报,34(3):419-427.
    [69]李徐生,杨达源,鹿化煜.2001.镇江下蜀黄土粒度特征及其成因初探[J].海洋地质与第四纪地质,21(1):25-32.
    [70]鹿化煜,安芷生.1999.黄土高原红粘土与黄土古土壤粒度特征对比[J].沉积学报,17(2): 226-232.
    [71]蓝先洪.2001.海洋沉积物中粘土矿物组合特征的古环境意义[J].海洋地质动态,17(1):5-7.
    [72]刘东生等著.1985.黄土与环境[M].北京:科学出版社.
    [73]刘季辰,赵汝钧,等.1925.江苏省地质志[D],地质专报,甲种第四号.
    [74]刘若新.1992.中国新生代火山岩年代学与地球化学[J].北京:地震出版社,1-43.
    [75]刘兴起,沈吉,上苏民,等.2002.青海湖16 ka以来的花粉记录及其古气候古环境演化[J].科学通报.47(17):1351-1355.
    [76]刘志飞,A.Trentesaux, S.C.Clements,等.2003.南海北部ODP1146站第四纪沾土矿物记录:洋流搬运和东亚季风演化[Jl].中国科学,33(3):271-280.
    [77]刘志飞,C.Colin, A.Trentesaux,等.2004.南海南部晚第四纪东业季风演化的粘土矿物记录[J].中国科学,34(3):272-279.
    [78]李浩敏,黄姜侬,张基训,等.1984.南京雨花台组植物化石的发现[J],岩石学报,30(6):575-576.
    [79]李承三.1944.扬子汀水系发育史[J].地理,4:3-14.
    [80]李从先,汪品先.1998.长江晚第四纪河口地层学研究[J].北京:科学出版社,10-185.
    [81]李从先,赵娟.1995.苏北弶港辐射沙洲研究的进展和争论[J].海洋科学,17(4):57-60.
    [82]李凡,于建军,姜秀珩,等.1991.南黄海埋葬古河系研究[J].海洋与湖沼,22(6):501-508.
    [83]李卫,谭凯旋.1998.单矿物分选方法及其在构造地质研究中的意义-以磷灰石和钻石为例[J].大地构造与成矿学,22(增刊):83-86.
    [84]凌文黎,高山,程建萍,等.2006.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义-来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束[J].岩石学报,22(2):387-396.
    [85]柳小明,高山,第五春容,等.2007.单颗粒锆石的20μm小斑束原位微区LA-ICP-MSU-Pb年龄和微量元素的同时测定[J].科学通报,52(2):228-235.
    [86]柳小明,高山,凌文黎,等.2005.扬子克拉通35亿年碎屑锆石的发现及其地质意义[J].自然科学进展,15(11):1334-1337.
    [87]马丽芳.中国地质图集[M].2002.北京:地质出版社,1-265.
    [88]秦蕴珊.东海地质[M].1987.北京:科学出版社,40-155.
    [89]乔彦松,郭止唐,郝青振,等.2002.安徽宣城黄土堆积的磁性地层学与古环境意义[J].地质力学报.8(4):369-375.
    [90]邱占祥,邱铸鼎.1990.中国晚第三纪地力哺乳动物群排序及分期[J].地层学杂志,14(4):241-260.
    [91]仟美锷,包浩生,韩同春.1959.云南西北部金沙江河谷地貌与河流袭夺问题[J].地理学报,25(2):135-155.
    [92]邵家骥,黄姜侬,杨忠元,等.1989.南京地区新生代玄武岩的期次、层序及时代[J].地质论评,35(2):97-106.
    [93]邵家骥,黄姜侬,杨忠元,等.南京地区新生代玄武岩的期次、层序及时代[J].地质论评, 1989,35(2):97-106.
    [94]孙燕荣,穆治国,崔海亭.2001.埋藏古数轮碳、氢、氧同位素研究与古气候重建[J].北京大学学报,38(2):294-301.
    [95]师育新,戴雪荣,宋之光,等.2005.我国不同气候带黄土中粘土矿物组合特征分析[J].沉积学报,23(4):690-695.
    [96]沈玉昌.长江上游河谷地貌[M].北京:科学出版社,1965.1-175.
    [97]陶倩倩,刘保华,李西双,等.2009.晚更新世南黄海西部陆架的古长江三角洲[J].海洋地质与第四纪地质,29(2):15-24.
    [98]万渝生,刘敦一,简平.2004.独居石和锆石SHRIMP U-Pb定年对比[J].科学通报,49(12):1185-1190.
    [99]万渝生,张巧大,宋天锐.2003.北京十三陵长城系常州沟组碎屑锆石SHRIMP年龄:华北克拉通盖层物源区及最大沉积年龄的限定[J].科学通报,48(18):1970-1975.
    [100]汪品先.2005.新生代亚洲形变与海陆相互作用.地球科学,30(1):1-18.
    [101]汪品先.1998.亚洲形变与全球变冷-探索气候与构造的关系[J].第四纪研究,23(3):213-221.
    [102]汪永进,吴江滢,许汉奎,等.2000.南京汤山洞穴石笋稳定同位素指示的气候与环境意义[J].地质学报,74(4):333-338.
    [103]王宁练.2009.可可西里马兰冰芯记录的20世纪净积累量变化及其与太阳活动关系研究[J].第四纪研究,29(5):913-919.
    [104]王鸿祯.1985.中国古地理图集[M].北京:地图出版社,1-143.
    [105]上靖泰,郭蓄民,许世远,等.1981.全新世长江三角洲的发育[J].地质学报,55(1):67-81.
    [106]王颖,朱大奎,周旅复,等.1998.南黄海辐射沙脊群沉积特点及其演变[J].中国科学D辑:地球科学,28(5):385-393.
    [107]王昆山,王国庆,等.2004.长江水下三角洲沉积物的重矿物分布及组合[J].海洋地质与第四纪地质,27(1):7-12.
    [108]吴元保,陈道公,夏群科,等.2003.大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年[J].中国科学D辑:地球科学,33(1):20-28.
    [109]向芳,朱利东,王成善,等.2005.长汀三峡阶地的年代对比法及其意义[J].成都理工大学学报(自然科学版),32(2):162-166.
    [110]向芳,朱利东,王成善,等.2006.宜昌地区第四纪沉积物中玄武岩砾石特征及其与长江三峡贯通的关系.地球科学与环境学报.28(2):6-12.
    [111]谢国刚,李均辉,李武显,等.1997.庐山前震旦纪岩石中锆石U-Pb法定年与其地质意义[J].地质科学,32(1):110-105.
    [112]谢听,郑洪波,陈国成,等.2007.古环境研究中深海沉积物粒度测试的预处理方法[J].沉积学报,25(5):511-520.
    [113]修群业,殷艳杰,李惠民.2001.单锆石定年样品的采集及矿物分选[J].前寒武纪研究进展,24(2):107-110.
    [114]徐昶.1993.中国盐湖粘土矿物研究[M].北京:科学出版社,169-175.
    [115]杨作升.1988.黄河、长江、珠江沉积物中粘土的矿物组合化学特征及其与物源区气候环境的关系[J].海洋与湖沼,19(4):336-346.
    [116]杨怀仁,徐馨.1980.中国东部第四纪自然环境的演变[J]。南京大学学报1:139.
    [117]杨达源,闾国年.192.长江三峡贯通的时代及其地质意义的研究[J].北京:科学出版社:140-143.
    [118]叶青超.1994.黄河流域环境演变与水沙运行规律研究[M].济南:山东科学技术出版社:220.
    [119]杨达源.2004.长汀研究[M].南京:河海大学出版社,107-121.
    [120]杨守业,韦刚健,夏小平,等.2007a.长江口晚新生代沉积物的物源研究:REE和Nd同位素制约[J].第四纪研究,27(3):339-346.
    [121]杨子庚.1994.晚松山时南黄海的古长江三角洲[J].第四纪研究,(1):13-23.
    [122]岳文浙,杨祝良,陶奎元,等.2009.南京地区雨花台组层位与时代的厘定及沉积相研究[J].上海地质,29(1):8-15.
    [123]于振汀,梁晓红,张于平,等.2006.南京新近纪地层排序及其时代[J].地层学杂志,30(3):223-230.
    [124]喻树龙,袁玉江,金海龙,等.2005.用树木年轮重建天山北坡中西部7-8月份379 a的降水量[J].冰川冻土,3:404-410.
    [125]曾普胜.2002.滇西北地区岩浆活动与长江第一湾形成的关系[J].地理学报,57(3):310-316.
    [126]张丽萍,杨达源,朱大奎.2003.长江三峡黄陵背斜段地质时期结晶岩风化剥蚀速率研究[J].中国科学D辑:地球科学,33(1):81-88.
    [127]张旗,简平,刘敦一,等.2003.宁芜火山岩的锆石SHRIMP定年及其意义[J].中国科学D辑:地球科学,33(4):309-314.
    [128]张玉芬,李长安,王秋良,等.2008.江汉平原沉积物磁学特征及对长江三峡贯通的指示[J].科学通报,53(5):577-582.
    [129]张宗清,张国伟,刘敦一,等.2006.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学[J].北京:地质出版社:8-125.
    [130]赵诚.1996.长江三峡河流袭夺与河流起源[J].长春地质学院学报,26(4):428-433.
    [131]秦克令,邹湘华,何世平.1990.陕,甘,川交界处摩天岭区碧口群层序及时代划分[J].西安地质矿产研究所所刊,30:1-60.
    [132]郑洪波,贾军涛.2009.大河的地质演化与构造控制[J].第四纪研究,29(2):268-275.
    [133]郑洪波,汪品先,刘志飞,等.2008.东业东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介.地球科学进展,23(11):1150-1160.
    [134]郑永飞,张少兵.2007.华南前寒武纪大陆地壳的形成和演化[J].科学通报,52(1):1-10.
    [135]郑亚惠,袁佩鑫.1985.南京雨花台组的孢粉组合及时代讨论[J].地层学杂志,9(3):161-168
    [136]张祥云,刘志平,范迪富,等.2004.南京-仪征地区新近纪地层层序及时代讨论[J].中 国地质,31(2):179-185.
    [137]郑洪汉Theng B K G, Whitton J S.1994.黄土高原黄土-古土壤的矿物组成及其环境意义[J].地球化学,23(增刊):113-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700