基于参数变分原理的非均质Cosserat体弹塑性有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于经典连续介质力学理论的有限元法由于其高效性和灵活性,已在航空、航天、机械、土木与核工程等领域的问题求解中得到了广泛的应用。然而,对于如颗粒材料、多孔介质和金属基复合材料等某些特殊材料,如采用基于经典连续介质理论的有限元法进行分析,则会由于材料的非均匀性而遇到多方面的挑战。同样对于如应变局部化等一些特殊物理现象,采用传统的有限元法进行数值模拟时会遇到不同程度的问题,有时甚至不能得到正确的结果。因此有必要对经典的有限元法进行改进,发展适用于非均质材料计算与应变软化问题分析的新的计算方法。
     为了更好地研究非均质材料中微观结构对其宏观整体力学性能的影响,Ghosh等提出了Voronoi单胞有限元法来描述非均质材料的弹塑性力学性能。通过在基体单元中引入一形状、尺寸和分布任意的夹杂相来模拟真实的非均质材料微观结构,由此简化了有限元网格剖分,减少了有限元网格数量,从而提高了有限元法计算效率。
     为了模拟材料中应变局部化带以及尺度效应的存在,1909年法国学者Cosserat兄弟提出了Cosserat模型。除了具有一般的平动自由度外,Cosserat模型中还引入了一独立的旋转自由度。通过在本构关系中引入材料内尺度参数对问题实现了正则化,从而可以很好地模拟材料应变局部化问题,提供非网格依赖性的结果。
     对于上述非线性问题求解通常采用的是增量迭代法。但传统的迭代方法在迭代过程中经常会遇到收敛速度慢或发散的问题,并且当结构刚度矩阵发生变化时需要修正刚度矩阵和对刚度矩阵重新求逆,这就使得计算时间变长,计算效率降低。为了克服这一缺陷,钟万勰等提出的参数变分原理和参数二次规划法将变分方法推广到一些经典变分原理不能适用的地方,同时避免了迭代过程。对于弹塑性分析,该方法避免了Drucker假定的限制,同时还可以应用到非关联塑性本构模型,非法向流动和应变软化问题求解中。
     本文基于参数变分原理,构建了Cosserat体弹塑性有限元分析模型并用于求解应力集中和应变局部化问题;利用Voronoi有限元法提出了适用于非均质材料宏观弹塑性性能计算的参数二次规划算法;进一步将Cosserat模型应用到Voronoi有限元法中,提出了基于Cosserat理论的Voronoi杂交有限元法,并采用参数变分原理进行新模型的分析计算。各章节具体内容安排如下:
     第一章综述了非均质材料等效力学性能研究概况。主要包括:与材料微结构无关的普适关系及其发展,非均质材料有效模量上下限的讨论,采用细观力学方法和有限元法进行非均质材料有效性质计算以及非均质微极介质等效方法等。同时还介绍了Cosserat连续体理论的产生、发展、相关的数值研究以及Cosserat模型在工程实际中的应用情况。
     第二章介绍了参数变分原理及参数二次规划算法。首先阐述了经典变分原理的局限性,由此说明参数变分原理的基本思想,在此基础上论述了基于经典连续体理论的参数最小势能原理和参数最小余能原理。通过变换将系统弹塑性问题转化为线性互补问题,给出了弹塑性分析参数二次规划模型。
     第三章在Cosserat连续体理论框架下构造了三个平面四边形等参单元,给出了对应于上述三个等参单元的分片试验和数值结果,并将单元应用到小孔应力集中问题上以验证Cosserat模型的特性。
     第四章基于参数变分原理构建了适用于Cosserat体弹塑性计算的新算法,证明了基于Cosserat连续体理论的参数最小势能原理,建立了对应于Cosserat体弹塑性问题的参数二次规划模型,应用于平面应变软化问题的计算,得到了非网格依赖性的结果。
     第五章提出了基于参数变分原理的Voronoi单元弹塑性新算法并应用于非均质材料等效力学性能预测计算中。给出了无夹杂和含夹杂Voronoi单元有限元列式推导,证明了相应的含夹杂Voronoi单元参数最小余能原理,建立了对应的参数二次规划求解模型,并以此为基础研究了非均质材料微结构夹杂对其整体力学性能的影响。
     第六章采用Voronoi有限元法进行非均质Cosserat材料弹塑性分析,给出了基于Cosserat理论的参数余能原理,并构建了相应的参数二次规划模型。基于所提出的新方法,研究了非均质Cosserat材料微结构对其整体力学性能的影响。
     结论部分对全文主要内容进行了总结,并对进一步的研究内容和工作进行了展望。
     本文的研究工作是国家自然科学基金资助项目(50679013,10421202)、长江学者和创新团队发展计划、国家基础性发展规划项目(2005CB321704)资助计划的一部分。
Due to the high efficiency and flexibility, the classic continuum theory based finiteelement method (FEM) has been applied in a wide range of engineering areas such asaerospace, astronauics, mechanism, civil and nuclear engineerings. However, it will facemany challenges when the classical continuum theory based finite element method is used tosolve the mechanical problems of heterogenous materials such as granular materials, porousmedia and metal matrix composite materials, becasue of the strong heterogeneity of thesematerials. The same problem will exist in the numerical simulation of some special physicalphenomena such as strain localization in material deformation, even the incorrect results maybe obtained. Therefore, it is necessary to improve the classic FEM and develop some newFEMs for efficient computation of heterogeneous materials and strain localization problems.
     In order to study the effects of micro structures on the macro equavilent mechanicsbehavior of heterogeneous materials, Ghosh and coworkers proposed a material basedVoronoi cell finite element method (VCFEM) for the numerical analysis of the elastic-plasticmechanics properties of heterogeneous materials. In this method, each cell which has asecond phase with arbitrariness in shape, size and distribution is treated as a finite element forthe simulation of the micro structure of actual materials. As a result, the finite element meshgeneration is simplified, the number of finite elements is reduced and the correspondingcomputational efficiency is increased.
     In attempt to simulate the strain localization and size effect in materials, the Cosseratmodel was proposed by Cosserat brothers in 1909. The kinematics of a Cosserat model ischaracterized by an independant rotation degree of freedom, besides the displacement degreesof freedom in the element. By introducing the internal length scale in the constitutiveformulation, the regularization of the problem is realized. The strain localization problem canbe solved correctly by the Cosserat model and the results turn out to be mesh-independent.
     Traditionally, the incremental iteration method is widely adopted in solution of thenon-linear problems. Nevertheless, it would result in the problems of low convergent speed ornon-convergence. When the stiffness matrix changes, modification and inversion of thestiffness matrix have to be done and this will prolong the computation time and lower theefficiency. To overcome the limitations of the classic methods, Zhong and coworkersproposed the parametric variational principle (PVP) and the parametric quadratic programming method (PQPM) in which the variational method is generalized to adapt to theproblems where the classical variational principle can not be used and the iteration procedurescan be avoided. For the elastic-plastic problem, this method can avoid the limitation of theDrucker hypothesis. It can also be applied to the non-associated plastic constitutive model,non-normal sliding and strain softening problems.
     Based on the PVP, a new elastic-plastic FEM is developed in the area of the Cosserattheory for the solution of the stress concentration problem and the strain localization problem.A new PQPM based on the VCFEM is proposed to apply to the macro elastic-plastic analysisof heterogeneous materials. Moreover, this paper makes an effort in incorporating theCosserat theory in the VCFEM for the elastic-plastic analysis of heterogeneous materialsbased on the PVP. The chapters are divided as follows:
     In Chapter 1, the author summarizes the study on the equivalent mechanics properties ofheterogeneous materials (including the development of the universal relationship which isirrelevant to the micro structure, the discussion of the limitations of the effective moduli, thecomputation of the effective properties of heterogeneous materials with the micromechanicsmethod and the FEM, and the equivalence of the heterogeneous micropolar materials) and thepresentation, the evolution, the corresponding numerical studies of the Cosserat model and itsapplications in engineering.
     In Chapter 2, the PVP and PQPM are described. At first, the limitations of the classicvariational principle are discussed and the basic idea of the PVP is given. Then, theparametric minimum potential energy principle and the parametric minimum complementaryenergy principle are developed. By transferring the corresponding elastic-plastic problem tothe linear complementary problem, the parametric quadratic programming model isconstructed.
     In Chapter 3, three quadrilateral plane isoparametric elements based on the linearCosserat theory are constructed. The patch tests for the verification of the elements aredescribed. The stress concentration problem around a circular hole is solved to validate thecharacteristics of the Cosserat model.
     In Chapter 4, based on the PVP, a new algorithm is developed for the elastic-plasticanalysis of the Cosserat continuum. The parametric minimum potential energy principle andthe corresponding PQPM of the Cosserat continuum are verified and constructed, separately.Strain localization problems are computed numerically with the new method and meshindependent results can be obtained.
     In Chapter 5, PVP based VCFEM is developed for the computation of the effectivemechanics properties of heterogeneous materials. The finite element formulations of theVoronoi elements with and without inclusion are deduced. The corresponding parametric minimum complementary energy principle of Voronoi element with inclusion is verified. ThePQPM for the Voronoi elements with and without inlusion are presented and the influence ofmicrostructure on the overall mechanics properties of heterogeneous materials is studied.
     In Chapter 6, the elastic-plastic analysis of heterogeneous Cosserat materials is carriedout with the VCFEM. The parametric complementary energy principle of the Cosserat theoryis developed and the PQPM for the VCFEM are established. Based on the new method,influence of microscopic heterogeneities on the overall mechanical responses ofheterogeneous materials is studied.
     Finally, the main contributions of the dissertation are concluded and some possiblefurther research work are suggested.
     The research of the dissertation is supported by the National Natural Science Foundationof China (50679013, 10421202), the Program for Changjiang Scholars and InnovativeResearch Team in University of China (PCSIRT) and the National Key Basic ResearchSpecial Foundation of China (2005CB321704).
引文
[1] Muhlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987, 37: 271-283.
    [2] Fleck N A, Muller G M, Ashby M F, Hutchinson J W. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 1994, 42:475~487.
    [3] Chu Y C, Rokhlin S I. Determination of fiber-matrix interphase moduli from experimental moduli of composites with multi-layered fibers. Mechanics of Materials, 1995, 21(3): 191-215.
    [4] Brockenbrough J R, Suresh S, Wienecke H A. Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metallurgica et Materialia, 1991, 39(5): 735-752.
    [5] Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites. Acta Metallurgica et Materialia, 1989, 37(11): 3029-3050.
    [6] Ostoja-Starzewski M. Random field models of heterogeneous materials. International Journal of Solids and Structures, 1998, 35: 2429-2455.
    [7] Peculan S, Gibiansky L V, Torquadto S. Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. Journal of the Mechanics and Physics of Solids, 1999, 47: 1509-1542.
    [8] Zuiker J, Dvrok G J. The effective properties of functionally graded composites-Ⅰ: Extension of the Mori-Tanaka method to linearly varying fields. Composite Part B: Engineering, 1994, 4: 19-35.
    [9] Ren Z Y, Zheng Q S. A quantitative study on minimum sizes of representative volume elements of cubic polycrystals-Numerical experiments. Journal of the Mechanics and Physics of Solids, 2001, 50: 881-893.
    [10] Wen M, Zheng Q S, Du D X. Some basic problems in numerically simulating effective properties and local fields of composite materials. Acta Mechanica Solida Sinica, 1999, 12: 328-339.
    [11] 胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法.力学进展,2001,31(3):361-392.
    [12] 胡更开,刘晓宁,荀飞.非均匀微极介质的有效性质分析.力学进展,2004,34(2):195-214.
    [13] 吴林志,杜善义,石志飞.含夹杂复合材料宏观性能研究.力学进展,1995,25(3):410-423
    [14] Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity. Groningeng: Noordhoof, 1963: 164-166.
    [15] Dundurs J. Effect of elastic constants on stress in a composite under plane deformation. Journal of Composite Materials, 1967, 1: 310-322.
    
    [16] Zheng Q S, Hwang K C. Two-dimensional elastic compliances of materials with holes and microcracks. Proceedings of the Royal Society of London, 1997, A453: 353-364.
    
    [17] Zheng Q S, Hwang K C. Reduced dependence of defect compliance on matrix and inclusion elastic properties in two-dimensional elasticity. Proceedings of the Royal Society of London, 1996, A452: 2493-2507.
    
    [18] Zheng Q S, Chen T. Generalized plane deformation of electromagnetic thermoelastic solids I: Correspondence and in variance shifts. Proceedings of the Royal Society of London, 1999, A455: 1283-1299.
    
    [19] Zheng Q S, Chen T. Generalized plane deformation of electromagnetic thermoelastic solids II: Correspondence and in variance shifts. Proceedings of the Royal Society of London, 1999, A455: 1301-1314.
    
    [20] Cherkaev A V, Lurie K A, Milton G W. Invariant properties of the stress in plane elasticity and equivalence classes of composites. Proceedings of the Royal Society of London, 1992, A438: 519-529.
    
    [21] Norris A N. Stress in variance and redundant moduli in three-dimensional elasticity. Proceedings of the Royal Society of London, 1999, A455: 4097-4116.
    
    [22] Du D X, Zheng Q S. Consistency between independence theorems and generalized self-consistent method. Acta Mechanica Sinica, 1997, 13: 355-365.
    
    [23] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of polycrystals. Journal of the Mechanics and Physics of Solids, 1962, 10: 335-342.
    
    [24] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 1963, 11: 127-140.
    
    [25] Torquato S. Random heterogeneous media: Microstructure and improved bounds on effective properties. Applied Mechanics Reviews, 1991, 44(1): 37-75.
    
    [26] Milton G W. A brief review of the translation method for bounding effective elastic tensors of composites. In Maugin G A, ed. Continuum Models and Discrete Systems. Essex: Longman, 1991, 60-74.
    
    [27] Willis J R. Bounds and self-consistent estimates for the overall properties of anisotropic composites. Journal of the Mechanics and Physics of Solids, 1977, 25(3): 185-202.
    
    [28] Kroner E. Bounds for effective elastic moduli of disordered materials. Journal of the Mechanics and Physics of Solids, 1977, 25(2): 137-155.
    
    [29] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problem. Proceedings of the Royal Society of London, 1957, A241: 376-396.
    [30] 刘熠,黄筑平,王仁.关于非线性基体中Eshelby等效夹杂方法适用性的讨论.力学学报,1997,29(4):506-512.
    [31] Kachanov M. Effective elastic properties of craked solids: critical review of some basic concepts. Applied Mechanics Reviews, 1992, 48: 304-335.
    [32] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica et Materialia, 1973, 21: 571-574.
    [33] Weng G J. Explicit evaiuation of Willis' s bounds with ellipsoida inclusions. International Journal of Engineering Science, 1992, 30: 83-92.
    [34] Taya T, Mura T. On stiffness and strength of an aligned short fiber reinforced composite containing fiber-end cracks under uniaxial applied stress. Journal of Applied Mechanics, 1981, 48: 361-367.
    [35] Hill R J. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 1965, 13: 213-222.
    [36] Budiansky B J. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 1965, 13: 223-227.
    [37] Torquato S. Effective stiffness tensor of composite media-Ⅱ: Application to isotropic dispersions. Journal of the Mechanics and Physics of Solids, 1998, 46: 1411-1440.
    [38] Nan C W. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993, 37: 1-116.
    [39] Norris A N. A differential scheme for the effective moduli of composites. Mechanics of Materials, 1985, 4: 1-16.
    [40] 杜善义,王彪.复合材料细观力学基础.北京:科学出版社,1999.
    [41] 吴林志.含夹杂和分布裂纹弹性介质的细观理论:(博士学位论文).哈尔滨:哈尔滨工业大学,1992.
    [42] 杜善义,吴林志.含球夹杂复合材料的力学性能分析.复合材料学报,1994,11:105-111.
    [43] Christensen R M, Lo K H. Solutions for effective shear properties in three phase space and cylinder model. Journal of the Mechanics and Physics of Solids, 1979, 27: 315-330.
    [44] Zheng Q S, Du D X. Closed-form interactiong solutions for overall elastic moduli of composite materials with multi-phase inclusions, holes and microcracks. Key Engineering Materials, 1998, 145-149: 479-488.
    [45] Zheng Q S, Du D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. Journal of the Mechanics and Physics of Solids, 2001, 49: 2765-2788.
    [46] Hori M, Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase compostites. Mechanics of Materials, 1993, 14: 189-206.
    [47] Stolz C, Zaoui A. Analyse morphologique et approaches variationnelles du comportement d' un milieu elastique heterogene. C R Acad Sci Paris, 1991, Ⅱ312: 143-150.
    [48] Dawson P R, Needleman A. Issues in the finite element modeling of polyphases plasticity. Materials Science and Engineering A, 1994, 175: 43-48.
    [49] Baskes M I, Hoagland R G, Needleman A. Summary report: computational issues in the mechanical behavior of metals and intermetallics. Materials Science and Engineering A, 1992, 159: 1-34.
    [50] Landman U. On some issues in computational materials science. Computational Materials Science, 1994, 2: 209-211.
    [51] Taggart G B. Computational materials research at national science foundation. Computational Materials Science, 1994, 2: 143-148.
    [52] 方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析.力学进展,1998,28(2):173-188.
    [53] Mouritz A P, Leong K H, Herszberg I. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Composites Part A, 1999, 28A: 979-991.
    [54] Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites. Acta Metallurgica et Materialia, 1989, 37(11): 3029-3050.
    [55] Bao G, Hutchinson J W, McMeeking R M. Plastic reinforcement of ductile matrices against plastic flow and creep. Acta Metallurgica et Materialia, 1991, 39(5): 1871-1882.
    [56] 刘伏友,段绍斌,龙志高,肖平,陈星,潘乾,罗季安,彭佑铭.人腹膜间皮细胞的培养及特征.湖南医科大学学报,2004,26(4):321-324.
    [57] 张蓉,黄太文,刘林.过共晶Al2Si合金熔体中初生硅生长特性.中国有色金属学报,2004,14(2):262-266.
    [58] Roberts A P, Garboczi E J. Elastic moduli of model random threedimensional closed-cell cellular solids, hcta Materialia, 2001, 49:189-197
    [59] Stachurski Z H. Strength and deformation of rigid polymers: structure and topology in amorphous polymers. Polymer, 2003, 44:6059-6066
    [60] Jelen P, Surowiec M. Growth morphology of solidified GaMgZn alloys. Journal of Crystal Growth, 2004, 261: 581-589.
    [61] 范亚玲,张远高,陆明万.二维任意多边形有限单元.力学进展,1995,27(6):742-746.
    [62] 陆明万,罗学富,郑长卿.计算细观力学进展,固体力学的现代进展,北京:北京理工大学出版社,1995.
    [63] Ghosh S, Mukhopadhyay S N. A material based finite element analysis of heterogeneous media involving Dirichlet tessellations. Computer Methods in Applied Mechanics and Engineering, 1993, 104: 211-247.
    [64] Ghosh S, Mallett R L. Voronoi cell finite element. Computers and Structures, 1994, 501: 33-46.
    [65] Ghosh S, Mukhopadhyay S N. A material based finite elemtent analysis of heterogeneous media involving Dirichlet tessellations. Computer Methods in Applied Mechanics and Engineering, 1993, 104: 211-247.
    
    [66] Ghosh S, Liu Y. Voronoi cell finite element method for micropolar thermo-elastic heterogeneous materials. International Journal for Numerical Mehtods in Engineering, 1995, 38: 1361-1398.
    
    [67]陈善云,徐永进.间接法生成Voronoi图初探.零陵学院学报,2004,25(3):90-93.
    
    [68] Pian T H H. Derivation of element stiffness matrices by assumed stress distribution. AAIA Jouranl, 1964, 2: 1333-1336.
    
    [69] Ghosh S, Mukhopadhyay S N. A two-dimensional automatic mesh generator for finite element analysis of random composites. Computers and Structures, 1991, 41: 245-256.
    
    [70] Ghosh S, Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method. Computer Methods in Applied Mechanics and Engineering, 1995, 121: 373-409.
    
    [71] Zhang J, Katsube N. Problems related to application of eigenstrains in a finite element analysis. International Journal for Numerical Mehtods in Engineering, 1994, 37:3185-3193.
    
    [72] Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions. International Journal for Numerical Mehtods in Engineering, 1995, 38: 1635-1653.
    
    [73] Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. International Journal of Solids and Structures, 1995, 32: 27-62.
    
    [74] Grujicic M, Zhang Y. Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method. Materials Science and Engineering, 1998, A251: 64-76.
    
    [75] Lee K, Ghosh S. A microstructure based numerical method for constitutive modeling of composite and porous materials. Materials Science and Engineering, 1999, A272: 120-133.
    
    [76]Moorthy S, Ghosh S. Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 2000, 185: 37-74.
    
    [77] Raghavan P, Li S, Ghosh S. Two scale response and damage modeling of composite materials. Finite Elements in Analysis and Design, 2004, 40: 1619-1640.
    
    [78]Li S, Ghosh S. Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials, International Journal for Numerical Mehtods in Engineering, 2006, 65: 1028-1067.
    
    [79] Jasiuk J, Ostoja-Starzewski M. Planar Cosserat elasticity of materials with holes and intrusions. Applied Mechanics Reviews, 1995, 48: 11-18.
    [80] Hu G K, Liu X N, Lu T J. A variational method for non-linear micropolar composites. Mechanics of Materials, 2005, 37: 407-425.
    [81] Voigt W. Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle. Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gotingen, 1887, 34: 3-51.
    [82] Duhem P. Physique et metaphysique. Revue des questions scientifiques, 1893, 34: 55-83.
    [83] Cosserat E, Cosserat F. Theorie des Corps Deformables. Hermann Paris, 1909.
    [84] Ericksen J L, Truesdell C. Exact theory of stress and strain in rods and shells. Archives for Rational Mechanics and Analysis, 1958, 1: 295-323.
    [85] Gunther W. Zur Statik und Kinematik des Cosseratschen Kontinuums, Abh. Braunschweig. Wiss. Ges. 1958, 10: 195-213.
    [86] Toupin R A. Elastic materials with couple-stress. Archive for Rational Mechanics and Analysis, 1962, 11: 385-414.
    [87] Mindlin R D. Stress functions for a Cosserat continuum. International Journal of Solids and Structures, 1965, 1: 265-271.
    [88] Green A E, Rivlin R S. Multipolar continuum mechanics. Archive for Rational Mechanics and Analysis, 1964, 17: 113-147.
    [89] Eringen A C. Linear theory of micropolar elasticity. Journal of Mathematics and Mechanics, 1966, 15(6): 909-923.
    [90] Eringen A C. Suhubi E S. Nolinear theory of simple micro-elastic solids-Ⅰ. International Journal of Engineering Science, 1964, 2: 189-203.
    [91] Eringen A C. Microcontinuum field theories Ⅰ. Foundations and solids. New York: Springer-Verlag, 1999.
    [92] 戴天民.广义连续统场论的现状和展望.力学进展,1999,29(1):1-8.
    [93] 黄克智,黄永刚.固体本构关系.北京:清华大学出版社,1999.
    [94] Muhlhaus. H B. Application of Cosserat theory in numerical solutions of limit load problems. Archive of Applied Mechanics(Ingenieur Archly), 1989, 59: 124-137.
    [95] Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity, 1993, 41: 1825-1857.
    [96] Fleck N A, Hutchinson J W. Strain gradient plasticity. Advances in Applied Mechanics. Academic Press, ed. 1997.
    [97] Shu J Y, Fleck N A. Strain gradient crystal plasticity: size-dependent deformation of bicrystals, 1999, 7: 297-324.
    [98] Shu J Y. Scale-dependent deformation of porous single crystals. International Journal of Plasticity, 1998, 14: 1085-1108.
    [99] Shu J Y, Barlow C Y. Strain gradient effects on microscopic strain field in a metal matrix composite. International Journal of Plasticity, 2000, 16: 563-592.
    [100] Nix W D, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998, 46: 411-425.
    [101] Gao H, Huang Y, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity-Ⅰ theory. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263.
    [102] Huang Y, Gao H, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity-Ⅱ analysis. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 99-128.
    [103] Chen S H, Wang T C. A new deformation theory with strain gradient effects. International Journal of Plasticity, 2002, 18:971-995.
    [104] 黄克智,邱信明,姜汉卿,应变梯度理论的新进展(一):偶应力理论和SG理论.机械强度,1999,21(2):81-87.
    [105] 黄克智,邱信明,姜汉卿,应变梯度理论的新进展(二):基于细观机制的MSG应变梯度塑性理论,机械强度,1999,21(3):161-165.
    [106] Nikitin E, Zubov L M. Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. Journal of Elasticity, 1998, 51: 1-22.
    [107] Liu W S, Markenscoff X. The discrete Cosserat eigenfunctions for a spherical shell. Journal of elasticity, 1999, 52: 239-255.
    [108] Kulesh M A, Matveenko V P, Shardakov I N. Exact analytical solution of the Kitsch problem within the framework of the Cosserat continuum and pseudo-continuum. Journal of Applied Mechanics and Technical Physics, 2001, 42(4): 687-695.
    [109] Rubin M B. Numerical solution procedures for nonlinear elastic rods using the theory of a Cosserat point. International Journal of Solids and Structures, 2001, 38(24-25): 4395-4437.
    [110] Rubin M B. On the theory of a Cosserat point and shear locking in thin beams. Communications in Numerical Methods in Engineering. 2001, 17: 201-213.
    [111] 刘俊,黄铭,葛修润.考虑偶应力影响的应力集中问题求解.上海交通大学学报,2001,35(10):1481-1485.
    [112] 刘俊,黄铭,葛修润.Cosserat理论的应变能定理及解的唯一性.岩石力学与工程学报,2003,22(3):343-346.
    [113] 戴天民.带有微结构的连续统中新的能量守恒定律和C-D不等式.应用数学和力学,2001,22(2):119—126.
    [114] 戴天民.广义连续统场论中新的功能及功率能率原理.应用数学和力学,2001,22(11):1111—1118.
    [115] Ciarletta M, Iesan D. Non- Class ical Elastic Solids. Boston, London, Melbourne: Longman Scientific & Technical, 1993.
    [116] Dai T M. Restudy of theories for elastic solids with microstructrue. Applied Mathematics and Mechanics. 2002, 23(8): 867-874.
    [117]钟万勰,姚伟岸,郑长良.Reissner板弯曲与平面偶应力模拟.大连理工大学学报,2002,42(5):519-521.
    
    [118] Nadler B, Rubin M B. Determination of hourglass coefficients in the theory of a Cosserat point for nonlinear elastic beams. International Journal of Solids and Structures. 2003, 40: 6163-6188.
    
    [119] Brand M, Rubin M B. A constrained theory of a Cosserat point for the numerical solution of dynamic problems of non-linear elastic rods with rigid cross-sections. International Journal of Non-Linear Mechanics, 2006, (in press)
    
    [120] Morrisa J P, Rubinb M B, Blocka G I, Bonner M P. Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis. International Journal of Impact Engineering, 2006, 33: 463-473.
    
    [121] Chen Y P, Lee J D, Eskandarian A. Atomistic viewpoint of the applicability of microcontinuum theories. International Journal of Solids and Structures, 2004, 41: 2085-2097.
    
    [122] Georges Le V. Optimal control theory and Newton-Euler formalism for Cosserat beam theory. Comptes Rendus Mecanique, 2006, 334(3): 170-175.
    
    [123] Klepach D, Rubin M B. Postbuckling response and ultimate strength of a compressed rectangular elastic plate using a 3-D Cosserat brick element. European Journal of Mechanics A/Solids (in press)
    
    [124] Shahidi A R, Mahzoon M, Saadatpour M M, Azhari M. Nonlinear static analysis of arbitrary quadrilateral plates in very large deflections. Communications in Nonlinear Science and Numerical Simulation, 2007, 12: 832-848.
    
    [125] De Borst R. Simulation of strain localization: a reappraisal of the Cosserat continuum. Engineering Computations, 1991, 8(4): 317-32.
    
    [126] Dietsche A, Willam K. Boundary effects in elasto-plastic Cosserat continua. International Journal of Solids and Structures, 1997, 34(7): 877-893.
    
    [127] Cramer H, Findeiss R, Steinl G, Wunderlich W. An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena. Computer Methods in Applied Mechanics and Engineering, 1999, 176: 187-202.
    
    [128] Grammenoudis P, Tsakmakis C. Hardening rules for finite deformation micropolar plasticity: restrictions imposed by the second law of thermodynamics and the postulate of II' iushin. Continuum Mechanics and Thermodynamics, 2001, 13: 325-363.
    
    [129] Mariano P M. A note on Cradini-Capurso-Maier' s theorem in plasticity. International Journal of Plasticity, 2002, 18: 1749-1773.
    
    [130] Grammenoudis P, Tsakmakis C. Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. International Journal for Numerical Mehtods in Engineering, 2005, 62: 1691-1720.
    [131] 李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497-1505.
    [132] Li X K, Tang H X. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers and Structures, 2005, 83: 1-10.
    [133] 李育超,凌道盛,陈云敏.Cosserat连续介质的Mohr-Coulomb屈服准则及其应用.浙江大学学报(工学版),2005,39(2):253-258.
    [134] Providas E, Kattis M A. Finite element method in plane Cosserat elasticity. Computer and Structures, 2002, 80: 2059-2069.
    [135] 肖其林,凌中,吴永礼,姚文慧.偶应力问题的非协调元分析.中国科学院研究生院学报,2003,20(2):223-231.
    [136] 肖其林,凌中,吴永礼.偶应力问题的杂交/混合元分析.计算力学学报,2003,20(4):427-433.
    [137] 李雷,吴长春.基于Cosserat理论的应变梯度非协调数值研究.工程力学,2004,21(5):166-171.
    [138] 黄若煜,吴长春.应力函数及其对偶理论在有限元中的应用.力学学报,2004,36(4):419-426.
    [139] 郑长良,任明法,张志峰,宋和平.应用离散偶应力单元分析弹性Cosserat介质.计算物理,2004,21(3):377-382.
    [140] 黄若煜,吴长春,钟万勰.基于平面偶应力-Reissner/Mindlin板比拟的偶应力有限元.力学学报,2004,36(3):272-280.
    [141] Nadler B, Rubin M B. A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. International Journal of Solids and Structures. 2003, 40: 4585-4614.
    [142] Cao D Q, Liu D S, Wang C H r. Three-dimensional nonlinear dynamics of slender structures: Cosserat rod element approach. International Journal of Solids and Structures, 2006, 43: 760-783.
    [143] 李锡夔.非线性计算固体力学中的若干问题.大连理工大学学报,1995,35(6):783-389.
    [144] Ristinmaa M, Vecchi M. Use of couple-stress theory in elasto-plasticity. Computer methods in Applied Mechanics and Engineering, 1996, 136: 205-224.
    [145] Peric D, Yu J, Owen D R J. On error estimates and adaptivity in elastoplastic solids: applications to the numerical simulation of strain localization in classical and Cosserat continua. International Journal for Numerical Methods in Engineering, 1994, 37: 1351-1379.
    [146] Khoei A R, Tabarraie A R, Gharehbaghi S A. H-adaptive mesh refinement for shear hand localization in elasto-plasticity Cosserat continuum. Communications in Nonlinear Science and Numerical Simulation, 2005, 10:253-286.
    [147] Khoei A R, Gharehbaghi S A, Tabarraie A R, Riahi A. Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization. Applied Mathematical Modelling, (in press).
    
    [148] Stromberg L, Ristinmaa M. FE-formulation of a nonlocal plasticity theory. Computer methods in Applied Mechanics and Engineering, 1996, 136: 127-144.
    
    [149] Huang W X, Bauer E. Numerical investigations of shear localization in a micro-polar hypoplastic material. International Journal for Numerical and Analytical Methods Geomechanics, 2003, 27: 325-352.
    
    [150] Collin F, Chambon R, Charlier R. A finite element method for poro mechanical modeling of geotechnical problems using local second gradient models. International Journal for Numerical Methods in Engineering, 2006, 65:1749-1772.
    
    [151] Sharbati E, Naghdabadi R. Computational aspects of the Cosserat finite element analysis of localization phenomena. Computational Materials Science, 2006, 38: 303-315.
    
    [152] Muhlhaus H B. Stress and couple stress in a layered half plane with surface loading. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13: 545-563.
    
    [153] Muhlhaus H B. Surface instability of a half space with bending stiffness. Archive of Applied Mechanics(Ingenieur Archiv), 1985, 55: 388-400.
    
    [154] Muhlhaus H B, Oka F. Dispersion and wave propagation in discrete and continuous models for granular materials. International Journal of Solids and Structures, 1996, 33(19): 2841-2858.
    
    [156] Adhikary D P, Dyskin A V, Jewell R J. Numerical modeling of the flexural deformation of foliated rock slopes. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1996, 33(6): 595-606.
    
    [157] Adhikary D P, Dyskin A V. Modeling the deformation of underground excavations in layered rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1997, 34(3/4): 7-14.
    
    [158] Adhikary D P, Muhlhaus H B, Dyskin A V. Modeling the larger deformations in stratified media-the Cosserat continuum approach. Mechanics of Cohesive-Frictional Materials, 1999, 4: 195-213.
    
    [159] Adhikary D P, Muhlhaus H B, Dyskin A V. A numerical study of flexural bucking of foliated rock slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25: 871-884.
    
    [160] Nubel K, Huang W X. A study of localized deformation pattern in granular media. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 2719-2743.
    [161] George Z V, Mustafa I A, Khalid A A. Evolving internal length scales in plastic strain localization for granular materials. International Journal of Plasticity, 2005, 21:2000-2024.
    [162] Froiio F, Tomassetti G, Vardoulakis I. Mechanics of granular materials: The discrete and the continuum descriptions juxtaposed. International Journal of Solids and Structures, 2006, 43: 7684-7720.
    [163] 陈胜宏.节理岩体的弹塑性和弹—粘塑性有限元计算.武汉大学学报(工学版),1986,6:79-86.
    [164] 陈胜宏,王鸿儒,熊文林.节理岩体的偶应力影响研究.水利学报,1990,1:44—48.
    [165] 佘成学,熊文林,陈胜宏.具有弯曲效应的层状结构岩体变形的Cosserat介质分析方法.岩土力学,1994,15(4):12-19.
    [166] 佘成学,熊文林,陈胜宏.层状岩体的弹粘塑性Cosserat介质理论及其工程应用.水力学报,1996,4:10-17.
    [167] 李桂荣,佘成学,陈胜宏.层状岩体边坡的弯曲变形破坏试验及有限元分析.岩石力学与工程学报,1997,16(4):305-311.
    [168] 刘俊,陈胜宏.节理岩体三维偶应力弹性理论.岩土力学,1995,16(4):20-29.
    [169] 刘俊,黄铭,葛修润等.层状岩体开挖的空间弹性偶应力理论分析.岩石力学与工程学报,2000,19(3):276-280.
    [170] 刘俊,黄铭,葛修润.Cosserat介质理论针对节理岩体的应用.岩土力学,2004,25(2):27-31.
    [171] 佘成学,罗继铣,张玉珍.层状岩体的Cosserat介质理论中的第二剪切模量Gc的研究.岩土力学,1996,17(4):62-69.
    [172] 佘成学,熊文林,张玉珍.层状岩体屈服准则的数值与试验分析.中国农村水利水电,1996,7:24-25.
    [173] Forest S. Modeling slip, kink and shear banding in classical and generalized single crystal plasticity. Acta Metallurgica et Materialia, 1998, 46(9): 3265-3281.
    [174] Sedlacek S, Forest S. Non-local plasticity at microscale: a dislocation-based and a Cosserat model. Physical Status solidi (b), 2000, 221(2): 583-596.
    [175] Zeghahi A, Forest S, Gourgues A F, Bouaziz O. Cosserat continuum modelling of grain size effects in metal polycrystals. PAMM Proceedings in Applied Mathematics and Mechanics, 2005, 5: 79-82.
    [176] Clayton J D, McDowell D L, Bammann D J. Modeling dislocations and disclinations with finite micropolar elastoplasticity. International Journal of Plasticity, 2006, 22:210-256.
    [177] Adachi T, Tomitas Y, Tanaka M. Computational simulation of deformation behavior of 2d-lattice continuum. International Journal of mechanical sciences, 1998, 40(9): 857-866.
    [178] Suiker A S J, Metrikine A V, de Borst R. Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. International Journal of Solids and Structures, 2001, 38: 1563-1583.
    
    [179] Diebels S, Steeb H, Ebinger T. Volume and surface based homogenization procedures for Cosserat continua. PAMM Proceedings in Applied Mathematics and Mechanics, 2003, 3: 266-267.
    
    [180] Zuiker J, Gvrok G J. The effective properties of functionally graded composites-I: Extension of the Mori-Tanaka method to linearly varying fields. Composite Engineering, 1994, 4: 19-35.
    
    [181] Forest S, Sab K. Cosserat overall modeling of heterogeneous materiails. Mechanics Research Communications, 1998, 25: 449-454.
    
    [182] Froest S, Barbe F, Cailletaud G. Cosserat modeling of size effects in the mechanical behavior of polycrystals and multiphase materials. International Journal of Solids and Structures, 2000, 37: 7105-7126.
    
    [183] Yuan X, Tomita Y. Effective properties of Cosserat comjposites with periodic microstructures. Mechanics Research Communications, 2001, 28(3): 265-270.
    
    [184] Bouyge F, Jasiuk I, Boccara S, Oastoja-Starzewski M. A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. European Journal of Mechanics - A/Solids, 2002, 21: 465-481.
    
    [185] Chen S H, Wang T. Size effects in the particle-reinforced metal-matrix composites. Acta Mechanica, 2002, 157(1-4): 113-127.
    
    [186] Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Metallurgica et Materialia, 1996, 44: 3801-3811.
    
    [187] Dai L H, Ling Z, Bai U L. A strain gradient-strengthening law for particle reinforced metal matrix composites. Scripta Mater, 1999, 41: 245-251.
    
    [188] Forest S, Pradel F, Sab K. Asymptotic analysis of heterogeneous Cosserat media. International Journal of Solids and Structures, 2001, 38: 4585-4608.
    
    [189] Ehlers W, Ramm E, Diebels S, Daddetta G A. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. International Journal of Solids and Structures, 2003, 40: 6681-6702.
    
    [190] Trovalusci P, Masiani R. Non-linear micropolar and classical continua for anisotropic discontinuous materials. International Journal of Solids and Structures, 2003, 40: 1281-1297.
    
    [191] Chatzouridou A, Diebels S. Identification of material parameters in extended contiuum mechanical models. PAMM Proceedings in Applied Mathematics and Mechanics, 2005, 5:495-496.
    [192] Zervos A, Vardoulakis I, Jean M, Lerat P. Numerical investigation of granular interfaces kinematics. Mechanics of Cohesive-Frictional Materials, 2000, 5: 305-324.
    [193] Liu X N, Hu G K. A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect. International Journal of Plasticity, 2005, 21: 777-799.
    [194] Xun F, Hu G K, Huang Z P. Effective in-plane moduli of composites with a micropo]ar matrix and coated fibers. International Journal of Solids and Structures, 2004, 41: 247-265.
    [195] Mori K, Shiomi M, Osakada K. Inclusion of microscopic rotation of powder particles during compaction in finite element method using Cosserat continnumtheory. International Journal for Numerical Methods in Engineering, 1998, 42: 847-856.
    [196] Mori K. Finite element simulation of powder forming and sintering. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 6737-6749.
    [197] Cerrolaza M, Sulem J, Elbied A. A Cosserat non-linear finite element analysis software for blocky structures. Advances in Engineering Software, 1999, 30: 69-83.
    [198] Kotera H, Sawada M, Shima S. Cosserat continuum theory to simulate microscopic rotation of magnetic powder in applied magnetic field. International Journal of Mechanical Sciences, 2000, 42: 129-145.
    [199] Fatemi J, Van Keulen F, Onck P R. Generalized continuum theories: application to stress analysis in bone. Meccanica, 2002, 37: 385-396.
    [200] Rodrigo P, de figueiredo, Euripedes do A. Vargas Jr, Moraes A. Analysis of bookshelf mechanisms using the mechanics of Cosserat generalized continua. Journal of Structural Geology, 2004, 26:1931-1943.
    [201] Corre S Le, Caillerie D, Orgeas L, Favier D. Behavior of a net of fibers linked by viscous interactions: theory and mechanical properties. Journal of the Mechanics and Physics of Solids, 2004, 52: 395-421.
    [202] Haasemann G, Ulbricht Y. Flexural Properties of Fiber-Reinforced Composites. PAMM Proceedings in Applied Mathematics and Mechanics, 2005, 5:233-234.
    [203] 王勖成.有限元法.北京:清华大学出版社,2003.
    [204] Belytschko T,Liu W K,Moran B著.庄茁译.连续体和结构的非线性有限元.北京:清华大学出版社,2002.
    [205] 钟万勰,张洪武,吴承伟.参变量便分原理及其在工程中的应用.北京:科学出版社,1997.
    [206] 钟万勰.岩土力学中的参变量最小余能原理.力学学报,1986,18(3):253-258.
    [207] 张柔雷,钟万勰.参变量最小势能原理的有限元参数二次规划解.计算结构力学及其应用,1987,4(1):126-128.
    [208] 张柔雷.参变量变分原理及其应用:(博士学位论文).大连:大连理工大学,1987.
    [209] 孙苏明.参数二次规划法的研究及其工程结构分析应用:(博士学位论文).大连:大连理工大学,1988.
    [210] Zhang H W, Schrefler B A. Gradient-dependent plasticity model and dynamic strain localization analysis of saturated and partially saturated porous media: one dimensional model. European Journal of Solid Mechanics, A/Solids, 2000, 19(3): 503-524.
    [211] 张新伟.动力弹塑性软化问题分析的参变量变分原理及有限元方法:(硕士学位论文).大连:大连理工大学,2000.
    [212] 张洪武,张新伟.基于参数二次规划与精细积分方法的动力学弹塑性问题分析.工程力学,2001,18(5):64-70.
    [213] Zhang H W, Zhang X W, Chen J S. A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems, Computers and Structures, 2003, 81(17): 1739-1749.
    [214] 吴昌华,吴泓,陆玉珍.增压器压气机叶轮的三维弹塑性精细分析.大连铁道学院学报,2004,25(4):21-25.
    [215] Zhang H W, Zhang X W, Gu Y X. A combined parametric quadratic programming and iteration method for 3-D elastic-plastic frictional contact problem analysis. Computer Methods in Applied Mechanics and Engineering, 1998, 155(3-4): 307-324.
    [216] 郑毅.动力接触问题分析的参变量变分原理及有限元方法:(硕士学位论文).大连:大连理工大学,2002.
    [217] Zhang H W, He S T, Li X S etc. A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law. Computational mechanics, 2004, 34(1): 1-14.
    [218] Zhang H W, He S T, Li X S. Non-interior smoothing algorithm for frictional contact problems. Applied Mathematics and Mechanics, 2004, 25(I): 47-58.
    [219] 黄若煜,吴长春.一类铁电模型的参变量变分原理及其应用,计算力学学报,1998,23(3):270-275.
    [220] 吴承伟,钟万勰,钱令希,孙苏明.润滑力学中的参变量变分原理-一维单面边界速度滑移问题.大连理工大学学报,1992,32(1):251-256.
    [221] 吴承伟,陈浩然,李勇.电流变智能轴承挤压性能分析.计算力学学报,1998,15(1):86-91.
    [222] 曾攀,孙训方.具有损伤耦合效应的弹塑性蠕变问题结构分析的变分原理.固体力学学报,1992.13(2):95-100.
    [223] Zhang H W, Xu W L, Di S L, Thomson P F. Quadratic programming method in numerical simulation of metal forming process, Computer Methods in Applied Mechanics and Engineering, 2002, 191(49): 5555-5578.
    [224] Zhang H W, Wang J B, Ye H F, Wang L. Parametric variational principle and quadratic programming method for van der Waals force simulation of parallel and cross nanotubes. International Journal of Solids and Structures, 2007, 44(9): 2783-2801.
    [225] Roderic L. Experimental methods for study of cosserat elastic solids and other generalized elastic continua. Continuum models for materials with micro-structure, ed. Muhlhaus H, Wiley J, Ch N Y. 1995, 1: 1-22.
    
    [226] Scholz, Bernd, Ehlers, Wolfgang. Identification of the material parameters of a micropolar model for granular materials. PAMM Proceedings in Applied Mathematics and Mechanics, 2004, 4: 414-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700