大豆转录因子GmC2H2基因转化拟南芥效果分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌指蛋白(zinc finger protein)是一类具有“指状”结构域的转录因子,主要功能是调控基因的表达,锌指蛋白种类较多,但以C2H2型最多。C2H2型锌指蛋白基因最早在非洲爪蟾中发现,植物中发现的第一个C2H2型锌指蛋白基因是在矮牵牛中分离得到的ZPT2-1,之后陆续在矮牵牛、拟南芥、棉花、大豆、水稻等植物中相继分离到了该类型的锌指蛋白基因,并发现在植物中都含有QALGGH高度保守序列,而动物锌指蛋白中不存在。已有的研究发现C2H2型锌指蛋白主要参与植物的生长发育以及调控植物的抗逆性。
     本研究的GmC2H2转录因子基因是依据GenBank中大豆EST数据库的保守序列,设计特异性的引物,利用PCR、RT-PCR等技术获得的一个cDNA开放阅读框序列,它是大豆中一个编码经典C2H2型锌指蛋白的基因,并在Genbank中注册,其登陆号为:DQ055134。该基因全长765 bp,开放阅读框长度为516 bp,其编码172个氨基酸的锌指蛋白,分子量约为19KD。
     在本实验室前期研究的基础上,将GmC2H2基因的全长编码序列分别构建到16318hGFP亚细胞定位载体上,将16318hGFP -GmC2H2转化原生质体进行亚细胞定位分析得知,GmC2H2锌指蛋白在细胞核中表达。将GmC2H2基因的全长编码序列构建到pCAMBIA1304植物表达载体上,借助优化的floral-dip法转化模式植物拟南芥,利用潮霉素Hygromycine(45-50mg·L-1)抗性筛选,经PCR扩增检测,获得19株转基因阳性苗。通过孟德尔定律筛选分离比接近3:1的株系,外源基因可能为单拷贝插入的株系,已得到3个纯合株系,分别为株系1、株系4、株系7。经GUS组织染色分析,在携带目的基因的pCAMBIA1304空载体的拟南芥幼苗中,GUS基因在整个植株体内表达,而在携带目的基因GmC2H2的转基因拟南芥中,表达部位集中在根部。将GmC2H2基因的突变体MZF1、MZF2、MZF4、MZF8、MZF10序列分别构建到pCAMBIA1304植物表达载体上,利用同样方法转化拟南芥获得纯合系转基因拟南芥,用作后续该GmC2H2转录因子各元件的功能研究。
     为进一步验证GmC2H2的功能,对野生型和转基因型拟南芥植株进行脱落酸(ABA,200μmol·L-1)处理和低温(1°C)、高盐(NaCl,250mmol·L-1)胁迫处理。研究表明,在ABA处理和低温、盐胁迫处理后,转基因植株的长势明显好于野生型植株;ABA处理和低温、盐胁迫导致野生型和转基因型拟南芥植株丙二醛含量都升高,但野生型植株中丙二醛含量增加量更为显著;转基因拟南芥中可溶性糖和脯氨酸的含量显著高于野生型;转基因植株的细胞损伤率要低于野生型拟南芥。推测可能是目的基因GmC2H2的插入导致了转基因拟南芥植株的抗逆性明显高于野生型拟南芥。
     经ABA处理和低温、盐胁迫后,对转基因拟南芥与野生型植株进行real-time qPCR分析,结果表明,胁迫处理后的转基因拟南芥中的目的基因GmC2H2的表达量,无论在根还是叶中,都明显高于未处理的转基因拟南芥。在低温和ABA处理条件下,携带有目的基因GmC2H2的拟南芥叶和根中,抗冻基因cor6.6的表达量要高于野生型拟南芥植株。在低温处理条件下,转基因拟南芥叶中EPSPS基因的表达量要高于野生型拟南芥,而根中则表现不明显;而在ABA处理条件下,转基因拟南芥无论是根还是叶中,EPSPS基因的表达量都要高于野生型拟南芥。
Zinc finger protein is a kind of transcription factor that has a "finger" structural domain, and it can regulate the gene expression. There are various types of zinc finger proteins, but most of them belong to the C2H2-type. C2H2 type zinc finger protein was first discovered in Xenopus tropicalis, and a C2H2 zinc finger protein gene named ZPT2-1 which was isolated from the petunia was first found in plants, and the gene of this type zinc finger protein have gradually been isolated from the petunia, Arabidopsis thaliana, cotton, soybeans, rice and other plants. And a highly conserved sequence of QALGGH was found in plantkingdom, while it did not exist in zinc finger proteins of animal. Previous studies have found that C2H2 zinc finger protein mainly involved in plant growth and development and regulation of plant stress resistance.
     In this study, based on the conserved sequence of soybean EST database in GenBank, the GmC2H2 transcription factor gene is isolated from soybean by PCR and RT-PCR techniques using specific primers, and it contains a cDNA open reading frame encoding classic C2H2 type zinc finger protein, and the accession number in Genbank is DQ055134. The full length of this gene is 765 bp with an open reading frame of 516 bp length which encodes 172 amino acids with 19 kD of molecular weight.
     On the basis of previous studies in this laboratory, the full-length GmC2H2 gene coding sequences were constructed to 16318hGFP vector for subcellular localization, then 16318hGFP-GmC2H2 was transformed to protoplast, finally analyzed the subcellular localization. Data showed that the GmC2H2 zinc finger protein expressed in the nucleus. The full-length GmC2H2 cDNA sequence was constructed to the plant expression vector of pCAMBIA 1304, and with the optimization of the floral-dip method into the model plant Arabidopsis, 19 transgenic seedlings were generated by using of Hygromycine (45-50mg?L-1) resistance screening and the PCR amplification test. According to the Mendel's law, some lines with the ratio of nearly 3:1 were isolated, in which the foreign gene may be inserted as single copy. There were three homozygous lines named line-1, line-4 and line-7. The results of histochemical staining for GUS showed that transgenic Arabidopsis seedlings of 12-day carrying the target vector pCAMBIA1304, the GUS gene were expressed throughout the whole plant, and were mainly concentrated in the roots of the transgenic Arabidopsis carrying the target GmC2H2 gene. In addition, the mutants of GmC2H2 gene which were named MZF1、MZF2、MZF4、MZF8、MZF10 were respectively constructed to the expression vectors to explore the function of elements of GmC2H2 transcription factor in regulating plant growth and development or plant stress resistance.
     For further identifying the function of GmC2H2 gene, wild-type and transgenic genotypes of Arabidopsis thaliana plants were treated with low temperature (1°C), abscisic acid (ABA, 200μmol?L-1) and high salt (NaCl, 250mmol?L-1) treatment. Studies showed that under the treatment of low temperature, ABA and salt treatment, transgenic plants grew better than the wild-type plants, and the contents of MDA in both of them were increased, but the contents of MDA in the wild-type Arabidopsis were more significant. The contents of soluble sugar and proline in the transgenic Arabidopsis were significantly higher than that in the wild type, and cell injury rates of transgenic plants was lower compared to the wild type Arabidopsis, indicating that the insertion of GmC2H2 gene may lead to a significant higher resistance of stress in transgenic Arabidopsis plants than wild-type Arabidopsis.
     The results of real-time qPCR showed that expression of GmC2H2 gene in the transgenic Arabidopsis was significantly higher after the treatment of low temperature and ABA treatment than untreated transgenic Arabidopsis both in roots and leaves. Under the treatment of low temperature and ABA, the accumulation of antifreeze gene cor6.6 in leaves and roots of those Arabidopsis plants was higher than that in the wild-type plants. Under low temperature conditions, the accumulation of EPSPS gene in leaves of the transgenic Arabidopsis was higher than that of the wild-type, while it was not obvious in the roots. For ABA treatment, the accumulation of EPSPS gene was higher in transgenic Arabidopsis than the wild-type both in leaves and roots.
引文
[1] [美] J萨姆布鲁克,T曼尼阿蒂斯.分子克隆实验指南(第三版)[M].北京:科学出版社.
    [2]白晶,张必弦,李新玲,等.野生大豆(Glycine soia)C2H2型锌指蛋白基因的克隆与序列分析[J].大豆科学,2009,28(1):21-25.
    [3]陈淑芳,朱月林,等.NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响[J].园艺学报,2006,33(1):58-62.
    [4]崔凯荣,裴新梧,秦琳,等.ABA对枸杞体细胞胚发生的调节作用[J].实验生物学报,1998,31(2):195-199.
    [5]单雷,赵双宜,夏光敏.植物耐盐相关基因及其耐盐机制研究进展[J].2006,4(1):15-22.
    [6]邓令毅,王洪春.葡萄的膜脂和脂肪酸组分与抗寒性关系的研究[J].植物生理学报,1982,8(3):79-89.
    [7]高建社,王军,周永学,等.5个杨树无性系抗旱性研究[J].西北农林科技大学学报(自然科学版),2005,33 (2):112-116.
    [8]高世庆.大豆、小麦抗逆相关Gm/TaAREB转录因子基因、启动子克隆及功能鉴定[博士学位论文] [D].中国农业科学院,2007.
    [9]关世英,苏维埃.与磷脂酰甘油有关的植物抗冷机理研究进展[J].植物生理学通讯,1995,31(3):167-173.
    [10]何毅敏,年洪娟,陈丽梅.植物耐盐基因工程研究进展[J].中国生物工程杂志,2009,29 (3):100-104.
    [11]黄骥,王建飞,张红生.C2H2型锌指蛋白的结构与功能[J].遗传,2004,26(3):414-418.
    [12]黄字,苏以荣,谢小立,等.ABA对双季早稻产量的影响[J].湖南农业科学,2001,1:23-24.
    [13]简令成,吴素萱.植物抗寒性的细胞学研究-小麦越冬过程中细胞内物质的变化[J].植物学报,1965(13):1-6.
    [14]简令成.植物抗寒机理研究的新进展[J].植物学通报,1992,9(3):17-22.
    [15]江燕.水稻和拟南芥TFⅢA型锌指蛋白基因家族的的鉴定及ZPF207基因的功能研究[博士学位论文] [D].南京农业大学,2007.
    [16]蒋高明.植物生理生态[M].北京:高等教育出版社,2004:19l-192.
    [17]靳德明,王维金,蓝盛银,等.重穗型杂交水稻籽粒灌浆过程中强势和弱势颖花内源LAA、ABA和GA水平的动态状况[J].植物生理与分子生物学学报,2002,28(3):215-220.
    [18]李合生.植物生理生化实验原理和技术[M].北京;高等教育出版社,2000.
    [19]李美茹,刘鸿先,王以柔,等.植物细胞中的抗寒物质及其与植物抗冷性的关系[J].植物生理学通讯,1995,31(5):328-334.
    [20]李雪梅,陈强,王兰兰,等.脱落酸对小麦幼苗光合及抗氧化酶的影响[J].沈阳师范大学学报,2006,24(2):221-223.
    [21]林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25.
    [22]刘国花,韩素英,齐力旺.植物抗旱耐盐基因工程研究及应用前景[J].世界农业,2003,29l(74):44-46.
    [23]刘萌萌.大豆C2H2型锌指蛋白转录因子基因的克隆与鉴定[硕士学位论文][D].中国农业科学院,2007.
    [24]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45:1465-1474.
    [25]刘强,赵南明,Yamaguch-Shinozakik,等.DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2001,45 (1):11-16.
    [26]刘欣,李云.转录因子与植物抗逆性研究进展.农业生物技术科学,2006,22(4):61-65.
    [27]潘瑞枳,董愚德.植物生理学[M].北京:高等教育出版社,1995:322-328.
    [28]山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报,2002,9:27-31.
    [29]沈漫,黄敏仁,王明庥,等.磷脂酰甘油分子种与杨树抗寒性关系的研究[J].植物学报,1998,40(4):349-355.
    [30]苏维埃.植物对温度逆境的适应.植物生理与分子生物学[M].北京:科学出版社,2003:721-738.
    [31]孙燕,苟德明,李文鑫.C2H2型锌指蛋白研究进展[J].生命的化学,2001,21(6):445-447.
    [32]孙中海,章文才.柑桔抗寒性与膜脂肪酸组分的关系研究[J].武汉植物学研究,1990,8(1):79-85.
    [33]王春乙,娄秀荣,王建林.中国农业气象灾害对作物产量的影响[J].自然灾害学报,2007,16(5):37-43.
    [34]王果.野生大豆(Glycine soja)资源的利用研究进展.滁州学院学报,2007,9(3):74-76.
    [35]王洪春,汤章城,苏维埃,等.水稻干胚膜脂肪酸组分差异性分析[J].植物生理学报,1980,6(3):225-236.
    [36]王沛,刘瑞娟,沈裕虎,等.拟南芥Atfin1锌指蛋白的细胞定位[J].安徽农业科学,2008,36(19):8055-8056,8094.
    [37]王晓飞,程宪国,王迎波,等.Floral-dip法大豆GmDREB转录因子转拟南芥研究[J].生物技术通报,2008,5:103-107.
    [38]王晓飞.大豆转录因子GmDREB的功能分析[硕士学位论文][D].中国农业科学院,2008.
    [39]王孝宣,李树德,东惠茹,等.低温胁迫对番茄苗期和开花期脂肪酸的影响[J].园艺学报,1997,24(2):161-164.
    [40]王学奎.植物生理生化实验原理和技术(第二版)[M].北京:高等教育出版社,2006.
    [41]王迎波,单曙光,王贺,等.番茄LeDREB1转录因子基因RNAi载体的构建和鉴定[J].生物技术通报,2010,9:103-107.
    [42]王迎波.番茄LeDREB转录因子基因在转基因拟南芥中的功能分析[硕士学位论文][D].中国农业科学院,2010.
    [43]王月福,于振文,潘庆民,等.水分胁迫对耐旱性不同小麦籽粒发育和激素含量的影响[J].麦类作物,1999,19(1):49-51.
    [44]韦梅琴,李军乔.委陵菜属四种植物茎叶解剖结构的比较研究[J].青海师范大学学报,2003(3):48-50.
    [45]徐兆师.小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定[博士学位论文] [D].中国农业科学院,2005.
    [46]许守明.小盐芥C2H2类锌指蛋白基因ThZF1的克隆及其功能研究[博士学位论文] [D].中国农业大学,2005.
    [47]杨敏生,裴保华,朱之悌,白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学,2002,38(6):36-42.
    [48]杨献光,梁卫红,齐志广,等.植物非生物胁迫应答的分子机制[J].麦类作物学报,2006,26(6):158-16l.
    [49]杨致荣,王兴春,李西明,等.高等植物转录因子的研究进展[J].遗传,2004,26 (3):403-408.
    [50]余晓丹,沈晓明,颜崇淮.锌指蛋白结构和功能研究进展[J].国外医学卫生学分册,2004,31(3):171-176.
    [51]张梅.植物逆境胁迫相关转录因子研究进展[J].现代农业科技,2008,21:99.
    [52]张彤,齐麟.植物抗旱机理研究进展[J].湖北农业科学,2005,04:107-110.
    [53]张韵,郁继华,钟新榕,等.外源ABA和GA,对NaCl胁迫下黄瓜种子萌发特性的影响[J].甘肃农业大学学报,2006,41(4):27-30.
    [54]赵楠,赵飞,李玉花.锌指蛋白结构及功能研究进展[J].生物技术通讯,2009,20(1):131-134.
    [55]赵楠,赵飞,李玉花.锌指蛋白结构及功能研究进展[J].生物技术通讯,2009,20(1):131-134.
    [56]周畅,李麓芸.C2H2型锌指蛋白的研究进展[J].生命科学研究,2004,8(3):215-220.
    [57] Abe H,Yamaguchi-shinozaki K,Urao T,et al.Role of Arabidopsis Myc and Myb homologs in drought-and abscisic acid-regulated gene expression[J].Plant Cell,1997,9:1859-1868.
    [58] Ackerson R C.Regulation of soybean embryogenesis by abscisic acid[J].J Exp Bot,1984,35:403-413.
    [59] Aida M,Ishida T,Fkaki H,et a1.Genes involved in organ separation in Arabidopsis, analysis of the cup-shaped cotyledon mutant[J].Plant Cell,1997,9:841-857.
    [60] Arnab Mukhopadhyay.Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco[J].PNAS,2004,101:6309-6314.
    [61] Bai L,Zhou Y,Zhang X R.Hydrogen peroxide modulates abscisie acid signaling in Root growth and development in Arabidopsis[J].Chin Sci Bull,2007,52(8):1142-1145.
    [62] Benjamin L.GeneⅦ[M].Oxford University Press,2000:654-656.
    [63] Berg J M,Shi Y.The galvanization of biology: A growing appreciation for the roles ofzinc[J].Science,1996,271:1081-1085.
    [64] Bowler C,Van C W,Van M M,et al.Super Oxide Dismutase in Plants[J].Crit Rev in PIant Sci,1994,3:199-218.
    [65] Bowman J L,Sakai H,Jack T,et al.SUPERMAN, a regulator of floral homeotic genes in Arabidopsis[J].Development,1992,114:599-615.
    [66] Boyer I S.Plant productivity and environment[J].Science,1982,218:443-448.
    [67] Bray E A.Molecular Responses to water Deficit[J].Plant Physiol,1993,103:1035-1040.
    [68] Chattopadhyay S,Ang L H,Puente P,et al.Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression[J].Plant Cell,1998,10:673~683.
    [69] Chrispeels H E,Oettinger H,Janvier N,Tague B W.AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger 1, is expressed downstream of photomorphogenic activation[J].Plant Mol Biol,2000,42:279-290.
    [70] Claudia C Englbrecht,Heiko Schoof,Siegfried Boehm.Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics. 2004,5(39):1-32.
    [71] CLemens K R,Zhang P,Liao X.Relative contributions of the zinc fingers of transcription factorⅢA to the energetics of DNA binding[J].J Mol Biol,1994,244:23-35.
    [72] Dathan N,Zaccaro L,Esposito S,et al.The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif[J].Nucleic Acids Res,2002,30:4945-4951.
    [73] Eulgen T,Rushton P J,Robatzek S,et al.The WRKY superfamily of plant transc- ription factors[J].Trends Plant Sci,2000,5(5):199-206.
    [74] Fairall L,Schwabe J W,Chapman L.The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition[J].Nature,1993,366:483-487.
    [75] Fusuo Zhang.EnvironmentalStress and PlantBreeding[M].Beijing:Agriculture Press,1993:330-335.
    [76] Gilmour S J,Artus N N,Thomashow M F.CDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thallana[J].Plant Mol Bid,1992,18:13-21.
    [77] Grillo S,Leone A,Xu Y,Tucci M,Francione R,Hasegawa P M,Monti L,and Bressan R A.Physiol Plant,1995,93:498-504.
    [78] Guo W,Ward R W,Thamashow M F.Characterization of a cold-regulated wheat gene nelated to Arabidopsls cor 47[J].Plant Physiol,1992,100:915-922.
    [79] Gutterson N., Reuber T L.Regulation of disease resistance pathways by AP2/ERF transcription factors.Curr Opin Plant Boil,2004,7:465-471.
    [80] Hanya E C,Hannah Oettinger,Natacha Janvier,et al.AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenicactivation[J].Plant Mol Biol,2000,42:279-290.
    [81] Hsiao T,Xu I K.Sensitivity of growth of roots versus leaves to water stress:biophysical and relation to water transport[J].Sci Sil Sin,2000,5l(350):1595-1616.
    [82] Huang Ji,Zhang Hong-Sheng,CAO Ya-Jun,et al.Cloning and sequencing analysis of a novel C2H2 zinc finger protein cDNA from rice[J].J Nanjing Agri Univ,2002,25:110-112.
    [83] Jensen M K,Rung J H,Gregersen P I,et al.The HvNAC6 transcription factor: a positive of penetration resistance in barley and Arabidopsis[J].Plant Mol Biol,2007,65(1-2):137-150.
    [84] Ji Huang,Jianfei Wang,Hongsheng Zhang.Rice ZFP15 gene encoding for a novel C2H2-type zinc finger protein lacking DLN box, is regulated by spike development but not by abiotic stresses[J].Mol Biol Rep,2005,32:177-183.
    [85] Junling Huai,Jun Zheng,Guoying Wang.Overexpression of a new Cys2/His2 zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis[J].Plant Cell Tiss Organ Cult,2009,99:117–124.
    [86] Jun-Ying Wang,Xin-Li Xia,Jun-Ping Wang,et al.Stress responsive zinc-finger protein gene of populus euphratica in tobacco enhances salt tolerance[J].J Inte Plant Biol,2008,50 (1):56-61.
    [87] Kapoor S,Kobayashi A,Takatsuji H.Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degenetation of tapetum and pollen abortion in petunia[J].Plant Cell,2002,14:2353-2367.
    [88] Kim J C,Lee S H,Cheong Y H.A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J].Plant J,2001,25:247-259.
    [89] Kobayashi A,Sakmoto A,Kuho K,et al.Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia[J].Plant J,1998,13(4):571-576.
    [90] Kononowicz A K,Nelson D E,Singh N K,Hasegawa P M,and Bressan R A.Plant Cell,1996,4:513-524.
    [91] Li Jia Qu,Yu Xian Zhu.Transcription factor families in Arabidopsis: major progress and outstanding issues for future research[J].Curr Opin Plant Biol,2006,9:544-549.
    [92] Lippuner V,Cyert M S,Gasser C S.Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast[J].J Biol Chem,1996,271:12859-12866.
    [93] Liu Q,Kqsuga M, Sakuma Y,et al.Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression responsively in Arabidopsis[J].Plant Cell,1998,10:1391-1406.
    [94] Lyons J M.Chilling injury in plants [J].Ann rev Plant Physiol,1973,24:445-466.
    [95] Maurel C.Aquaporins and Water PermeabiliIy of Plant Membranes[J].Rev Plant Physiol Plant Mol Biol,1997,48:399-429.
    [96] MiguelA,Rodriguez Milla,Jared Townsend,et al.The Arabidopsis AtDi19 gene familyencodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways[J].Plant Mol Biol,2006,61:13-30.
    [97] Mika Yamada.Effects of free proline accumulation in petunias under drought stress[J].J Exp Bot,2005,56:1975-1981.
    [98] Miller J,McLachlan A D,Klug A.Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes[J].EMBO J,1985,4:1609-1614.
    [99] Mishra G,Zhang W,Deng F,et al.A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis[J].Science,2006,312,264-266.
    [100] Nakagawa H,Saijyo T,Yamauchi N,et a1.Effects of sugars and Abscisic acid Oil somatic embryogenesis from melon(Cueumis melo L)expanded cotyledon[J].Sci Hortic,2001,90(1-2):85-92.
    [101] Neven L G,Haskell D W,Hofig A,et a1.Characterization of a spinaach gene responsive to low temperature and water stress [J].Plant Mol Biol,1993,21:291-305.
    [102] Nishiwaki M,Fujino K,Koda Y,et a1.Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daueus carota L.)seedlings in culture[J].Planta,2000,21l(5):756-759.
    [103] Nolte R T,Conlin R M,Harrison S C.Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factorⅢA complex[J].Proc Natl Acad Sci USA,1998,95:2938-2943.
    [104] Olsen A N,Ernst H A,Leggio L L,et al.NAC transcription factors: structurally distinct,functionally diverse [J].Trends in Plant Sci,2005,10(2):79-87.
    [105] Riechmann J L,Meyerowitz E M.The AP2/EREBP family of plant transcription factors[J].Biol Chem,1998,379:633-646.
    [106] Sakai H,Medrano L J,Meyerowitz E M.Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries[J].Nature,1995,378:199-203.
    [107] Sakamoto H,Araki T,Meshi T,et al.Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress[J].Gene,2000,248:23-32.
    [108] Sakamoto H.Maruyama K.Meshi T.Iwabuchi M,et al.Arabidopsis Cys2/His2-Type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions[J].Plant Physiol,2004,136:2734-2746.
    [109] Sakuma Y,Liu Q,Dubouzet J G,et al.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J].Biochem Biophys Res Commu,2002,290:998-1009.
    [110] Serrano R,Gaxioda R.Microbial Models and salt stress Tolerance in Plants[J].Crit Rev in Plant Sci,1994,13(2):121-138.
    [111] Shen Q,Zhan G P,Ho T H.Molecular nature of abscisic Acid(ABA) responsive complexe:composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley[J].Plant Cell,1996,8:1107-1119.
    [112] Shinozaki K,and Yamaguchi-Shinozaki K.Gene expression and signal transduction in water-stress response[J].Plant Physiol,1997,115:327-334.
    [113] ShouMing Xu,XueChen Wang,Jia Chen,et al.Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress[J].Plant Cell Rep,2007,26:497-506.
    [114] ShuJing Sun,ShuQiao Guo,Xia Yang,et al.Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice[J]. J Exp Bot,2010,61(10):2807-2818.
    [115] Singh N K,Bracker C A,Hasegawa P M,et al.Characterization of osmotin:thaumatilike protein associated with osmitic adaptation in plant cells[J],Plant Physiol,1987,85:739-743.
    [116] Sultan Ciftci-Yilmaz,Mustafa R. Morsy,Luhua Song,et al.The EAR-motif of the Cys2/His2-type Zinc Finger Protein Zat7 Plays a Key Role in the Defense Response of Arabidopsis to Salinity Stress[J].J Biol Chem,2007,282(12):9260-9268.
    [117] Takatsuji H,Mot M,Benfey P N,et al.Characterization of a zinc finger DNA-binding protein expressed specifically in petunia petals and seedlings[J].EMBO J,1992,11:241-249.
    [118] Thomas H J,Jinhong Li,Charles P S,et al.Analysis of members of the Silene latifolia Cys2/His2 zinc-finger transcription factor family during dioecious flower development and in a novel stamen-defective mutant ssf1[J].Planta,2005,220:559-571.
    [119] Tsuneo K.The changes of endogenous abscisie acid in developing grain of two eultivars with different grain size[J].Jap J Crop SCi,1993,62(3):456-461.
    [120] Valliyodan B,Nguyen H T.Understanding regulatory networks and engineering for enhanced drought tolerance in plants[J].Curr Opin Plant Biol,2006,9:189-195.
    [121] Wang D,Yang J S.Cloning and characterization of cDNA encoding cotton STZ like protein[J].J Fudan Univ (Natural Science),2002,41:42-46.
    [122] Washburn K B,Davis E A,Ackerman S.Coactivators and TAFs of transcription activation in wheat[J].Plant Mol Biol,1997,35:1037-1043.
    [123] Weigel D,Meyerowzit E M.The ABCs of floral homeotic genes[J].Cell,1994,78:203-209.
    [124] Xie ZM(谢宗铭),Dong YM (董永梅),Chen SY (陈受宜).Molecular and physiological mechanisms of higher plant abiotic stress adaptation[J].J Anhui Agri Sci,2008,36:7996-7999.
    [125] Yoshioka K,Fukushima S,Yamazaki T,et al.The plant zinc finger protein ZPT2-2 has a unique mode of DNA interaction[J].J Biol Chem,2001,276:35802-25807.
    [126] Yun J Y,Weigel D,Lee I.Ectopic expression of SUPERMAN suppresses development ofpetals and stamens[J].Plant Cell Physiol,2002,43:52-57.
    [127] Zhang Z L,Xing P,Zou X,et al.A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cell[J].Plant Physiol,2004,134:1500-1513.
    [128] Zhu J K,Salt and drought stress signal transduction in plants[J].Annu Rev Plant Biol,2002,53:247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700