管道缺陷有限元仿真技术量化方法改进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道系统广泛应用于冶金、石油、化工以及城市水暖供应等工业部门中,工业管道的工作条件非常恶劣,容易发生腐蚀,疲劳破坏或由管道内部的潜在缺陷发展成破损而引起泄漏事故。尤其是铁磁性油气输送管道由于长时间的腐蚀、磨损或意外的机械损伤等原因会形成各种缺陷.如未能在第一时间发现并及时做出修理,将最终导致管道内介质的泄漏,从而引发各类管道安全事故。为全面了解管线的腐蚀、破损状况,尽可能及时的对危险缺陷点进行处理,防止管道泄漏事故的发生,或是最大限度的减少事故造成的损失,必须利用管道检测装置对管道进行定期检测,以便及时发现管道缺陷.并且获得其位置、类型、几何尺寸等精确信息,从而为管道的安全评价、寿命预测、检修维护等提供可靠依据。因此,无损检测技术的应用和发展在对管道进行监测和诊断方面就显得尤其重要。
     管道内缺陷检测是在役油气管道缺陷无损检测的重要手段之一,在保障管道的安全、高效运行方面发挥着不可替代的作用。管道内缺陷检测分为漏磁缺陷无损检测和超声波缺陷无损检测,在我国,应用比较广泛的是漏磁缺陷检测。对在役含缺陷燃气管道漏磁检测技术进行研究,从而获得相对精确的管道缺陷特征参数,为定量评价管道缺陷的剩余强度提供可靠的缺陷数据。本文以磁通量泄漏(Magnetic Flux Leakage,简称MFL,即漏磁)原理为基础,以通过求解麦克斯韦方程的数值计算将有限元方法应用于建立缺陷漏磁场模型为核心,主要从以下方面进行论述和研究:
     (1)简单阐述国内外管道事业的发展及现状,作为运输载体其具有不可比拟的优越性;
     (2)介绍管道事故的常见类型——泄漏,辨识燃气管道安全运行存在的危险有害因素;
     (3)分析城市埋地燃气管网铺设的特点,试图揭示管道事故发生的规律,引出管道泄漏检测的必要性;
     (4)综述管道缺陷无损检测的方法,并仔细分析比对管道内缺陷漏磁检测和超声波检测,简单介绍国内外漏磁检测技术的发展;
     (5)介绍燃气管道漏磁检测系统的发展及在线监测装置的机械结构、工作原理和组成系统的特点;
     (6)阐述电磁场基本理论及铁磁性材料缺陷漏磁产生的机理,翔实论述MFL检测原理;
     (7)探讨缺陷漏磁场分析方法,并比较偶极子模型方法和有限元模型方法的优缺,通过求解麦克斯韦方程,建立缺陷漏磁场有限元模型;
     (8)概述有限元仿真基本理论及解题步骤,通过信号反演得出缺陷特征参数与漏磁场的关系,分析模型仿真产生的信号误差并探究修正方法;
     (9)简单介绍有限元仿真软件——ANSYS,并建立管道缺陷漏磁检测模型,并借助计算机模拟,运用有限元仿真技术对检测数据进行处理,得到缺陷漏磁场云图;
     (10)分别就缺陷的不同长度、宽度及深度进行有限元仿真,得到相应的漏磁场云图及轴向和径向分量波形图,研究缺陷的几何参数与漏磁信号的对应关系及变化规律;
     (11)说明此检测方法的不足之处和改进展望,并探寻进一步研究的方向,提出管道缺陷分级评价思想。
Pipeline system is widely used in metallurgy, petroleum,chemical industry and urban plumbing supply industrial sectors. Because of industrial pipes working conditions are bad, prone to corrosion, fatigue damage or to defects in the development pipeline of potential internal damage caused by leakage.In particular, ferromagnetic oil and gas pipelines due to a long period of corrosion,wear and tear or accidental mechanical damage and other reasons will form a variety of defects[12]. Failure to discover and to make repairs, will eventually lead to pipe media leak, causing all kinds of pipeline accidents. A comprehensive understanding of pipeline corrosion, damaged condition,as much as possible against the risk of vulnerabilities in a timely manner for processing, to prevent a pipeline spill incidents, or to minimize losses caused by the accident. We must take advantage of pipeline inspection device on a regular basis pipeline inspection. The timely detection of pipeline defects and to obtain its location, type, geometry and so on accurate information, so as to pipeline safety evaluation, life prediction, and so provide a reliable basis for repair and maintenance[7]. Therefore, pipeline monitoring and diagnosis of non-des(?)uctive testing technology has become an important aspect.
     Inner surface pipeline detection is an important means of flaw detection, and to ensure the safe operation of pipelines play an important role. Magnetic flux leakage pipe inspection is divided inner surface flaw detection and surface flaw detection, in which magnetic flux leakage flaw detection applications is especially widespread in China. Flaws in the service with Gas Pipeline Magnetic Flux Leakage detection technology research, to gain a relatively accurate pipeline flaws characteristic parameters for the quantitative evaluation of pipeline flaws of the residual strength of the defect to provide reliable data. In this paper, magnetic; flux leakage (Magnetic Flux Leakage, referred to as MFL, the magnetic flux leakage) principle as the basis, by solving Maxwell's equations numerical finite element method is applied to establish defect leakage magnetic field model as the core, mainly from the following aspects of exposition and research.
     a. Briefly discusses the development of domestic and international pipeline and the status quo, as a transport carrier of its incomparable superiority.
     b. Introducing the common types of pipeline accidents-spills, identify the safe operation of gas pipelines and present danger of harmful factors.
     c. Analysis of urban buried gas pipeline laying the characteristics of an attempt to reveal the laws of pipeline accidents, leads to the need for pipeline leak detection.
     d. Summary of Pipeline non-destructive testing methods, and a careful analysis of the pipeline than the magnetic flux leakage flaw detection and ultrasonic testing, magnetic flux leakage testing at home and abroad brief technology development.
     e. Introduced the Gas Pipeline Magnetic Flux Leakage Detection System development and on-line monitoring devices, mechanical structure, working principle and the characteristics of the composition of the system.
     f. Sets out the basic theory of electromagnetic fields and the iron magnetic material produced by magnetic flux leakage defect mechanism, detailed discussion MFL detection principle.
     g. Leakage magnetic field analysis method to explore and compare the dipole model approach and the finite element model approach the advantages and disadvantages, by solving the Maxwell equation,finite element model of the magnetic field leakage defects.
     h. An overview of the basic theory of finite element simulation and problem-solving steps, obtained by inversion of the signal parameters and magnetic flux leakage defect feature the relationship between the analytical model simulation of signals generated by the error correction method and explore.
     i. An outline of the finite element simulation software-ANSYS, and the establishment of Pipeline Magnetic Flux Leakage Inspection model, and rely on computer simulation, using finite element simulation of the test data processed by magnetic flux leakage defect cloud.
     j. Respectively on the defects of different length, width and depth of the finite element simulation, the corresponding leakage magnetic cloud and the axial and radial component waveform to study the defects of geometric parameters of the relationship between magnetic flux leakage signal and change the corresponding law.
     k. Illustrate the detection method deficiencies and improve the outlook, and to explore the direction for further research and put forward ideas pipeline defects grading.
引文
[1]Anon. Intelligent inspection and assessment:Life extension for offshore pipeline. Oil Gas European Magazine,2002,28(2).
    [2]J. Philip, C. B. Rao, T. Jayakumar,B.raj.A new optical technique for detection of defects in ferromagnetic materials and components. NDT&E International,2003, (33).
    [3]G.Dobmann. Magnetic leakage flux testing with probes:physical principles and restrictions for application. NDT International,1997.
    [4]RP-F101. Recommended practice RP-F101 Corroded Pipelines. DNV,1999.
    [5]David Shank. Methodology to Develop Fitness-For-Service Assessments For Crake Detection In-Line Inspectioin Date. IPC,2006.
    [6]PUC-RIO. Performance of In-Line Inspection Tools and Their Influence on the Structural Reliability of Corroded Pipeline. LPC,2006.
    [7]CHET SANDBERG. The Application of a Continuous Leak Detection System to Pipeline and Associated Equipments. IEEE TRANSCATION ON INDUSTRY APPLICATION,1989,25(5).
    [8]Jim. C, P. Liou. Leak detection by mass balance effective for Norman wells line.Oil& Gas Journal,1996(3).
    [9]AlanS. Willsky. A survey of design methods for failure detection in dynamic system. Automatic,1976(12).
    [10]Tze-thong Chien,Milton B.Adams.A sequential failure detection technique and its application. IEEE Transactions on automatic control.1976.
    [11]J. Philip, C. B. Rao, T. Jayakumar, B. raj. A new optical technique for detection of defects in ferromagnetic materials and components, NDT&E International,2000(33).
    [12]Furness. R. A, Development in Pipeline Instrumentation, Measurement and Control,1987.
    [13]D. P. Saini, S. L. Coulter. Fiber Sensors Sniff out Environmental Pollutants. PHOTONICSSPECTRA.1996(5).
    [14]Jorge J. erdomo, Robinson J. edina, Rish-based analysis suggests expanding maintenance interval, Pipe&Gas Industry March 2000.
    [15]Graham L. Hearn. Electrostatic Ignition Hazards from Flexible Intermediate Bulk Containers (FIBCs) with Materials of Minimum Ignition Energies Down to 0.12 mJ. IEEE Transactions on Industry Applications.Vol.37 No.3. May/June 2001.
    [16]杨理践,刘秀清,魏红军.ANSYS在管道漏磁法检测中的研究与应用.论文集.2000.
    [17]杨理践,张青斌,高松巍.ANSYS在漏磁检测有源磁化技术中的应用.辽宁省无损检测学会第八届学术年会论文集.2006.
    [18]臧铁军,臧天红.我国管道运输的发展概况.管道技术与设备,1998,(4).
    [19]王为民.国内外石油管道输送技术发展综述.管道技术与设备,2007,(4).
    [10]高福庆.管道检测的必要性.管道技术与设备,1998,(1).
    [21]常大海,蒋连生,肖蔚.输油管道事故统计分析.油气储运,2005,14(6).
    [22]高福庆,张世华,刘景美.管道腐蚀监测标准与管道安全工程.管道技术与设备,1999,(3).
    [23]何辅云.石油管道的高速检测与缺陷识别.无损检测,2000,22(5).
    [24]杜顺学,何仁洋.压力管道的运行维护与检验,第二届全国管道技术学术交流会议论文集(压力容器2002增刊),浙江宁波,2002.
    [25]王霖.我国管道运输已成为五大运输行业之一.石油消息,1995.
    [26]赵荣飚.石油管道工业发展战略前景研究.管道技术与设备,1994.
    [27]宾斯(K.J.Bins),(英)劳伦松(P. J. Lawperson).电场及磁场.余世杰,陶民生译.北京:人民教育出版社,1981.
    [28]程顺峰,武新军,李涛等.工业管道漏磁无损检测传感器的研制.无损检测,2006.
    [29]K.H.侯伯纳,工程师用有限元素法.邹十践,张超和译.北京:机械工业出版社,1991.
    [30]李路明,杨海青,黄松岭.便携式管道漏磁检测系统.无损检测,2003,25(4).
    [31]李明忠,丁克勤.管道漏磁检测技术发展现状与存在问题.中国锅炉压力容器安全,2003,19(1).
    [32]曾余庚,徐国华等.电磁场有限单元法.北京:科学出版社,1992.
    [33]唐兴伦,范群波,张朝晖等.ANSYS工程应用教程:热与电磁学篇.北京:中国铁道出版社,2002.
    [34]王自明.无损检测综合知识.北京:机械工业出版社,2005.
    [35]刘松平.无损检测新技术——永恒的发展主题.无损检测,2004,26(9).
    [36]佚名.更快、更可靠和更直观——第16届世界无损检测会议综述.无损检测,2004.
    [37]单宝华.超声相控阵检测技术及其应用.无损检测,2004,26(5).
    [38]王自明.无损检测诊断现场实用技术.北京:机械工业出版社,2003.
    [39]汤建飞.基于激光错位散斑干涉的复合材料无损检测.南京航空航天大学学报,2005,37(1).
    [40]曾宪林.激光超声技术及其在无损检测中的应用.激光与红外,2002,32(4).
    [41]王迅.红外热波无损检测技术及其进展.无损检测,2004,26(10).
    [42]常景龙,李铁.输气管道泄测检测技术的选择和优化.油气储运,2000,19(5).
    [43]陈华波,涂亚庆.输油管道泄漏检测方法综述.管道技术与设备,2000,(1).
    [44]蒋仕章,蒲家宁.石油天然气长输管道泄漏检测及定位方法.油气储运,2000,19(3).
    [45]杨杰,王桂增.输气管道泄漏诊断技术综述.化工自动化及仪表,2004,31(3).
    [46]王占山,张化光,冯健等.长距离流体输送管道泄漏检测与定位技术的现状与展望.化工自动化及仪表,2003,30(5).
    [47]姜弘彦.管道泄漏检测技术及便携式检漏仪的研究:[硕士学位论文],天津大学,1994.
    [48]王立宁.原油输送管道泄漏检测理论及其监测系统的研究:[博士学位论文],天津大学,1998.
    [49]靳世久,孙家鼒.强环境下噪声地下管道泄漏检测.天津大学学报,1994,27(6).
    [50]唐秀家.不等温长输管道泄漏定位理论.北京大学学报(自然科学版),1997,33(5).
    [51]唐秀家,颜大春.基于神经网络的管道泄漏检测仪器及方法.北京大学学报,1997,33(3).
    [52]陶洛文,方崇智等.以辨识为基础的长输管线故障定位.清华大学学报,1986,26(3).
    [53]张贤达,现代信号处理(第二版).北京:清华大学出版社,2002.
    [54]陈华波,涂亚庆.基于统计推断的管线检漏方法.重庆市自动化与仪器仪表学会学术交流论文集,2000(4).
    [55]蔡正敏,彭飞等.长输管道泄漏故障诊断方法的研究,应用力学学报,2002,19(2).
    [56]白莉,岳前进等.噪声干扰条件下长输管道检漏的一致最大功效检验,石油学报,2004.
    [57]张来斌,王朝辉.输油管道故障诊断中的实时模型法,油气储运,2003.
    [58]李海青,黄志尧.软测量技术原理及应用,北京:化学工业出版社,2000.
    [59]文成林,周东华.多尺度估计理论及其应用,北京:清华大学出版社,2002.
    [60]张贤达.现代信号处理(第二版),北京:清华大学出版社,2002.
    [61]汪友生,张延华.漏磁信号的有限元分析与仿真.计算机仿真,2005,22(7).
    [62]金涛.海底管道漏磁检测信号处理及缺陷识别研究.2005.
    [63]李久春,肖兴江,钟喜梅等.地下在役长输管道腐蚀缺陷检测装置.中国:实用新型专利(00204917).2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700