水生植物净化富营养化水体效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国水体富营养化比例逐年增加,富营养化程度不断加剧,形势十分严峻。水生植物具有良好的净水功能、生态效应、景观功能和潜在的经济价值,利用水生植物净化富营养化水体前景十分广阔。本文旨在为富营养化水体的植物修复提供理论依据和技术支撑。采用室内试验方式,重点对比考察了太湖水系土著水生物种黄花水龙净化富营养化水体效果,并运用物量衡算和分布求解技术探讨了黄花水龙净化氮磷机理,最后综合比较了太湖水系常见32种水生植物净化富营养化水体能力,主要结论如下:
     夏季,每天每克鲜重黄花水龙可去除0.119mg N和0.014mg P,是水葫芦、水花生和对照(未种水生植物)的2.6、2.9、3.8倍和0.7、1.9、5倍;冬季,每天每克鲜重黄花水龙去除0.025mg N和0.003mg P,是对照的5倍和2倍。黄花水龙对NH_3-N和NO_3~--N亦有良好的去除效果。
     冬季种有黄花水龙的水体中,TN去除原因依次为:天然水体中微生物(对TN去除贡献率为70.8%)、植物存在增加的微生物(12.8%)、植物代谢(18.0%)、植物吸附(1.4%)、沉淀(0.5%)和植物存储(-3.2%);TP去除原因依次为:植物存在增加的微生物(60.9%)、天然水体中微生物(30.5%)、植物代谢(20.6%)、沉淀(8.3%)、植物吸附(6.6%)和植物存储(-9.4%)。并估算了夏季黄花水龙净化氮磷机理。
     最后,本文得到了32种水生植物适应能力序列、蒸腾能力序列、富氧能力序列、净化TN、TP、NH_3-N、NO_x-N、TP、RP和Chl-a能力序列。整个试验期内,水生植物对水体中TN和TP去除的贡献率为3.3%和5.6%,对整个系统中TN和TP去除的贡献率为17.5%和18.2%;藻类对水体中TN和TP去除的贡献率分别为55.6%和38.9%;卵砾石基质对水体中TN和TP去除的贡献率为11.7%和25.2%。
The status of Chinese eutrophic water is very severe: the ratio of eutrophic water increases every year, and eutrophication degree intensifies continuously. Due to their good purifying ability, ecological effects, landscape value and potentially economic value, hydrophytes have prosperous future in treating eutrophic water. Theoretical and technical supports were provided by indoor experiments on using hydrophytes to restore eutrophic water. Purifying effect of Jussiaea stipulacea Ohwi, a native kind of hydrophyte in Taihu Lake Basin, were comparatively stutied in eturophic water. And its purifying mechanism on nitrogen and phophorus were discussed through mass balance. Last, purifying ability sequences of 32 kinds of hydrophytes in eutrophic water were compared. The main conclusions are as follows:
     In summer, 0.119 mg Nand 0.014 mg P can be removed by per gram of Jussiaea stipulacea Ohwi per day, which are 1.6, 1.9, 2.8 times and -0.3, 0.9, 4 times greater than those of Eichhornia crassipes (Mart.) Solms.,Alternanthera philoxeroides(Mart.)Griseb., and control(unvegetated), respectively. In winter, 0.025 mg N and 0.003 mg P can be removed by per gram of Jussiaea stipulacea Ohwi per day, which are 4 times and 1 times greater than those of control. Jussiaea stipulacea Ohwi also has good removal effects for ammonia and nitrite.
     In winter, the contribution rates for TN removal in studied water with Jussiaea stipulacea Ohwi are Microorganism in natural water(70.8%), Increased microorganism due to the existence of hydrophyte(12.8%), Hydrophyte metabolism(18.0%), Hydrophyte adsorption(1.4%), Sedimentation(0.5%), and Hydrophyte storage(-3.2%). The contribution rates for TP removal are Increased microorganism due to the existence of hydrophyte(60.9%), Microorganism in natural water(30.5%), Hydrophyte metabolism(20.6%), Sedimentation(8.3%), Hydrophyte adsorption(6.6%)and Hydrophyte storage(-9.4%). The removal mechanisms of TN and TP in summer were also estimated.
     Besides, Purifying ability sequences on TN, TP, NH_3-N, NO_X-N, TP, RP and Chl-a of 32 kinds of hydrophytes were calculated, as well as Adaptability sequence, Transpiration rate sequence, Oxygen enrichment ability sequence. In the whole experiment period, the contribution rates of hyrophytes were 3.3%and 5.6%on TN and TP removal in water, and 17.5%and 18.2%on TN and TP removal in the whole system. The contribution rates of algae were 55.6%and 38.9%and the rates of gravels were 11.7%and 25.2%on TN and TP removal in water.
引文
[1] Madsen E L. Determining in situ biodegradation: Facts and Challenges[J]. Environ. Sci. & Technol, 1991, 25 (10): 1663-1672.
    [2] R. B. E. Shutes. Artificial wetlands and water quality improvement[J]. Environment International, 2001, 26: 441-447.
    [3] Dongru Qiu et al. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China[J]. Ecological Engineering, 2001, 18: 147-156.
    [4] 杨爱玲.地表水环境面源污染研究[J].环境科学进展,1999,7(5):60~67.
    [5] 葛滢,王晓月,常杰.不同程度富营养化水中植物净化能力比较研究[J].环境科学学报,1999,19(6):690-692.
    [6] 童吕华,杨肖娥,濮培民.低温季节水生植物对污染水体的净化效果研究[J].水土保持学报,2003,17(2):159-162.
    [7] 许航,陈焕壮,熊启权,等.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69-73.
    [8] 王超,王沛芳,唐劲松等.河道沿岸芦苇带对氨氮削减特性研究[J].水科学进展,2003,14(3):311-317.
    [9] 袁蓉,刘建武,成旦红等.凤眼莲对多环芳烃(萘)有机废水的净化[J].上海大学学报(自然科学版),2004,10(3):272-276.
    [10] 黄文凤,赵君科,黄明万.TNT-RDX混合废水处理的实验研究——生物-吸附法[J].含能材料,1998,6(2):49-53.
    [11] M. -L. de Casabianca, T. Laugier, F. Posada. Pertoliferous wastewater treatment with water hyacinth; experimental statement[J]. Waste Management, 1995, 15(8): 651-655.
    [12] Reeta D. Sooknah, Ann C. Wilkie. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater[J]. Ecological Engineering, 2004, 22: 27-42.
    [13] Ahmed El-Gendy. Leachate treatment using natural systems[D]. Ph. D thesis for University of Windsor, 2003.
    [14] A. Mehra, M. E. Farago, D. K. Banerjee. A Study of Eichhornia crassipes Growing in the Overbank and Floodplain Soils of the River Yamuna in Delhi, India[J]. Environmental Monitoring and Assessment, 2000, 60(1): 25-45.
    [15] Y. L. Zhu, A. M. Zayed, J-H. Qian, et al. Phtoaccumulation of trace elements by wetland plants: Ⅱ. water hyacinth[J]. Journal of Environmental Quality, 1999, 28(1): 339-344.
    [16] Andreas Klumpp, Konrad Bauer, Charis Franz-Gerstein, Max de Menezes. Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia(Brazil) [J]. Environment International, 2002, 28: 165-171.
    [17] Kuber C. Bhainsa, S. F. D Souza. Uranium (Ⅵ) biosorption by dried roots of Eichhornia Crassipes (water hyacinth) [J]. J. ENVIRON. SCI. HEALTH, 2001, A36(9): 1621-1631.
    [18] Colleen Kelley, Abigale J. Curtis, Jennifer K. Uno, Courtney L. Berman. Spectroscopic studies of the interaction of Eu(Ⅲ) with the roots of water hyacinth[J]. Water, Air, & Soil Pollution, 2000, 119(1-4): 171-176.
    [19] 吴振斌,邱东茹,贺锋,等.水生植物对富营养化水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    [20] 朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展[J].上海环境科学,2002,21(9):564-570.
    [21] 王海珍等.水生植被对富营养化湖泊生态恢复的作用[J].自然杂志,24(1):33-36.
    [22] Alka Sharma, Mahendra K. Gupta, Pradeep K. Singhal. Toxic effect of leachater of water hyacinth decay on the growth of Scenedesmus Obliquus[J]. Wat. Res., 1996, 30(10): 2281-2286.
    [23] M. E. Soltan, M. N. Rashed. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations[J]. Advances in Environmental Research, 2003, 7: 321-334.
    [24] 李峰民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水,2004,20(11):18-21.
    [25] 刘保元,邱东茹,吴振斌.富营养浅水湖水生植被重建对底栖动物的影响[J].应用与环境生物学报,1997,3(4):323-327.
    [26] 郭晓鸣,高光,魏云等.伊乐藻—草鱼圈养复合生态系统中水生生物的变化和影响[J].湖泊科学(增刊),1996,6(8):79-91.
    [27] 曹革禾.四种生态类型的水生维管束植物净化能力的研究[J].水产科学,1990,9(3):8-11.
    [28] Mara DD, Pearson HW. Artificial fresh water environments: waste stabilisation ponds. In: Schoernborn W, editor. Biotechnology. Weinheim, Germany: VCH Verlagsgesellschaft; 1986. p. 177-206.
    [29] Reed SC. Nitrogen removal in stabilization ponds[J]. J WPCF, 1985, 57(1): 39-45.
    [30] Santos MCR, Oliveira JFS. Nitrogen transformations and removal in waste stabilization ponds in Portugal[J]. Water Sci Technol, 1987, 19(12): 123-30.
    [31] Reddy K. R., Debusk T. A. State-of-the art utilization of aquatic plants in water pollution control[J]. Wat. Sci. Tech., 1987, 19(10): 61-79.
    [32] Pano A, Middlebrooks EJ. Ammonia nitrogen removal in facultative wastewater stabilization ponds[J]. J WPCF, 1982, 54: 344-51.
    [33] Silva SA, de Pliveira R, Soares J, Mara DD, Pearson HW. Nitrogen removal in pond systems with different configurations and geometries[J]. Water Sci Technol, 1995, 31: 321-30.
    [34] Soares J, Silva SA, de Oliveira R, Araujo ALC, Mara DD, Pearson HW. Ammonia removal in a pilot-scale WSP complex in Northeast Brazil[J]. Water Sci Technoi, 1996, 33: 165-71.
    [35] Ferrara RA, Avci CB. Nitrogen dynamics in waste stabilisation ponds[J]. J WPCF, 1982, 54(4): 361-9.
    [36] Alaerts GJ, Mahbubar MR, Kelderman P. Performance of a full-scale duckweed-covered sewage lagoon[J]. Water Res, 1996, 30: 843-52.
    [37] Boniardi N, Vatta G, Rota R, Nano G, Carra S. Removal of water pollutants by Lemna gibba[J]. J Chem Eng, 1994, 54: 41-8.
    [38] Vatta G, Rota R, Boniardi N, Nano G. Dynamic modeling of wastewater treatment plants based on Lemna gibba[J]. Biochem Eng J, 1995, 57: 37-48.
    [39] Vermaat JE, Hanif MK. Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of wastewater[J]. Water Res, 1998, 32(9): 2569-2576.
    [40] Zimmo OR, Al-Sa'ed R, van der Steen P, Gijzen HJ. Comparison between algae-based and duckweed-based wastewater treatment: differences in environmental conditions and nitrogen transformations[J]. Water Sci Technol, 2000, 42(10): 215-22.
    [41] K. orner S, Vermaat JE. The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater[J]. Water Res, 1998, 32: 3651-61.
    [42] 刘超翔,胡洪营,张健,等.人工复合生态床处理低浓度农村污水[J].中国给水排水,2002,18(7):1-4.
    [43] YOUNGCHUL KIM, WAN-JOONG KIM. Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds[J]. Wat. Res., 2000, 34(13): 3285-3294.
    [44] Xuebao Li, Zhenbin Wu, Guangyuan He. Effects of low temperature and physiological age on superoxide dismutase in water hyacinth[J]. Aquatic Botany, 1995, 50: 193-200.
    [45] Elham A. Ghabbour, Geoffrey Davies, Yam-Yuen Lam, Marcy E. Vozzella. Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes [Mart.]Solm-Laubach Pontedeficeae) in the Nile Delta, Egypt[J]. Environmental Pollution, 2004, 131: 445-451.
    [46] A. E. El-Enany, A. M. A. Maien. Isolation of Cd-binding protein of water hyacinth (Eichhornia crassipes) grown in Nile river water[J]. Water, Air, & Soil Pollution, 1996, 87(1-4): 357-362.
    [47] 况琪军,夏宜铮,吴振斌,等.人工模拟生态系统中水生植物与藻类的相关性研究[J].水生生物学报,1997,21(1):90-93.
    [48] 李文朝.富营养水体中常绿水生植被组建及净化效果研究[J].中国环境科学,1997,17(1):53-57.
    [49] 井艳文,等.利用生物浮床技术进行水体修复研究与示范[J].北京水利,2003,6:20-22.
    [50] 汪松年.上海水生态修复实例调查[J].水利规划与设计,2005,2:26-30.
    [51] 程南宁.渐沉式沉床恢复沉水植物的生长条件研究[D].河海大学硕士论文,2005.
    [52] 王超,王沛芳.城市水生态系统建设与管理[M].北京:科学出版社,2004.P.241.
    [53] 赵群.南四湖水环境问题以及修复对策的探讨[J].环境科学动态,2005,1:29-31.
    [54] 周钧.江苏水生态修复中的新技术应用[J].水利技术监督,2004,2:49-51.
    [55] 徐海波.水塘湿地系统对氮磷的截留净化效应研究[D].河海大学硕士论文,2005.
    [56] 胡颖.河流和沟渠对氮磷的自然净化效果试验研究[D].河海大学硕士论文,2005.
    [57] 董哲仁.生态—生物方法水体修复技术[J].中国水利,2002,8-11.
    [58] 董哲仁.受损水体修复的生态工程研究与示范[J].中国水利,2004,64-66.
    [59] Y. Q. Zhao, Anti-sized reed bed system for animal wastewater treatment: a comparative study[J]. Water Research, 2004, 38: 2907-2917.
    [60] 成水平等.香蒲、灯心草人工湿地的研究——Ⅱ.净化污水的空间[J].湖泊科学,1998,10(1):62-66.
    [61] 颜素珠,范允平.黄花水龙与水龙形态结构及结构的比较观察[J].广西植物,1997,17(2):152-157.
    [62] 常福辰,施国新,丁小余,等.水龙营养器官的形态结构生态适应[J].南京师范大学学报(自然科学版),2003,26(1):101-105.
    [63] 金相灿,屠清英.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    [64] 万志刚,沈颂东,顾福根,等.几种水生维管束植物对水中氮、磷吸收率的比较[J].淡水渔业,2004,34(5):6-8.
    [65] 黄蕾,翟建平,王传瑜,等.4种水生植物在冬季脱氮除磷效果的试验研究[J].农业环境科学学报,2005,24(2):366-370.
    [66] Zimmo O. R., van der Steen N. P., Gijzen H. J.. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stablisation ponds [J]. Water Research, 2004, 38(4): 913-920.
    [67] 朱绍华.超声波灭菌试验初探[J].食品工业科技,1998,1:12-14.
    [68] 陈曦.辐照灭菌在水处理中的应用[J].福建环境,1998,15.
    [69] 王蕊.冷杀菌技术在原料乳保鲜中的应用[J].CHINA DAIRY,49-51.
    [70] 慕峰,臧维玲.养殖用水纯净化处理技术及应用.水产科技情报[J],2005,32(3):117-120.
    [71] 曹德康,等.臭氧在水消毒中的应用[J].中国公共卫生,2005,21(5):629-631.
    [72] 张静,等.TiO_2光催化处理饮用水的研究进展[J].江西科学,2005,23(3):236-239.
    [73] Nimal P. D. Gamage, Takashi Asaeda. Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria[J]. Hydrobiologia, 2005, 541: 13-27.
    [74] 吴叶玲.测定叶绿素a方法的改进.福建分析测定[J].2006,15(2),38-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700