提高海洋构筑物混凝土保护层抗渗抗裂性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外对既有海洋工程的大量调查得出:海洋环境中的Cl~-通过混凝土保护层渗入到结构内部引起钢筋腐蚀是导致构筑物过早破坏(20~30年)的最主要原因。通过综合分析认为,一定厚度的、低渗透性的混凝土保护层是延长海洋环境中混凝土构筑物服役寿命的关键。为此,本文基于铁道部科技司“东南沿海铁路混凝土结构耐久性设计参数与技术措施的研究”课题的要求,围绕混凝土保护层的抗渗与抗裂性能,从材料和施工的角度,进行了高抗渗抗裂混凝土及其影响因素和高耐久壳坚隔联保护层构造的研究,取得了如下成果:
     1.研究了湿棉絮覆盖、喷养护剂、塑料薄膜密封等三种养护方法对混凝土强度、收缩、中心温升和抗渗性的影响,并通过强度、氯离子渗透深度、钢筋腐蚀电位、加速腐蚀下保护层开裂时间的测试,研究了养护时间对未掺和掺矿渣(等量取代水泥40%)混凝土的强度、抗渗性和护筋性的影响。结果表明:湿棉絮覆盖养护的混凝土强度发展最快,收缩最小,氯离子渗透性最低,中心温度最低;塑料薄膜养护的混凝土的中心温度最高,其较好的保温作用有利于寒冷工况下混凝土的保温养护;喷养护剂养护的混凝土强度最低,收缩发展较早较快,抗滲性最差。养护时间越长,混凝土的抗渗性越高,尤其对于掺矿物掺和料的混凝土,因而,为提高混凝土抗渗性,应采取更长的养护。
     2.研究了木胶合模板(W)、竹胶合模板(B)、钢模板(S)、塑料模板(P)与透水模板(CP)对混凝土性能的影响,结果表明:由CP成型的混凝土表层最密实,外观平整度好,表面强度和抗渗性最高。由W、B、S、P成型混凝土的表面强度和抗渗性基本相同。分析认为CP对表层混凝土性能的改善主要源于其渗水、透气和初期保水养护作用。
     3.深度渗透密封剂(DPS)喷涂混凝土表面,能有效提高表层混凝土的强度和抗滲性。其合理喷涂剂量为200g/m~2~300g/m~2,最佳喷涂龄期为混凝土浇筑后的7d~14d,混凝土饱和面干时喷涂的效果稍好。
     4.通过抗压强度、Cl~-滲透、平板抗裂、冻融循环、护筋性试验以及SEM微观分析,发现单掺聚丙烯(PE)纤维能有效抑制早期塑性开裂和改善匀质性,但因PE引入的结合较弱、微结构疏松的纤维与基体间界面(FMIZ),对混凝土的抗滲性有一定影响;在掺入PE纤维的同时再掺入硅灰,可显著提高混凝土的强度和抗渗性,其机理是硅灰明显改善了基体和FMIZ微结构的密实性,弥补了单掺PE纤维对抗渗性的不利影响,是改善混凝土抗裂抗渗性的有效措施,因此,将PE纤维增强硅灰高性能混凝土用于海洋环境中受破坏最严重的浪溅与水位变动区,通过对薄弱环节的增强来延长构筑物的服役寿命。
     5.在上述研究的基础上,提出了采用高耐久壳坚隔联保护层构造(HighDurable Separating-Coupling Cover Structure,简称SCCS)提高混凝土结构耐久性的构想;并从耐久性、强度、体积稳定性、变形协调性、工作性和多功能性等方面出发,建立了SCCS的设计准则;发明了混凝土结构具有高抗裂与低渗透的高耐久壳坚隔联保护层的施工方法,其要点有:采用自密实PE纤维增强硅灰高性能混凝土(SPSM)浇注保护层;构件的主钢筋以内采用普通混凝土浇注;采用隔联网分离实现同一构件中两种不同混凝土的一次性浇筑施工;采用传力杆有效解决由于隔联网引起的不同混凝土界面粘结问题。模拟试验证明具有SCCS的钢筋混凝土试件的力学和护筋性能显著提高,是大幅度延长在海洋环境中钢筋混凝土构筑物服役寿命的经济有效的技术措施。
     6.得出了28d抗压强度≥55MPa、90d的Cl离子扩散系数≤1.0×10~(-12)m~2/s、抗裂等级为Ⅰ级、90d的收缩应变值≤400ε的自密实PE纤维增强硅灰高性能混凝土的组成配比和配制技术。
The durability survey of buildings in the marine environment at home and abroad indicates: many concrete structures appeared premature destruction and deterioration in 20 to 30 years after being built, far from reaching the designed service life and had to be rehabilitated costly. The main reason for premature deterioration is steel corrosion caused by chloride. To prolong the service life of buildings in marine effectively and economically, the pivotal approach is to improve the performance of cover concrete. The research of this paper comes from the project of "The parameters and construction techniques research on the concrete structure durability design in the Southeast coastal railway" supported by the Ministry of Railway. In order to improve the impermeable and cracking resistance performance of the cover concrete, The high performance concrete with high impermeable and cracking resistance and its factors and the new high durable firm shelling Separating—Coupling Cover Structure (SCCS) which will provide the more credible and effective protection for the internal reinforcement bars are studied by adopting both new materials and construction techniques. The main work and achievements of this paper are as follows:
     1. Three curing methods are used for concrete curing which are wet cotton mats, a curing agent and plastic film. The strength, shrinkage, central temperature and chloride permeability under various curing methods have been studied. The effect of wet curing duration on the strength, impermeability and corrosion resistance for protecting internal reinforcement of plain and slag-cement concrete (in which 40 % cement was replaced by blast furnace slag) are studied by experiments including strength, permeability, half-cell potential and concrete cover cracking time in the accelerated corrosion test. The results show the strength and chloride impermeability of concrete cured with cotton mats is the highest, while concrete cured with curing agent shows the lowest strength and chloride impermeability. Concrete cured with curing agent starts shrinking earlier and more quickly than the others, while the early shrinkage and its developing speed for concrete cured with wet cotton mats is the lowest. For the central temperature, concrete cured with plastic film is the highest, and then that cured with curing agent. Concrete cured with wet cotton mats shows the lowest. Plastic film shows the best effect for heat preservation, which may be very useful for concrete cast in a cold environment. Longer wet curing duration is essential to achieve higher strength, durability and corrosion resistance characteristics especially for slag-cement concrete. The plain cement concrete is relatively more tolerant to inadequate curing. The 14 days wet curing or more is necessarily especially when constructions in the deleterious environment.
     2. The influences of different formwork materials including Wood (W), Bamboo (B), Steel (S), Plastic (P) and Controlled Permeability Cloth (CP) on the performance of the cover concrete are studied. The results show the cover concrete molded by CP is the densest and without any cracks on the surface. The strength and permeability of cover concrete molded by W, B, S and P are similar; however, those of cover concrete molded by PC are significantly improved. This improvement is mainly due to water seeping, air passing and wet curing action of CP on the fresh concrete.
     3. The Deep Penetrating Sealer (DPS) can increase the strength and impermeability of cover concrete effectively. The advisable spraying dosage range of DPS is 200 g/m~2~300 g/m~2. The advisable schedule to spray DPS is during the 7~14 days after the concrete casting. If the cover concrete is in the surface dry saturated condition when spraying DPS, the effect will be better.
     4. The tidal zone of marine constructions used to be destroyed firstly. Polypropylene fibers (PPF) reinforced Silica Fume (SF)—high performance concrete is used to place the zone tentatively. The results show the addition of both PPF and SF significantly increase the concrete chloride resistance. The incorporation of fibers improves the performance of cracking resistance at the early age significantly, reduces the adverse influence of improper placement or consolidation and materials sedimentation on the homogeneity of concrete, however, just incorporating PPF has no obvious improvement on strength and impermeability and induce more porous fiber-matrix interfacial zone (FMIZ) by PPF which is detrimental to the chloride resistance, but the microstructures of both the matrix and the FMIZ in the concrete with PPF and SF are denser. Thus it is concluded that the significant increase of the chloride resistance of fly ash concrete due to the simultaneous addition of PPF and SF results from both the anti-cracking effect of PPF and the formation of denser microstructures of both the matrix and FMIZ by the high reactivity of silica fume.
     5. The new high durable firm shelling Separating—Coupling Cover Structure (SCCS)and its construction method have been designed based on the above reaearch. The materials of cover and the internal are dissimilated through the subtle Separating—Coupling steel meshwork. The concrete cover has been cast by Self—Compacting Polypropylene Fiber Reinforced Silica Fume High Performance Cement—based Materials (SPSM).The upper and lower layers of the construction can place SPSM directly; the Separating—Coupling steel meshwork is used to separate the flowing concrete when the lateral cover and internal are placed by SPSM and ordinary cement concrete at the same time, respectively. The loading transferred reinforcement bar can solve the problem of the lower interfacial bonding strength caused the Separating—Coupling steel meshwork more than sufficiently. The simulative tests show the mechanical and steel bar protection performance of SCCS is better. The SCCS can improve the performance of the cover concrete and prolong the service life of the constructions significantly more effectively and economically.
     6. The mixing proportations and technique of SPSM have been studied. The main performance index of SPSM: self—compacting, the compressive strength of 28th day is more than 55 MPa, the chloride diffusion coefficient of 90th day is less than 1.0×10~(-12)m~2/s, the grade of anti-cracking is the first level and the shrinkage value of 90th day is less than 400s.
引文
[1]陆儒德.海洋.国家.海权[M].北京:海潮出版社,2000:135-180
    [2]陈惠民.加快技术创新,促进我国海洋工程开发[J].中国海洋平台,1999,6(3):4-7
    [3]QIU D H,WANG Y X.Developing tendency of coastal and offshore engineering in the 21st century[J].Progress in Nature Science,2000,10(6):425-431
    [4]Wall bank E J.The Performance of Concrete in Bridges:A Survey of 200Highway Bridges[R].London:HMSO,1989
    [5]Broomfield.Corrosion of Steel in Concrete:Understanding,Investigating and Repair[M].[s.n.]:FN SPON,1997
    [6]范卫国,潘今岱,罗德宽等.北仑港码头钢筋混凝土上部结构腐蚀破坏调查报告[A].海岸工程两岸研讨会论文集(Proceeding of Offshore Engineering)[C],西安:[s.n.],1997
    [7]吴中伟.高性能混凝土(HPC)发展趋势[J].建筑技术,1998
    [8]李乃珍.抗海水水泥对高硫酸盐、氯离子的耐腐蚀性能及其机理[J].中国建材科技,1998
    [9]硫铝酸盐水泥混凝土的特性及应用[M].北京:中国铁道出版,1989
    [10]High Performance Concrete Handbook - Materials and Applications(in Swedish)[A],1998
    [11]Whitman F H,Schwesinger P.High Performance Concrete Material Properties and Designer[M].冯乃谦译.北京:中国铁道出版社,1998
    [12]安明吉吉,朱金铨,覃维祖.高性能混凝土自收缩问题[J].建筑材料学报,2001,4(2):159-166
    [13]洪乃丰.钢筋阻锈剂的应用和长期有效性[J].冶金建筑,1993,23(1):42-45
    [14]王嵬,张大全,张万友等.国内外混凝土钢筋阻锈剂研究进展[J].腐蚀与防护,2006,(7):369-371
    [15]Edelman A,Miksic B,Gelner L.Migrating corrosion inhibitors for reinforced concrete[J].ConChem J,1993,(2):38-43
    [16]Miksic B,FelnerL,Bjegovic D,et al.Migrating corrosion inhibitors for reinforced concrete[A].In:Proceedings of the 8th European Symposium on corrosion Inhibitors[C].Ferrara:[s.n.],1995:569-588
    [17]Almusallam A,Khan F M,Dulaijan S U,et al.Effectiveness of surface coatings in improving concrete durability[J]Cement & Concrete Composites,2003,25:473-481
    [18]IbrahimM,Al Gahtani AS,Maslehuddin Ml.Effectiveness of concrete surface treatment materials in reducing chloride induced reinforcement corrosion[J].Construction and Building Materials,1997,11(7-8):443-451
    [19]ACI 201 Guide to Durable Concrete[S],1998
    [20]王胜年,潘德强.海工混凝土的长期耐久性研究[J].水运工程,2001,(8):20-22
    [21]DIAMONDS.Corrosion behavior of steel building materials[J].Cement &Concrete Research,1981,11(3):383-394
    [22]LAMBERTC.Protection of concrete[J].British Corrosion Journal,1995,30(1):8
    [23]吴全岳,吴松贵,徐旭峰等.环氧涂层钢筋及其应用[J].腐蚀与防护,2004,125(3):105-108
    [24]杜洪彦,邱富荣,许世力等.海上混凝土防腐蚀涂料研究进展[J].第五届全国建筑腐蚀防护学术交流会,2000,9
    [25]NACE Standard RP 0390-90,Maintenance and Rehabilitation Considerations for Corrosion Control Existing Steel Reinforced Concrete Structures[A],NACE International,Houston,Texas,USA
    [26]Baroghel Bouny V,Godin J,Gawsewitch J.Microstructure and Moisture Properties of High Performance Concrete[A].4th International Symposium on Utilization of High Strength/High Performance Concrete[C].Paris:RILEM,1996:451-461
    [27]祝昌暾,陈敏,杨杨,等.高强混凝土的收缩和早期徐变特性[J].混凝土与水泥制品,2005,(4):65-69
    [28]Robert Springenschmid.Avoid of thermal cracking in concrete at early ages[Z].RILEM Technical Committee,1998
    [29]朱伯芳.大体积混凝土温度应力与温度控制[M].中国电力出版社,1999
    [30]Philip Malone.Use Permeable Formwork in Placing and Curing Concrete[Z].U.S.Army Engineer Research and Development Center,1999
    [31]Application of Formtex Controlled Permeability Formwork in the Arabian Gulf Documentation Report[Z],2002
    [32]任玉杰.透水模板对提高混凝土耐久性的实验研究[J].港口工程,1995,1:103-106
    [33]洪定海.混凝土中钢筋的腐蚀与保护[M].中国铁道出版社,1998
    [34]Roberto Capozucca.Damage to reinforced conc.ete due to reinforcement corrosion[J].Construction and Building Materials,1995,5(9):295-303
    [35]B.H.Oh,J.B.Jang.Chloride diffusion analysis of concrete structures considering the effects of reinforcements,ACI Material[J].2003,100(2):143-149
    [36]B.H.Oh,S.Y.Jang.Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures[J],Mag.Concr.Res.2003,55(2):117-124
    [37]B.H.Oh,S.Y.Jang.Prediction of diffusivity of concrete based on simple analytic equations[J],Cement Concrete Research,2004,34(3):463-480
    [38]Steen Rostam.High performance concrete cover-why it is needed,and how to achieve it in practice[J].Construction and Building Materials,1996,10(5):407-421
    [39]代红军,王福川,伍勇华,南峰.石油平台潮差区混凝土的耐久性[J].建筑材料学报,2000,3(2):137-144
    [40]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,7:57-63
    [41]孟振全,吴振琏.表面渗透性对混凝土耐久性的影响[J].工业建筑,1994,5:45-49
    [42]陈寒斌,陈剑雄,肖斐.掺复合矿物超细粉混凝土的耐久性研究[J].建筑材料学报,2006,9(3):353-357
    [43]李田,刘西拉.混凝土结构的耐久性设计[J].土木工程学报,1994,27(2):47-55
    [44]Recommendation for the use of High Performance Concrete for Exposed Civil Works Structures[R].Danish Concrete Institute,Copenhagen,1995(In Danish)
    [45]马保国,高英力,王信刚.盾构隧道功能梯度混凝土管片保护层设计及性能研究[A].第五届混凝土结构耐久性科技论坛[C].中国,南京,2006
    [46]王信刚.跨江海隧道功能梯度混凝土管片的研究与应用[D]:[博士学位论文].武汉:武汉理工大学,2007
    [47]梁坚凝.高延性永久模板在建造耐久混凝土结构中的应用[A].第五届混凝土结构耐久性科技论坛[C].中国,南京,2006
    [48]C.C.Yang,L.C.Wang b,T.L.Weng.Using charge passed and total chloride content to assess the effect of penetrating silane sealer on the transport properties of concrete[J].Materials Chemistry and Physics,2004,85:238-244
    [49]覃维祖,安明哲.高流动性砼工作度评价方法研究[J].混凝土与水泥制品,1996,3:11-15
    [50]郭景强,陈贺新,翟延波.免振自密实混凝土综述及应用[J].天津建材,2000,3:27-32
    [51]Peter J.,Bartos M..Fresh concrete properties and tests[M].Elsevier,London:1992
    [52]谢友均.免振高性能混凝土研究.铁道部科学技术发展计划项目,合同编号:95G44.1997.7
    [53]K.Ozawa,N.Sakata,H.Okamura.Evaluation of self-compatibility of fresh concrete[J].Proc.Jpn.Soc.Civ.Eng,1995,25(6):59-75
    [54]自密实混凝土设计与施工指南[S]:中国土木工程学会标准.CCES 02-2004.北京:中国建筑工业出版社,2005
    [55]Concrete,mortar,and cement based repair materials:Chloride migration coefficient from non steady migration experiments[S].691.32/691.53/691.54
    [56]ASTM C876.Test method for half cell potentials of uncoated reinforcing steel in concrete[S].Annual book of ASTM standards.Philadelphia:American Society for Testing and Materials,1991
    [57]Erhan Guneyisia,Turan O.Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements[J].Building and Environment,2007,42:2676-2685
    [58]O.Kayali,B.Zhu.Corrosion performance of medium strength and silica fume high strength reinforced concrete in a chloride solution[J].Cement Concrete Composites,2005,27:117-124
    [59]Van Daveer JR.Techniques for evaluating reinforced concrete bridge decks[J].J America Concrete Institute,1975,72(12):697 - 704
    [60]Yeomans SR.Performance of black,galvanized,and epoxy-coated reinforcing steels in chloride contaminated concrete[J].Corrosion Engineering,1994,50(1):72-81
    [61]Erhan Guneyisi,Turan Ozturan,Mehmet Gesoglu.A study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions[J].Cement & Concrete Composites 2005,27:449-461
    [62]Al Tayyib AJ,Al Zahrani MM.Corrosion of steel reinforcement in polypropylene fiber reinforced concrete structure[J].ACI Mater J1990, 87(2): 108-113
    [63] Detwiler RJ, Kjellsen KO, Gjorv OE. Resistance to chloride intrusion of concrete cured at different temperature [J]. ACI Mater J, 1991,88(1):19-24
    [64] Shaker FA, El Dieb AS, Reda MM. Durability of styrene butadiene latex modified concrete [J]. Cement Concrete Research, 1997,27 (5): 711-720
    [65] Okba SH, El Dieb AS, Reda MM. Evaluation of the corrosion resistance of latex modified concrete (LMC) [J]. Cement Concrete Research, 1997,27 (6): 861 -868
    [66] Al Zahani MM, Al Dulaijan SU, Ibrahim M, Saricimen H, Sharif FM. Effect of waterproofing coating on steel reinforcement corrosion and physical properties of concrete [J]. Cement Concrete Composites, 2002, 24: 127-137
    [67] Byung Hwan, Seung Yup Jang. Effects of material and environmental parameters on chloride penetration profiles in concrete structures [J]. Cement and Concrete Research, 2007, 37: 47-53
    [68] Clifton J R. Predicting the service life of concrete [J]. ACI Material Journal, 1993,90(6):611-617
    [69] Amey S L, Johnson D A, Miltenberger M A. Prediction the service life of concrete marine structures: an environmental methodology [J]. ACI Structural Journal, 1998, 95(2): 205-214
    [70] Maage M, Helland S, Carlsen J E. Service life prediction of existing concrete structures exposed to marine environment [J]. ACI Material Journal, 1996,93(6): 602-608
    [71] Liang M T, Wang K L Liang C H. Service life prediction of reinforced concrete structures [J]. Cement and Concrete Research, 1999, 29: 1411 - 1418
    
    [72] 余红发,孙伟.混凝土使用寿命预测方法的研究I 理论模型[J].硅酸盐学报,2002,30(6):686~689
    [73] Richard E Weyers. Service life model for concrete structure in chloride environment [J]. ACI Materials Journal, 1998, 95 (4)
    [74] Thomas M D A, Bamforth P B. Modeling chloride diffusion in concrete-Effect of fly ash slag [J].Cement and Concrete Research, 1999, 29(4):487-495
    [75] Prezzi M, Geyskens P, Monteiro P J M.Reliability approach to service life prediction of concrete exposed to marine environment [J].ACI Materials Journal, 1996, 93 (6): 544-552
    [76] Mangat P S, Molloy B T. Prediction of long term chloride concentration in concrete[J].Materi als and Structures,1994,27:338-346
    [77]MANGAT P S,LIMBACHIYA M C.Effect of initial curing on chloride diffusion[J].Cement Concrete Research,1999,29(9):1475-1485
    [78]谢友均,陈书苹,龙广成.改善水泥浆体结合氯离子性能的试验研究[J].铁道科学与工程学报,2007,4(2):1-5
    [79]Bazant,ZP.Physical model for steel corrosion in sea structures Theory[J].ASCE Journal of the Structural Division,1979,105(6):1137-1153
    [80]Liu Y,Weyers R E.Modeling the time to corrosion cracking in chloride contaminated reinforced concrete structures[J].ACI Materials Journal,1998,95(6):675-681
    [81]Cady P D,Weyers R E.Chloride penetration and the deterioration of concrete bridge decks[J].Cement,Concrete and Aggregates,1983,5(2):81 -87
    [82]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,(7):57-62
    [83]Molina FJ,Alonso C,Andrade C.Cover cracking as a function of rebars corrosion:Part 2 numerical model[J].Mater.Struct.1993,26:532-548
    [84]Hansen EJ,Saouma VE.Numerical simulation of reinforced concrete deterioration:Part Ⅱ steel corrosion and concrete cracking[J].ACI Materials Journal,1999,96(3):331 - 338
    [85]Pantazopoulou SJ,Papoulia KD.Modelling cover cracking due to reinforcement corrosion in RC structures[J].Engineering Mechanics 2001,1 27(4):342-351
    [86]Tamer El Maaddawy,Khaled Soudki.A model for prediction of time from corrosion initiation to corrosion cracking[J].Cement and Concrete Composites 2007,29:168-175
    [87][21]Federation International du Beton(tip Bulletin).Bond of reinforcement in concrete.State of Art Report,Bulletin no.10,International Federation for Structural Concrete[J],Switzerland,2000:188-215
    [88]Capozucca R.Damage of reinforced concrete due to reinforcement corrosion[J].Construction and Building Materials,1995,9(5):295-303.
    [89]Ohtsu M,Yosimura S.Analysis of crack propagation and crack initiation due to corrosion of reinforcement[J].Construction and Build Materials,1997,11(7):437-442
    [90]Jimenez R,White RN,Gergely R Bond and dowel capacities of reinforced concrete[J].ACI J 1979,76(4):73-92
    [91] Tepfers R. Cracking of concrete cover along anchored deformed reinforcing bars [J]. Mag Concrete Research, 1979, 31 (106): 3-12
    [92] [26] Andrade C, Alonso C, Molina FJ. Cover cracking as a function of bar corrosion: Part I - Experimental test [J]. Material Structure, 1993, 26:453-464
    [93] [27] Cabrera JG Deterioration of concrete due to reinforcement steel corrosion [J]. Cement and Concrete Composites, 1996, 18:47-59
    [94] Mangat PS, Elgarf MS. Bond characteristics of corroding reinforcement in concrete beams [J]. Mater. Struct. 1999, 32:89-97.
    [95] Yoon S, Wang K, Weiss WJ, Shah S. Interaction between loading, corrosion, and serviceability of reinforced concrete [J]. ACI Mater. J. 2000, 97 (6): 637-644
    [96] El Maaddawy T, Soudki K. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete [J]. ASCE J Material Civil Engineering, 2003,15 (1): 41-47
    [97] Nawy EG Concrete construction engineering handbook. BocaRaton (NY) [M]: CRS Press, 1997: 20-55
    [98] Huo XS, Al-Omaishi N, Tadros M. Creep, shrinkage and modulus of elasticity of high performance concrete [J]. ACI Mater J 2001, 98(6): 440-449
    [99] Zia P, Ahmad S, Leming M. High performance concretes, a state of art report (1989-0994) [J]. FHWARD 97 030, Federal Highway Administration, McLean (VA), 1997
    [100] Sidney Mindess, J.Francis Young, David Darwin. Concrete [M]. 吴科如等译. 北京:化学工业出版社, 2005
    
    [101] Malhotra VM. Role of Supplementary Cementing Materials in Reducing Greenhouse Gas Emissions [M]. CANMET Report MTL 98 03, OP & J, 1998
    
    [102] Berke NS. Resistance of microsilica concrete to steel corrosion, erosion, and chemical attack. In: Malhotra VM, editor. Proceedings of international conference on fly ash, silica fume, slag, and natural pozzolans in concrete [M]. American Concrete Institute SP 114, Farmington Hills, 1989: 861-886
    
    [103] Swamy RN. Blended cements in construction [M]. London: Elsevier Applied Science, 1991
    
    [104] Hussain SE, Rasheeduzzafar. Corrosion resistance of fly ash blended cement concrete [J]. ACI Materials Journal, 1994, 91(3): 264-272
    
    [105] O¨zy(?)ld(?)m C, Halstead WJ. Improved concrete quality with combinations of fly ash and silica fume [J]. ACI Materials Journal, 1994, 91(6): 587-594
    [106] Gu¨ neyisi E, O¨ zturan T, Gesog(?) Lu M. Laboratory investigation of chloride permeability for high performance concrete containing fly ash and silica fume [J]. In: Dhir RK, Hewlett PC, Csetenyi LJ, editors.Proceedings of international conference on challenges of concrete construction. Scotland: Dundee, 2002: 295-305
    
    [107] Nagataki S, Ujike II. Air permeability of concretes mixed with fly ash and condensed silica fume [J]. In: Proceedings 2nd International Conference on the Use of Fly Ash, Blast Furnace Slag, and Silica Fume in Concrete, Madrid, 1986:1049-1068
    
    [108] Marsh BK, Day RL, Bonner DG Pore structure characteristics affecting the permeability of cement paste containing fly ash [J]. Cement Concrete Research, 1985,15:1027-1038
    
    [109] Erhan Guneyisia, Turan O. Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements [J]. Building and Environment, 2007, 42:2676-2685
    
    [110] X. Sharon Huo, Ling Ung Wong. Experimental study of early age behavior of high performance concrete deck slabs under different curing methods [J]. Construction and Building Materials, 2006, 20:1049-1056
    
    [111] Nassif H, Suksawang N. Effect of curing methods on durability of high performance concrete, Transportation Research Record [J]: Journal of the Transportation Research Board, No. 1798, TRB, National Research Council, Washington, DC, 2002: 31-38
    
    [112] Nassif H, Suksawang N, Mohamad M. Effect of curing methods on early age and drying shrinkage of high performance concrete, Transportation Research Record [J]: Journal of the Transportation Research Board, No. 1834, TRB, National Research Council, Washington, DC, 2003:48-58.
    
    [113] Ktftng Tan, Odd E. Gjorv. Performance of Concrete under Different Curing Conditions [J]. Cement and Concrete Research, 1996, 26 (3): 355-361
    
    [114] Asselanis, J.G, Aitcin, P. C, Mehta, P.K. Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High Strength Concrete [J]. Cement, Concrete, and Aggregate, 1989: 80-83
    
    [115] Mindess, S. Mechanical Performance of Cementitious Systems, Structure and Performance of Cements [M], Edited by P.Bmes, UK: 321-322
    [116]D.P.Bentza,M.R.Geikerb,K.K.Hansen.Shrinkage reducing admixtures and early age desiccation in cement pastes and mortars[J].Cement and Concrete Research,2001,31:1075-1085
    [117]Neville A.M.Properties of Concrete[M],Fourth Edition.1995.
    [118]谢丽,吴胜兴.混凝土早期自收缩与极限拉仲应变的相关性试验[J].工业建筑,2007,37(2):74-78
    [119]D.P.Bentza,M.R.Geiker,K.K.Hansen.Shrinkage reducing admixtures and early age desiccation in cement pastes and mortars[J].Cement and Concrete Research,200I,31:1075-1085
    [120]BENTUR A,IGARASHI Shin Ichi,KOVLER K.Prevention ofautogenous shrinkage in high strength concrete by internal curing using wet lightweight aggregates[J].Cement Concrete Research,2001,31:1587-1591
    [121]ACI Committeell6 R 85[S],Cement and concrete terminology,ACI Manual of Concrete Practice,American Concrete Institute pubs.USA,1989
    [122]Russell H.Curing high performance concrete slabs[J].Concrete Products,February,2002
    [123]Ma Kunlin,Xie Youjun,Long Guangcheng.Study on Preparation of High Performance Concrete with Imperability to Chloride Ions[J].Industrial Construction,2006,11:90-93
    [124]Ramezanianpour AA,Malhotra VM.Effect of curing on the compressive strength,resistance to chloride ion penetration and porosity of concretes incorporating slag,fly ash,or silica fume[J].Cement Concrete Composites,1995,17:125-133
    [125]Toutanji HA,Bayasi Z.Effect of curing procedures on properties of silica fume concrete[J].Cement Concrete Research,1999,29:497-501
    [126]WANG Dongmin,ZUO Yanfeng.Chloride Ions Diffusion Properties in High Performance Concrete with Different Materials[J].Journal of the Chinese Ceramic Society,2004,32:1345-1361
    [127]ACI Committee 308.Recommended practice for curing concrete[S].Farmington Hills,USA:MCP,American Concrete Institute,1998.
    [128]Bonavetti V,Donza H,Rahhal V,Irassar E.Influence of initial curing on the properties of concrete containing limestone blended cement[J].Cement and Concrete Research,2000,30:703-708
    [129]Khatip JM,Mangat PS.Influence of high temperature and low humidity curing on chloride penetration in blended cement concrete[J].Cement and Concrete Research,2002,32:1743-1753
    [130]Gustafsson MER,Franze'n LG.Dry Deposition and Concentration of Marine Aerosols in a Coastal Area[J].Atmosphere Environment,1996,30(6):977-989
    [131]Mustafa MA,Yusof KM.Atmospheric Chloride Penetration into Concrete in semi-tropical marine environment[J].Cement Concrete Research,1994,24(4):661-670
    [132]Mangat PS,Khatib JM,Molloy BT.Chloride Diffusion and Reinforcement Corrosion in Blended Cement Paste and Concrete[J].Cement Concrete Composites,1994,16:73-81
    [133]Bonavetti V,Donza H,Rahhal V,Irassar E.Influence of initial curing on the properties of concrete containing limestone blended cement[J].Cement Concrete Research,2000,30:703-708
    [134]Mangat PS,Limbachiya MC.Effect of initial curing on chloride diffusion in concrete repair materials[J].Cement and Concrete Research,1999,29:1475-1485
    [135]赵玉章.我国建筑模板技术的进步与发展方向[J].建筑技术,2006,37(8):568-571
    [136]左海坤.大模板技术的应用[J].混凝土,2005,8:87-89
    [137]糜嘉平.韩国建筑模板技术考察报告[J].施工技术,2005,34(3):1-2
    [138]徐信武,陈玲,徐海燕.定向刨花板混凝土模板的制造工艺研究[J].林产工业,2007,34(3):22-28
    [139]喻云水,李立君.竹胶合板模板质量问题分析及改进措施[J].新型墙体材料与施工,2003,1:15-17
    [140]蔡金涛.全钢大模板体系的推广应用及存在问题[J].施工技术,2007,36(2):45-48
    [141]仇铭华,刘国恩.奥宇钢框胶合板模板开发与工程应用[J].施工技术,2007,36(6):71-73
    [142]刘鹏.塑料模板的开发与应用[J].施工技术,2007,36(2):47-50
    [143]McCarthy MJ,Giannakou A.In situ performance of CPF concrete in a coastal environment[J].Cement Concrete Research,2002,32:451-457
    [144]Nolan E,Basheer PA,Long AE.Effects of three durability enhancing products on some physical properties of near surface concrete[J].Construction Building Materials,1995,9(5):267-272
    [145]Sousa Coutinho J.The combined benefits of CPF and RHA in improving the durability of concrete structures[J].Cement Concrete Comp,2003,25:51-59
    [146]Suryavanshi AK,Swamy RN.An evaluation of controlled permeability formwork for long term durability of structural concrete elements[J].Cement Concrete Research,1997,27(7):1047 - 1060
    [147]Philip G.Malone Use of Permeable Formwork in Placing and Curing Concrete[Z].U.S.Army Engineer Research and Development Center,1999
    [148]Application of Formtex Controlled Permeability Formwork in the Arabian Gulf Documentation Report[Z],2002.
    [149]刘竞,邓德华,张秋信等.威海某跨海大桥应用透水模板施工的试验探讨.混凝土与水泥制品,2008,4:23-26
    [150]朱妍,刘慧明.透水模板的试验研究[J].施工技术,2003,(2):24-26
    [151]任玉杰.透水模板对提高混凝土耐久性的实验研究[J].港口工程,1995,1:22-26
    [152]杭州湾大桥工程指挥部,浙江省交通厅工程质量监督站.杭州湾跨海大桥专用施工技术规范[S].2004
    [153]杭州湾大桥工程指挥部,浙江省交通厅工程质量监督站,交通部公路科学研究所.杭州湾跨海大桥专项工程质量检验评定标准[S].2004
    [154]付香才.Formtex透水模板布在墩身施工中的应用[J].铁道设计标准,2006,4:55-58
    [155]傅立荣.透水模板在盐田港区三期工程中的应用研究[J].水运工程,2004,10:8-12
    [156]P.J.Schubel,N.A.Warrior,K.S.Elliott.Evaluation of concrete mixes and mineral additions when used with controlled permeable formwork(CPF)[J].Construction and Building Materials,2007,3:1 - 8
    [157]王胜年,黄君哲,张举连等.华南海港码头混凝土腐蚀情况的调查与结构耐久性分析[J].水运工程,2000,6:8-12
    [158]黄君哲,范志宏,王胜年等.海洋环境中混凝土涂层防腐蚀效果分析[J].水运工程,2006,2:16-18
    [159]Seneviratne AMG,Sergi G,Page C L.Performance characteristics of surface coatings applied to concrete for control of reinforcement corrosion[J].Construction and Building Materials,2000,64:55-59
    [160]I.J.Vries,R.B.Polder.Hydrophobic Treatment of Concrete.Construction[J]. Building Materials,1997,11(4):259-265
    [161]G.G.Litvan.Waterproofing of Parking Garage Structures with Sealers and Membranes the Canadian Experience[J].Construction and Building Materials,1996,10(1):95-100
    [162]翁在龙,卓世伟,杨仲家等.表层渗透涂封剂对混凝土特性影响之研究[J].防蚀工程,36(3):181-190
    [163]J.T LaRosa.Characterization of Silicate Sealers on Concrete[J].Cement and Concrete Research,1997,27(10):1561 - 1567
    [164]W.J.McCarter,M.Emerson,and H.Ezirim.Properties of Concrete in the Cover Zone:Developments in Monitoring Techniques[J].Magazine of Concrete Research,1995,47:243-251
    [165]孙建平,陈苏.略述美国永凝液对混凝土耐久性的防护及应用效果[J].福建建材,2006,2:36-39
    [166]陈儒发,李书惠,林海.大掺量粉煤灰混凝土在海工桩基中的应用[J].公路,2005,(4):13-17
    [167]李书惠,肖文.粉煤灰高性能混凝土的应用[J].施工技术,2005,34:70-73
    [168]王发洲,胡曙光,丁庆军.高性能复合道路水泥混凝土的研究[J].中国公路学报,2000,13:3-17
    [169]Houssam A.,Toutanji.Properties of polypropylene fiber reinforced silica fume expansive cement concrete[J].Construction and Building Materials,1999:171-177
    [170]董祥,高建明.纤维增强高性能轻骨料混凝土的力学性能研究[J].工业建筑,2005,35:680-685
    [171]王栋民,左彦峰.氯离子在掺不同矿物质掺合料高性能混凝土中的扩散性能[J].硅酸盐学报,2004,32:1345-1361
    [172]Mangat PS,Khatib JM,Molloy BT.Chloride Diffusion and Reinforcement Corrosion in Blended Cement Paste and Concrete[J].Cement Concrete Composites,1994,16:73-81
    [173]王迎飞,黄雁飞.硬化水泥浆体早期开裂敏感性试验研究[J].硅酸盐学报,2006,5:44-46
    [174]Taejun Cho.Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method[J].Construction and Building Materials,2007:254-262
    [175]谢友均,马昆林.混凝土在不同溶液中抗冻性能的研究[J].铁道科学与工程报,2006,8:29-34
    [176]Mustafa MA,Yusof KM.Atmospheric Chloride Penetration into Concrete in semi-tropical marine environment[J].Cement Concrete Research,1994,24(4):661-670
    [177]Mangat PS,Khatib JM,Molloy BT.Chloride Diffusion and Reinforcement Corrosion in Blended Cement Paste and Concrete[J].Cement Concrete Composites,1994,16:73-81
    [178]范志宏,杨福麟.海工混凝土长期暴露试验研究[J].水运工程,2005,9:45-50
    [179]刘卫民.海洋环境中钢筋混凝土结构使用寿命的研究[J].中国港湾建设,2004,4:41-46
    [180]沈德建,吴胜兴.海水浪溅下混凝土中锈蚀钢筋性能试验研究及仿真分析[J].工业建筑,2005,3:58-63
    [181]Yu Pusong,Li Yuansong,Guo Fanzhao.Factors affecting corrosion and approaches for improving durability of ocean reinforced concrete structures[J].Ocean Engineering,2004,31:779-789
    [182]佐藤吉彦.日本高速铁路的全寿命维护[J].中国铁道科学,2001,22(1):6-15
    [183]王增忠,柳玉杰.混凝土建设项目全寿命经济分析[J].基建优化,2005,26(1):49-52
    [184]韩桂泉,周品.结构功能一体化铝基复合材料的应用[J].航天制造技术,2005(2):1-4
    [185]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [186]Mehta P K,Paulo J M M.Concrete structure,properties,and materials(M).Prentice Hall,2005
    [187]Peter J M Bartos.Self-compacting concrete[J].Concrete,1999,(4):11-16.
    [188]高志华,陈勇.自密实混凝土在三峡电源电站工程中的应用.人民长江,2007,38(3):38-39
    [189]朱江.聚丙烯纤维与高性能混凝土[J].四川建筑科学研究,2000,26(4):53-54.
    [190]自密实混凝土设计与施工指南[S].中国土木工程学会标准.2005:36-37
    [191]姚武,马一平,等.聚丙烯纤维水泥基复合材料物理力学性能研究(Ⅱ)力学性能[J].建筑材料学报,2000,3(3):235-238
    [192]Amon Bentur,Sidney Mindess.Fiber Reinforced Cementations Composites [M].London and New York:Elsevier Science Publishers LTD,1990:33-37
    [193]垄益,沈荣喜,李清海.杜拉纤维在土建工程中的应用[M].北京:机械工业出版社
    [194]Paul P Kraai.A proposed test to determine the cracking potential due to drying shrinkage of concrete[J].Concrete Construction,1985,30(9):775-777
    [195]JGJ/7 23-2001.回弹法测试混凝土抗压强度技术规程[S],2001
    [196]张苏杭.回弹-取芯法测定混凝土强度的相关回归分析[J].中国农村水利水电,2006,12:92-94
    [197]周新刚.混凝土结构耐久性与损失防治[M].中国建材工业出版社,1999
    [198]罗云峰,成志辉,李民强,等.浅谈地铁管片的表面龟裂现象[J].混凝土与水泥制品,2003,2:24-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700