亚热带杉木人工林树干呼吸研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用LI-8100土壤碳通量自动观测系统,与自制的树干呼吸气室相连,原位监测了亚热带杉木人工林树干表面CO_2释放速率及相关因子的日变化和季节变化,同时对比研究了三种测定方法(IRGA法、AA法、GC法)对树干呼吸测定产生的影响。结果表明:
     (1) 18年生杉木人工林冬、春季节树干呼吸日变化模式呈单峰型曲线,与温度变化较为一致,夏、秋季节树干呼吸日变化不大,无明显峰值出现,90年生杉木人工林春季树干呼吸日变化模式呈单峰型曲线,与温度变化较为一致,其它季节树干呼吸一天中变化不大。
     (2)两个林分的树干呼吸均呈现出明显的季节变化,最大值均出现在5月,最小值均出现在2月。18年生杉木人工林和90年生杉木人工林的树干维持呼吸分别为0.46和0.34/μmol·m~(-2)·s~(-1),占各自年均树干总呼吸的43.5%和45.7%。
     (3)树干温度和土温能够较好的解释杉木人工林树干呼吸日变化规律。18年生杉木人工林冬、春季树干呼吸对树干温度日变化的Q_(10)值分别为1.73和1.54,90年生杉木人工林冬季树干呼吸对树干温度日变化的Q_(10)值为1.71。温度和土壤含水量的双因素模型能更好的解释树干呼吸日变化。
     (4)各温度能够解释树干呼吸季节变化的70.7%以上,树干温度和土温能够更好的解释亚热带杉木人工林树干呼吸的季节变化,18年生杉木人工林和90年生杉木人工林对各自树干温度季节变化的Q_(10)值分别为1.51和1.63。90年生杉木人工林的树干呼吸与土壤含水量的季节变化呈极显著的线性负相关(P<0.01)。两个林分树干呼吸与双因素模型因子温度和土壤含水量的季节变化间存在着极显著的函数关系。
     (5)两个林分的树干呼吸值随径阶的增大而增大,树干1.3m高度处南、北两面的树干呼吸间差异不显著。18年生杉木人工林各月份不同高度的树干呼吸间差异均不显著,90年生杉木人工林各月份树干中部的树干呼吸与上部和下部的树干呼吸间差异均不显著。各月份采用IRGA法观测得到的树干呼吸值要高于AA法和GC法测定的树干呼吸值。
     (6)林分水平上,18年生杉木人工林冬季、春季、夏季和秋季树干呼吸日释放量分别为0.96、1.58、1.99和1.10 gC·m~(-2)·d~(-1),90年生杉木人工林冬季、春季、夏季和秋季树干呼吸日释放量分别为1.01、1.78、3.03和2.00 gC·m~(-2)·d~(-1)。
     (7)各月份18年生杉木人工林树干呼吸要高于90年生杉木人工林树干呼吸,在林分水平上,18年生杉木人工林树干呼吸年释放量为5.35 tC·ha~(-1)·yr~(-1),90年生杉木人工林树干呼吸年释放量为5.93 tC·ha~(-1)·yr~(-1)。
The diurnal and seasonal variation of stem respiration rates were studied in the 18-year-old and 90-year-old Chinese fir plantations (SM18 and SM90) in subtropical China using an infra-red gas analyzer (IRGA) connected a custom-built polyvinyl chloride (PVC) chamber. Some environmental factors were observed synchronously. At the same time, a comparative study of the three methods (IRGA, AA, GC) for stem respiration was conducted. The major results were summarized as follows:
     (1) The diurnal stem respiration rate of the SM18 showed single-peak patterns in winter and spring, which was consistented with the temperature. No peak was found in the dirnual studies in SM18 in summer and autumn. The stem respiration of SM90 showed a single-peak diurnal pattern in spring, which was consistent with the temperature. No peak was found in the dirnual pattern of stem respiration rate of SM90 in other seasons.
     (2) Both stem respiration rates of SM18 and SM90 were displayed obvious seasonal variation, both at Maximum in May and at minimum in February. The maintainence respiration of stem in SM18 and SM90 was 0.46 and 0.34μmol·m~(-2)·s~(-1), respectively, each accounted for an annual average total stem respiration 43.5 % and 45.7 %.
     (3) Stem temperature and soil temperature can explain the diurnal variation of stem respiration rate of SM18 and SM90 better. When the stem respiration rates of SM18 and SM90 were regressed against the diurnal change of stem temperature, The Q_(10) values of stem respiration of SM18 were 1.73 and 1.54 in winter and spring, respectively. The Q_(10) value of stem respiration of SM90 was 1.71 in winter. The two-factor model with temperature and soil moisture can explain the diurnal variation of stem respiration rate better.
     (4) The temperature can explain more than 70.7 % monthly variation of stem respiration, stem temperature and soil temperature can explain seasonal change of stem respiration better. When the stem respiration rates of SM18 and SM90 were regressed against the seasonal change of stem temperature, the Q_(10) values of stem respiration of SM18 and SM90 were 1.51 and 1.63, respectively. A significant negative correlation was found between stem respiration rate and the monthly variation of soil moisture content (P < 0.01). There was a significant function between stem respiration rate and the seasonal variation of temperature and soil moisture content in two-factor model in SM18 and SM90.
     (5) The stem respiration rate rised with the diameter class of trunks increases. There was no significant difference of stem respiration rate between the south side and the north side of the trunk. There was no significant difference in stem respiration at 0.2~2.5 m height of the trunk in SM18. No significant difference of stem respiration was found between 1.3 m and 2.5 m height of the tree in SM90 and the same between 1.3 m and 0.2 m height. The stem respiration value measured by IRGA was higher than the value measured by AA and GC in each month.
     (6) The diurnal release of CO_2 generated from stem respiration of SM18 was 0.96, 1.58, 1.99 and 1.10 gC·m~(-2)·d~(-1) in wineter, spring, summer and autumn, respectively. The diurnal release of CO_2 generated from stem respiration of SM90 was 1.01,1.78, 3.03 and 2.00 gC·m~(-2)·d~(-1) in wineter, spring, summer and autumn, respectively.
     (7) The monthly stem respiration rate of SM18 was higher than that of SM90. The annual CO_2 emission of stem respiration in SM18 and SM90 were 5.35 tC·ha~(-1)·yr~(-1) and 5.93 tc·ha~(-1)·yr~(-1), respectively.
引文
1. Amthor J S. Respiration and crop productivity [M]. New York: Springer, 1989.
    
    2. Amthor J S. The McCree-de Wit-Penning de Vries-Thornley respiration paradigma: 30 years later [J]. Annals of Botany, 2000, 86: 1-20.
    
    3. Amthor J S. The role of maintenance respiration in plant growth [J]. Plant Cell and Environment, 1984, 7: 561-569.
    
    4. Anthoni P M, Law B E, Unsworth M H. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem [J]. Agricultural and Forest Meteorology,1999, 95(3): 151-168.
    
    5. Barnes A and Hole C C.A theoretical basis of growth and maintenance respiration [J]. Annals of Botany, 1978,42: 1217-1221.
    
    6. Birgit G, Scarascia-Mugozza G, Ceulemans R. Stem respiration of Populus species in the third year of free-air CO_2 enrichment [J]. Physiology Plantarum, 2003,117:500-507.
    
    7. Bosc A, Grandcourt A D, Loustau D. Variability of stem and branch maintenance respiration in a Pinus pinaster tree [J]. Tree Physiology. 2003,23(4): 227-236.
    
    8. Bunce J A. Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide [J]. Plant Cell and Environment, 1992,15(15): 541-549.
    
    9. Bushong F W. Composition of gas from cottonwood trees [J]. Kansas Academy of Science Transactions, 1907,21: 53.
    
    10. Cannel M G R. World forest biomass and primary production data [M]. London:Acdemic Press, 1982: 1-391.
    
    11. Carey E V, Delucia E H, Ball J T. Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO_2 [J]. Tree Physiology, 1996,16: 125-130.
    
    12. Cernusak L A, Marshall J D. Photosynthetic refixation in branches of Western white pine [J]. Functional Ecology, 2000,14: 300-311.
    13. Ceschia E, Damesin C, Lebaube S, et al. Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica) [J]. Annals of Forest Science, 2002, 59:801-802.
    
    14. Chang S C, Tseng K H, Hsia Y J, et al Soil respiration in a subtropical montane cloud forest in Taiwan [J]. Agricultural and Forest Meteorology, 2008, 148(5):788-798.
    
    15. Chase W W. The composition, quantity, and physiological significance of gases in tree stems [M]. Minnesota Agricultural Experiment Station Technical Bulletin 99, St Paul, MN, USA: University of Minnesota, 1934.
    
    16. Damesin C, Ceschia E, Goff N L, et al. Stem and branch respiration of beech: from tree measurements to estimations at the stand level [J]. New Phytologist, 2002, 153:159-172.
    
    17. Edwards N T, Hanson P J. Stem respiration in a closed-canopy upland oak forest [J].Tree Physiology, 1995,16: 433-439.
    
    18. Edwards N T, Hanson P J. Stem respiration in a closed-canopy upland oak forest [J].Tree Physiology, 1996, 16: 433-439.
    
    19. Edwards N T, Shugart Jr. H H, McLaughlin S B, et al.. Carbon metabolism in terrestrial ecosystems. In: Reichle D E, editor. Dynamic Properties of Forest Ecosystems [M]. London: Cambridge University Press, 1981: 499-536.
    
    20. Edwards N T, Tschaplinski T J, Norby R J. Stem respiration increases in CO_2-enriched sweetgum trees [J]. New Phytologist, 2002,155: 239-248.
    
    21. Eklund L. Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season [J]. Trees-Structure and Function,1990,4:150-154.
    
    22. Eklund L. Seasonal variations of O_2, CO_2, and ethylene in oak and maple stems [J]. Canadian Journal of Forest Research, 1993,23: 2608-2610.
    
    23. Gansert D, Backes K, Tomoaki O, et al. Seasonal variation of branch respiration of a treeline forming (Betula ermanii Cham.) and a montane (Fagus cremata Blume) deciduousbroad-leaved tree species on Mt.Fuji,Japan [J]. Flora, 2002, 197:186-202
    
    24. Gansert D, Burgdorf M. Effects of xylem sap flow on carbon dioxide efflux from stems of birch (Betula pendula Roth) [J]. Flora, 2005, 200: 444-455.
    
    25. Gartner B L, Moore J R, Gardiner B A. Gas in stems: abundance and potential consequences for tree biomechanics [J]. Tree Physiology, 2004,24: 1239-1250.
    
    26. Granier A, Ceschia E, Damesin C, et al.. Carbon balance of a young beech forest over a two-year experiment [J]. Functional Ecology, 2000,14: 312-325.
    
    27. Hari P, Nygren P, Korpilahti E. Internal circulation of carbon within a tree [J].Canadian Journal of Forest Research, 1991,21:514-515.
    
    28. Houghton R A, Skoije D L, Nobre C A, et al.. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon [J]. Nature, 2000,4(3): 301-304.
    
    29. Jassens I A, Lankreijer H, Matteucci G, et al.. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests [J]. Global change Biology, 2001, 7: 269-278.
    
    30. Jensen K F. Measuring oxygen and carbon dioxide in red oak trees. US Forest Service Research Note NE-74. Upper Darby, PA, USA: USDA Forest Service,Northeastern Forest Experiment Station, 1967.
    
    31. Jiang L, Shi F, Zu Y, et ah. Study on stem respiration of Larix gmeliniiof different ages and its relationship to environmental factors [J]. Bulletin of Botanical Research,2003,23(3): 296-301.
    
    32. Kabubari Y. Diurnal and seasonal fluctuations in the bark respiration of standing Fagus sylvatica trees at Soiling, West Germany [J]. Journal of the Japanese Forestry Society, 1988,70:64-70.
    
    33. Kaipiainen L K, Sofronova G I, Hari P, et ah. The role of xylem in CO_2 exchange in Pinus sylvestris woody stems [J]. Russian Journal of Plant Physiology, 1998,45:500-505.
    
    34. Koizumi H. Effect of carbon dioxide concentration on microbial respiration in soil [J].Ecological Research, 1991, 6: 227-232.
    
    35. Kunstle E and Mitscherlich G. Photosynthese, Transpiration und Atmung in einem Mischbestand im Schwarzwald.III. Atmung [J]. Allgem, Forst- u. Jagdzeitung, 1976,147: 169-177.
    
    36. Larcher W. Okophysiologie der Pflanzen [M]. Ulmer, Stuttgart, 2001.
    37. Lavigne M B, Franklin S E, Hunt Jr. E R. Estimating stem maintenance respiration rates of dissimilar balsam fir stands [J]. Tree Physiology, 1996, 16: 687-695.
    
    38. Lavigne M B. Comparing stem respiration and growth of jack pine provenances from northern and southern locations [J]. Tree Physiology, 1996, 16:847-852.
    
    39. Lavigne M B and Ryan M G. Growth and maintenance respiration rates of aspen,black spruce and jack pine stems at northern and southern BOREAS sites [J]. Tree Physiology, 1997,17: 543-551.
    
    40. Lavigne M B, Ryan M G, Anderson D E, et al.. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites [J]. Journal of Geophysical Research, 1997,28:977-985.
    
    41. Lavigne M B. Differences in stem respiration response to temperature between balsam firs trees in thinned and unthinned stands [J]. Tree Physiology, 1987, 3:225-233.
    
    42. Law B E, Ryan M G, Anthoni P M. Seasonal and annual respiration of a ponderosa pine ecosystem [J]. Global Change Biology, 1999, 5:169-182.
    
    43. Levy P E and Jarvis P G Stem CO_2 fluxes in two Sahelian shrub species (Guiera senegalensis and Combretum micranthum) [J]. Functional Ecology, 1998,12:107-116.
    
    44. Levy P E, Meir P, Allen S J, et al.. The effect of aqueous transport of CO_2 in xylem sap on gas exchange in woody plants [J]. Tree Physiology, 1999,19: 53-58.
    
    45. Lieth H, Whittaker R H. Primary productivity of the biosphere [M]. Berlin. (DE) Springer-Verlag, 1975, 1-390.
    
    46. MacDougal D T and Working E B. The pneumatic system of plants, especially trees [M]. Publication 441. Washington, DC, USA: Carnegie Institute of Washington,1933.
    
    47. MacDougal D T, Overton J B, Smith G M. The hydrostatic-pneumatic system of certain trees: movements of liquids and gases [M]. Publication 397. Washington, DC, USA: Carnegie Institute of Washington, 1929.
    
    48. MacDougal D T. Composition of gases in trunks of trees [J]. Carnegie Institution of Washington Year Book, 1927,26: 162-163.
    
    49. MacDougal D T. The hydrostatic system of trees [M]. Publication 373, Washington,DC: Carnegie Institute of Washington, 1926: 125.
    
    50. Maier C A and Clinton B D. Relationship between stem CO_2 efflux, stem sap velocity and xylem CO_2 concentration in young loblolly pine trees [J]. Plant Cell and Environment, 2006, 29: 1471-1483.
    
    51. Maier C A and Kress L W. Soil CO_2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda L.) plantations as affected by moisture and nutrient availability [J]. Canadian Journal of Forest Research, 2000,30: 347-395.
    
    52. Maier C A, Zarnoch S J, Dougherty P M. Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation [J]. Tree physiology, 1998, 18: 11-20.
    
    53. Maier C A. Stem growth and respiration in loblolly pine plantations differing in soil resource availability [J]. Tree Physiology, 2001,21: 1183-1193.
    
    54. Malhi Y D, Baldocchi D D, Jarvis P G The carbon balance of tropical, temperate and boreal forests[J]. Plant Cell and Environment, 1999,22: 715-740.
    
    55. Martin T A, Teskey R O, Dougherty P M. Movement of respiratory CO_2 in stems of loblolly pine (Pinus taeda) seedlings [J]. Tree Physiology, 1994,14: 481-495.
    
    56. Matyssek R, Gunthardt-Goerg M S, Maurer S, et al..Tissue structure and respiration of stems of Betula pendula under contrasting ozone exposure and nutrition [J]. Trees, 2002,16: 375-385.
    
    57. McGuire M A and Teskey R O. Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO_2 [J]. Tree Physiology, 2004,24: 571-578.
    
    58. McGuire M A and Teskey R O. Microelectrode technique for in situ measurement of carbon dioxide concentrations in xylem sap of trees [J]. Tree Physiology, 2002,22:807-811.
    
    59. Meir P and Grace J. Scaling relationships for woody tissue respiration in two tropical rain forests [J]. Plant Cell and Environment, 2002, 25: 963-973.
    
    60. Negisi K. Bark respiration rate in stem segments detached from young Pinus densiflora trees in relation to velocity of artificial sap flow [J]. Journal of the Japanese Forestry Society, 1979, 61: 88-93.
    
    61. Negisi K. Daytime depression in bark respiration and radial shrinkage in stem of a standing young Pinus densiflora tree [J]. Journal of Japanese Forestry Society, 1978,60: 380-382.
    
    62. Negisi K. Diurnal fluctuation of CO_2 release from the stem bark of standing young Pinus densiflora trees [J]. Journal of the Japanese Forestry Society, 1975, 57:375-383.
    
    63. Negisi K. Diurnal fluctuations of the stem bark respiration in relationship to the wood temperature in standing young Pinus densiflora, Chamaecyparis obtusa and Quercus myrsinaefolia trees [J]. Journal of the Japanese Forestry Society, 1982,64: 315-319.
    
    64. Penning de vries FWT. The cost of maintenance processes in plant cells [J]. Annals of Botany, 1975, 39: 77-92.
    
    65. Pruyn M L, Gartner B L, Harmon M E. Within-stem variation of respiration in Pseudotsuga menziesii (Douglas-fir) trees [J]. New Phytologist, 2002,154: 359-372.
    
    66. Rodhe H A. Comparison of the contribution of various gases to the greenhouse effect [J]. Science, 1990, 248:1217-1219.
    
    67. Ryan B G. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems [J]. Tree Physiology, 1991a, 9: 255-266.
    
    68. Ryan M G, Gower S T, Hubbard R M, et al.. Woody tissue maintenance respiration of four conifers in contrasting climates [J]. Oecologia, 1995, 101: 133-140.
    
    69. Ryan M G, Hubbard R M, Clark D A, et al. Woody tissue respiration for Simaroubaamara and Minquartia guianensis two tropical wetforest trees with different growth habits [J]. Oecologia, 1994,100: 213-220.
    
    70. Ryan M G, Lavigne M B, Gower S T. Annual carbon balance cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate [J]. Journal of Geophysical Research, 1997, 102: 28871-28883.
    
    71. Ryan M G, Hubbard R M, Pongracic S, et al.. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status [J]. Tree Physiology,1996,16:333-343.
    72. Ryan M G. Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii [J]. Canadian Journal of Forest Research, 1990,20: 48-57.
    
    73. Ryan M G. The effects of climate change on plant respiration [J]. Ecological Applications, 1991b, 1: 157-167.
    
    74. Sachs J. Lectures on the physiology of plants [M]. Oxford, UK: Clarendon, 1887.
    
    75. Saveyn A, Steppe K, Lemeur R. Drought and diurnal patters of stem CO_2 efflux and xylem CO_2 concentration in young oak (Quercus robur) [J]. Tree Physiology, 2007,27: 365-374.
    
    76. Saveyn A, Steppe K, Lemeur R. Report on non-temperature related variations in CO_2 efflux rates from young tree stems in the dormant season [J]. Trees, 2008,22:165-174.
    
    77. Schwartzkopf S H. An open chamber technique for the measurement of carbon dioxide evolution from soils [J]. Ecology, 1978, 59: 1062-1068.
    
    78. Shinozaki K, Yoda K, Hozumi K, et al. A qualitative Analysis of the Plant Form-the Pipe model Theory I . Basic analysis [J]. Japanese Journal of Ecology, 1964, 14:97-105.
    
    79. Shinozaki K, Yoda K, Hozumi K, et al. A quanlitative Analysis of the Plant Form the Pipe model Theory II. Further evidence of theory and its application in forest ecology [J]. Japanese Journal of Ecology, 1964,14: 133-139.
    
    80. Sprugel D G. Components of woody tissue respiration in young Abies amabilis (Dougl.) Forbes trees [J]. Trees, 1990,4: 88-98.
    
    81. Steppe K, Saveyn A, McGuire M A, et al.. Resistance to radial CO_2 diffusion contributes to between-tree variation in CO_2 efflux rates of Populus deltoids stems [J]. Functional Plant Biology, 2007, 34: 785-792.
    
    82. Stockfors J and Linder S. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees [J]. Tree Physiology, 1998a,18:155-166.
    
    83. Stockfors J and Linder S. The effect of nutrition on the seasonal course of needle respiration in Norway spruce stands [J]. Trees- Structure and Function, 1998b, 12:130-138.
    84. Stockfors J. Temperature variations and distribution of living cells within tree stems:implications for stem respiration modeling and scale-up [J]. Tree Physiology, 2000,20:1057-1062.
    
    85. Teskey R O and McGuire M A. Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees [J]. Plant Cell and Environment, 2002, 25: 1571-1577.
    
    86. Teskey R O and McGuire M A. CO_2 transported in xylem sap affects CO2 efflux from Liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena [J]. Trees, 2005, 19: 357-362.
    
    87. Teskey R O and McGuire M A. Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO_2 and possible transport of CO_2 from roots [J]. Plant Cell and Environment, 2007, 30:570-579.
    
    88. Teskey R O, Saveyn A, Steppe K, et al.. Origin, fate and significance of CO_2 in tree stems [J]. New Phytologist, 2008,177: 17-32.
    
    89. Tranquillini W and Schtitz W. Uber die Rindenatmung einiger B(?)ume an der Waldgrenze [J]. Cbl. ges. Forstwes, 1970, 87,42-60.
    
    90. Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forest [J]. Nature, 2000,404: 861-864.
    
    91. Vose J M and Ryan M G. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis [J]. Global Change Biology,2002,8: 182-193.
    
    92. Wang W J, Yang F J, Zu Y G, et al. Stem respiration of a larch (Larix gmelini) plantation in Northeast China [J]. Acta Botanica Sinica, 2003,45(12): 1387-1397.
    
    93. Wang W, Guo J X, Oikawa T. Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China [J].Indian Academy of science, 2007, 32(2): 375-384.
    
    94. Watson R T, Noble I R, Bolin B, et al.. Land Use, Land Use Change and Forestry [M]. Landon: Cambridge University Press, 2000: 1-377.
    
    95. Whitmore T C. Tropical Rain Forests of the Far East, 2~(nd) edn [M]. Oxford: Clarendon Press,1984
    96.Wieser G and Bahn M.Seasonal and spatial variation of woody tissue respiration in a Pinus cembra tree at the alpine timberline in the central Austrian Alps[J].Trees,2004,18:576-580.
    97.William P B,Margaret M B,Matthew H T,et al..Sap flow rates and sapwood density are critical factors in within-and between-tree variation in CO_2 effiux from stems of mature Dacrydium cupressinum trees[J].New Phytologist,2005,167:815-828.
    98.Williams M L,Jones D G,Baxter R,et al..The effect of enhanced concentrations of atmospheric CO_2 on leaf respiration.In:Lambers H,van der Plas LHW,eds.Molecular,Biochemical and Physiological Aspects of Plant Respiration.The Hague:SPB Academic Publishing,1992:547-551.
    99.Xu M,Debiase T A,Qi Y.A simple technique to measure stem respiration using a horizontally oriented soil chamber[J].Canadian Journal of Forest Research,2000,30:1555-1560.
    100.Yokota T and Hagihara A.Changes in the relationship between tree size and aboveground respiration in field-grown hinoki cypress(Chamaecyparis obtusa) trees over three years[J].Tree Physiology,1998,18:37-43.
    101.Yokota T.and Hagihara A.Maintenance and growth respiration of the aboveground parts of young field-grown hinoki cypress(Chamaesyparis obtusa)[J].Tree Physiology,1995,15:387-392.
    102.Zha T,Kellom(a|¨)ki S,Wang K Y,et al..Season and annual stem respiration of Scots pine trees under boreal conditions[J].Annals of Botany,2004,94(6):889-896.
    103.曾小平,彭少麟,赵平.广东南亚热带马占相思林呼吸量的测定[J].植物生态学报,2000,24(4):420-424.
    104.陈楚莹,廖利平,汪思龙.杉木人工林生态学[M].北京:科学出版社,2000.
    105.方精云,王效科,刘国华,等.北京地区辽东栎呼吸量的测定[J].生态学报,1995,15(3):235-244.
    106.方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000a,24(5):635-638.
    107.方精云.全球生态学:气候变化和生态响应[M].北京:高等教育出版社,2000b.
    108.方精云.森林群落呼吸量的研究方法及其应用的探讨[J].植物学报,1999,41(1):88-94.
    109.方宗辉.福建省杉木人工林生物量及其分配研究[J].福建林业科技,2005,32(3):82-85.
    110.黄玮,朱锦懋,黄儒珠,等.福建长汀冬季植物树干CO_2释放速率日变化特征[J].亚热带资源与环境学报,2009,4(1):38-46.
    111.姜丽芬,石福臣,祖元刚,等.不同年龄兴安落叶松树干呼吸及其与环境因子关系的研究[J].植物研究,2003,23(3):296-301.
    112.李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林群落呼吸量初步测定[J].林业科学研究,1997,10(4):348-355.
    113.刘华,雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展[J].西北植物学报,2005,25(4):835-843.
    114.马玉娥,项文化,雷丕峰.林木树干呼吸变化及其影响因素研究进展[J].植物生态学报,2007,31(3):403-412.
    115.盛浩,杨玉盛,陈光水,等.植物根呼吸对升温的响应[J].生态学报,2007,27(4):1596-1605.
    116.陶波,葛全胜,等.陆地生态系统碳循环研究进展[J].地理研究,2001,20(5):564-575.
    117.王淼,关德新,王跃思,等.长白山红松针阔叶混交林生态系统生产力的估算[J].中国科学D辑地球科学,2006a,36(增刊Ⅰ):70-82.
    118.王淼,姬兰柱,李秋荣,等.长白山地区红松树干呼吸的研究[J].应用生态学报,2005,16(1):7-13.
    119.王淼,刘亚琴,郝占庆,等.长白山阔叶红松林生态系统的呼吸速率[J].应用生态学报,2006b,17(10):1789-1795.
    120.王淼,武耀祥,武静莲.长白山红松针阔叶混交林主要树种树干呼吸速率[J].应用生态学报,2008,19(5):956-960.
    121.王文杰,王慧梅,祖元刚,等.林木非同化器官与土壤呼吸的温度系数Q_(10)值的特征分析[J].植物生态学报,2005,29(4):680-691.
    122.王文杰,祖元刚,王慧梅.林木非同化器官树枝(干)光合功能研究进展[J].生 态学报,2007,27(4):1583-1595.
    123.王文杰.林木非同化器官CO_2通量的测定方法及对结果的影响[J].生态学报,2004,24(9):2056-2067.
    124.王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    125.王效科,冯宗炜.森林生态系统生物碳储存量的研究历史.见:王如松主编.现代生态学的热点问题研究[M].北京:中国科学技术出版社,1996,335-347.
    126.王妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展[J].世界林业研究,2006,19(3):12-17.
    127.魏国军,盛浩,杨智杰,等.亚热带4种行道树树干表面CO_2释放速率昼夜动态[J].亚热带资源与环境学报,2009,4(1):23-31.
    128.肖复明,汪思龙,杜天真,等.湖南会同林区杉木人工林呼吸量测定[J].生态学报,2005,25(10):2514-2519.
    129.肖复明,汪思龙,范少辉,等.湖南会同天然次生常绿阔叶林群落呼吸量测定[J].北京林业大学学报,2006,28(增刊2):40-44.
    130.严玉平,沙丽清,曹敏.西双版纳热带季节雨林优势树种树干呼吸特征[J].植物生态学报,2008,32(1):23-30.
    131.严玉平,沙丽清,曹敏.西双版纳三种树木树干呼吸日变化特征[J].山地学报,2006,24(3):268-276.
    132.杨平,杜宝华.国外土壤二氧化碳释放问题的研究动态[J].中国农业气象,1996,17(1):48-50.
    133.杨思河,文诗韵,林继惠,等.红松非光合器官春季的呼吸[J].应用生态学报,1992,3(4):386-388.
    134.俞新妥.我国近期杉木资源动态及经营意见[J].林业科技通讯,1996,(11):24-26.
    135.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    136.朱学群,刘音,顾凯平.陆地生态系统碳循环研究回顾与展望[J].安徽农业科学,2008,36(24):10640-10642,10662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700