PAMAM基树状分子的制备及其在溶液中聚集与界面的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凭借其超支化的结构、明确的分子量和分子尺寸、可精确控制的分子形状与分枝长度/密度比、独特的单分散性、分子内部存在的空腔、分子表面的功能性等显著特征,聚酰胺-胺(PAMAM)成为发展最为迅速、研究最为广泛和深入的一类新型树状分子。在此基础上,PAMAM基树状分子以其独特的分子结构和物理化学性质在众多领域有着广泛的应用前景,并迅速发展为研究热点之一。此类分子具有良好的反应活性以及包容能力,在分子中心或末端引入大量的反应性、功能性基团,因此可以作为纳米粒子和药物分子的模板或者蛋白质、酶、病毒等理想的合成模拟物,也可以在内部空腔引入催化剂的活性中心或者在经过修饰的末端基团连接基因、抗体等活性物质,从而成为具有特殊功能的高分子材料。
     由刚性疏水基团、发色单元修饰的PAMAM树状分子以及将PAMAM与金属离子进行螯合构筑等研究工作大量涌现,尤其是以PAMAM为基础接枝两亲嵌段的树状分子在生物医学、自组装模板、催化剂等诸多方面有着潜在的、巨大的应用前景。然而,对于此类PAMAM基两亲树状分子体系的表面活性、分子聚集行为及其通过pH和盐的可调节性、与小分子表面活性剂的分子间相互作用等的研究却鲜见报导。本文以PAMAM接枝POmEOn(其中PO为环氧丙烷;EO为环氧乙烷;m和n分别代表嵌段中PO和EO的个数)系列两亲树状分子的结构对其物理化学性质以及油水分离性能的影响为中心,通过表面张力、稳态荧光、浊度分析、等温滴定微量量热、动态激光光散射(DLS)、透射电子显微镜(TEM)、原子力显微镜(AFM)等实验手段与方法,研究树状分子的结构对其表面与界面性质、聚集行为的影响,以及pH、盐对聚集体构筑的诱导效应。
     本文考察树状分子的起始剂(即PAMAM)代数以及嵌段中EO/PO质量比对浊度性质的影响。探讨了在起始剂代数不同的情况下,系列树状分子的浊度性质与浊点(CP)温度等性质的变化规律。随着嵌段EO/PO比例的增大,体系的CP值先升高后逐渐降低,表明EO/PO对于树状分子的亲水、疏水性以及溶解能力具有一定的调节作用。
     熵增是系列树状分子自发聚集过程中的主要驱动力。当POmEOn嵌段增长时,EOn单元对于氢键的键合起到很大作用,此时体系的聚集在更高浓度下发生,即临界聚集浓度(CAC)升高,同时聚集过程中所产生的吉布斯自由能(ΔGo)增大。研究表明,在此过程中两亲嵌段长度对聚集体尺寸具有一定的调控作用。
     pH范围对树状分子体系的聚集行为作用显著。当pH值在2至pKa的范围内变化时,溶液澄清,主要由于PAMAM的胺基基团质子化作用完全;当pH值在pKa ~ 7.5的区间变化时,溶液呈现浑浊状态,此时质子化不完全,体系中形成了较大尺寸的聚集体;随着碱性继续增强,质子化进程几乎无法发生,体系产生分相。在pH值从2增加到10的过程中,由于在中性和碱性环境下质子化作用不完全其微环境极性随之增强、CAC逐渐减小。研究盐对树状分子体系聚集行为的影响。其影响顺序为C6H5COONa > Na2SO4 > NaCl,导致CP温度顺序递增。无机盐的影响主要归因于水合作用,即水分子从树状分子的核壳结构迁移至SO42-和Cl-水合层的运动。C6H5COONa的作用主要依赖于苯环插入到聚集体疏水核内部的作用,对聚集体尺寸的增大起到更为显著的效果。
     研究发现树状分子与表面活性剂的分子间相互作用较强。十二烷基硫酸钠(SDS)在远低于临界胶束浓度(CMC)时,与树状分子的混合体系即表现出较高的浊度性质,由于此时SDS分子插入到胺基基团和疏水微区中从而形成较大尺寸的聚集体。与双十二烷基二甲基溴化铵(DDAB)的多层囊泡体系相比,树状分子与DDAB混合体系的聚集体尺寸与形貌、流变学性质均有较大改变。
     探讨系列树状分子对油水界面膜的影响,并对脱水清水性能进行评价。研究了随着树状分子浓度的改变其降低油水界面张力的能力以及在界面处的扩张粘度、液滴半生命期、液滴破裂速率常数的变化规律。结果显示,随着起始剂代数的增加树状分子的脱水性能逐渐提高,当EO/PO在嵌段中的质量比例为1:3时脱水效果最佳。
Polyamidoamine (PAMAM), one of the families of novel dendrimers, has been developed the fastest and researched the most intensively for the remarkable characteristics, such as hyperbranched structure, exact molecular weight and size, well-controlled molecular shape and branch length/density ratio, unique monodispersity, cavity inside of molecule, functionality of molecule surface. On that basis, a variety of study fields focus on PAMAM-based dendrimers with particular molecular structure and physical chemistry properties. This kind of molecules has excellent activity and ability of capacity, introducing many reactive and functional groups in the centre or extremity, and therefore, it can be served as a template of nano particle and drug molecule, or the synthesized simulacrum of protein, enzyme and virus. It also can be led the active centre of catalyst into the cavity, or have the terminal groups modified with gene or antibody. Hence dendrimers become macromolecular materials with special functions.
     Various examples of PAMAM-based dendrimers functionalized with rigid hydrophobic periphery or chromophoric units, or binding metal ions have been emerged in large numbers. Especially, the amphiphilic PAMAMA-based dendrimers have been attracted on potential and enormous application fields, including biology and medicine, assembly template, catalyst, etc. Little attention, however, has been paid to surface active characteristics, aggregation behavior, pH and salt effects on the aggregagtion properties of PAMAM molecules branched with amphiphilic segments, as well as the molecular interactions with micromolecular surfactants. With this in mind, we synthesized a series of dendrimers with PAMAM as the core and PO_mEO_n units (PO and EO are the abbreviations of propylene oxide and ethylene oxide, respectively; m and n are the numbers of PO and EO in a branch, separately) as the branches, and investigated the influence of dendritic structure on the physicochemical properties and the ability in separating oil/water mixture, as well as the effects of pH and salts on the aggregates conformation, through the measurements of surface tension, steady fluorescence, turbidity analysis, isothermal titration microcalorimetry, dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM).
     The influences of initiator (namely PAMAM) generation and EO/PO ratio of the branch on the turbidity properties were investigated in this paper, respectively. Dendrimers with different generations of PAMAM have different turbidity properties and cloud point (CP) temperatures. As the mass ratio of EO/PO increases, CP first increases, and then decreases gradually, which indicates the ratio of EO/PO could condition the hydrophilic and hydrophobic properties, and the capability of solubility.
     The gain of entropy is the main driving force for the spontaneous aggregation of the dendrimer series. In the case of longer PO_mEO_n chains, more EO oxygen atoms contribute to hydrogen bonding, and consequently lead aggregates to form at higher concentration, resulting in higher critical aggregation concentration (CAC) and larger Gibbs free energy for aggregation (ΔGo). In the process, the amphiphilic chain length has impact on the size of aggregates to some extent.
     pH value has remarkable effect on the aggregation behavior of dendrimers in aqueous solution. When the acidity is below pKa, the dendrimer system is transparent mostly because of the thorough protonation of amide groups of PAMAM; as pH is in the range of pKa ~ 7.5, the protonation process becomes incomplete, which leads dendrimer molecules to form bigger aggregates; with the basic environment coming up, the protonation can hardly take place and the oil phase separates out. With the pH vale increases from 2 to 10, the microenvironment of dendrimer colloid becomes higher polar before aggregates forming and reaches CAC earlier, mainly due to the incomplete protonation process under neutral and basic environment.
     Salt has an impact on the dendrimer aggregation process in the research. Salt effects on the aggregation behavior in the decreasing order: C_6H_5COONa > Na_2SO_4 > NaCl, resulting in the increase of CP temperature. The influence of inorganic salts is mainly attributed to the hydration process of the preferential movement of water molecules from coordination shells of dendrimer molecules to the hydration layer of SO42- or Cl- ion; and the benzene ring of C_6H_5COONa affects on the size of aggregates significantly, owning to its penetration into the hydrophobic core of aggregates.
     There is strong interaction between dendrimer and surfactant molecules. When the concentration of added sodium dodecyl sulfate (SDS) is very low such as far from critical micelle concentration (CMC), the system exhibits higher turbidity which results in bigger aggregates, mainly due to the insert of SDS molecules into amine groups and hydrophobic microdomain. Compared with the multilamellar vesicle system of didodecyldimethylammonium bromide (DDAB), the mixed system of dendrimer and DDAB exhibits different size and morphology of aggregates, and rheological properties.
     The demulsification and dehydration properties of dendrimers were discussed, including the ability to decrease interfacial tension and the parameters of dilational viscosity, half life cycle, and rupture speed constant of droplet. The results showed that the dehydration performance of dendrimer can be improved with the generation of initiator increasing, and it comes to the best dehydration result when the ratio of EO/PO in the branch equals to 1:3.
引文
[1] Tomalia D A, Naylor A M, Goddard III W A. Starburst dendrimers: Molecular level bisrol of size shape, surface chemistry, topology and flexibillity from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl., 1990, 29(2): 138-175P
    [2] Tomalia D A, Durst H D. Genealogically directed synthesis: Starburst / cascade dendrimers and hyperbranched structures. Top. Curr. Chem., 1993, 165(2): 193-313P
    [3] Matthews O A, Shipway A N, Stoddart J F. Dendrimers-branching out from curiosities into new technologies. Prog. Polym. Sci., 1998, 23(1): 1-56P
    [4] Bosman A W, Janssen H M, Meijer E W. About dendrimers: Structure, physical properties, and applications. Chem. Rev., 1999, 99(7): 1665-1688P
    [5] Tomalia D A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Prog. Polym. Sci., 2005, 30(3-4): 294-324P
    [6] Venditto V J, Regino C A S, Brechbiel M W. PAMAM dendrimer based macromolecules as improved contrast agents. Mol. Pharm., 2005, 2(4): 302-311P
    [7] Svenson S, Tomalia D A. Dendrimers in biomedical applications--reflections on the field. Adv. Drug Delivery Rev., 2005, 57(15): 2106-2129P
    [8] Lei X, Jockusch S, Turro N J, Tomalia D A, Ottaviani M F. EPR characterization of gadolinium(III)-containing-PAMAM-dendrimers in the absence and in the presence of paramagnetic probes. J. Colloid Interface Sci., 2008, 322(2): 457-464P
    [9] Auten B J, Lang H, Chandler B D. Dendrimer templates for heterogeneous catalysts: Bimetallic Pt-Au nanoparticles on oxide supports. Appl. Catal., B,2008, 81(3-4): 225-235P
    [10] Li P, Kawi S. SBA-15-based polyamidoamine dendrimer tethered Wilkinson's rhodium complex for hydroformylation of styrene. J. Catal., 2008, 257(1): 23-31P
    [11] Tomalia D A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J., 1985, 17(1): 117-132P
    [12] Newkome G R, Yao Z G, Baker G R, Gupta V K. Micelles 1. Cascade molecules - A new approach to micelles - A[27]-Arborol. J. Org. Chem., 1985, 50(11): 2003-2004P
    [13]崔玉花,尹少宏,崔玉,孙国新.聚酰胺-胺(PAMAM)树状大分子的研究进展.济南大学学报(自然科学版).2007,21(4):356-360页
    [14] Haensler J, Szoka F C Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem., 1993, 4(5): 372-379P
    [15] Denkewalter R G, Kolc J F, Lukasavage W J. Macromolecular highly branched homogeneous compound. U.S. Pat., 1983: 410688
    [16] Brabender De Van Den Berg E M M, Meijer E W. Poly(propylene imine) dendrimers large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chem. Int. Ed. Engl., 1993, 32(9): 1308-1311P
    [17] W?rner C, Mülhaupt R. Polynitrile-functional and polyamine-functional poly(trimethylene imine) dendrimers. Angew. Chem. Int. Ed. Engl., 1993, 32(9): 1306-1308P
    [18] Uchida H, Kabe Y, Yoshino K, Kawamata A, Tsumuraya T, Masamune S. General strategy for the systematic synthesis of oligosiloxanes. Silicone dendrimers. J. Am. Chem. Soc., 1990, 112(19): 7077-7079P
    [19] Hawker C J, Fréchet J M J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112(21): 7638-7647P
    [20] Miller T M, Neenan T X. Convergent synthesis of monodisperse dendrimers based upon 1, 3, 5-trisubstituted benzenes. Chem. Mater., 1990, 2(4): 346-349P
    [21] Xu Z F, Moore J S. Stiff dendritic macromolecules. 3. Rapid construction of large-size phenylacetylene dendrimers up to 12.5 nanometers in molecular diameter. Angew. Chem. Int. Ed. Engl., 1993, 32(9): 1354-1357P
    [22] Xu Z F, Moore J S. Synthesis and characterization of a high molecular weight stiff dendrimer. Angew. Chem. Int. Ed. Engl., 1993, 32(2): 246-248P
    [23] Uhrich K E, Beogeman S, Fréchet J M J, Turner S R. The solid-phase synthesis of dendritic polyamides. Polym. Bull., 1991, 25(5): 551-558P
    [24] Hudson R H E, Damha M J. Nucleic acid dendrimers: Novel biopolymer structures. J. Am.Chem.Soc., 1993, 115(6): 2119-2124P
    [25] Enoki O, Katoh H, Yamamoto K. Synthesis and properties of a novel phenylazomethine dendrimer with a tetraphenylmethane core. Org. Lett., 2006, 8(4): 569-571P
    [26] Kim Y G, Oh S K, Crooks R M. Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem. Mater., 2004, 16(1): 167-172P
    [27] Lei X, Jockusch S, Turro N J, Tomalia D A, Ottaviani M F. EPR characterization of gadolinium(III)-containing-PAMAM-dendrimers in the absence and in the presence of paramagnetic probes. J. Colloid Interface Sci., 2008, 322(2): 457-464P
    [28] Ali M M, Woods M, Caravan P, Opina A C L, Spiller M, Fettinger J C,Sherry A D. Synthesis and relaxometric studies of a dendrimer-based pH-responsive MRI contrast agent. Chem. Eur. J., 2008, 14(24): 7250-7258P
    [29] Diallo M S, Arasho W, Johnson Jr J H, Goddard III W A. Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. Environ. Sci. Technol., 2008, 42(5): 1572-1579P
    [30] Yang L, Luo Y, Jia X, Ji Y, You L, Zhou Q J. Preparation of monodisperse platinum nanocrystal core-poly(amidoamine) (PAMAM) dendrimer shell structures as monolayer films. J. Phys. Chem. B, 2004, 108(4): 1176-1178P
    [31] Enoki O, Katoh H, Yamamoto K. Synthesis and properties of a novel phenylazomethine dendrimer with a tetraphenylmethane core. Org. Lett., 2006, 8(4): 569-571P
    [32]于飞,李杰,张姝妍,王俊.树枝状聚醚表面活性剂的合成与性质.日用化学工业.2007,37(1):10-12页
    [33]张志庆,王芳.新型稠油破乳剂分子结构对孤东稠油脱水的影响.油田化学.2006,23(4):325-328页
    [34]张志庆,徐桂英,王芳.新型酚胺聚醚破乳剂的原油脱水研究.山东大学学报(理学版).2004,39(3):84-87页
    [35] Zhao Y L, Shuai X T, Chen C F, Xi F. Synthesis and characterization of star-shaped poly(L-lactide)s initiated with hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimers. Chem. Mater., 2003, 15(14): 2836-2843P
    [36]龚慧娟,胡耿源,陈天喜.交联聚醚的合成及其在稠油破乳中的应用.精细石油化工.2000,17(4):1-4页
    [37]陈志明,胡广群,邵利.梳状聚醚破乳剂的合成.石油学报.2002,17(2):83-86页
    [38]刘青明,陈近增,高在海.用于高含水孤东原油的破乳剂MA-1.油田化学.1994,11(2):132-134页
    [39]张洁辉,李成龙.多嵌段聚醚的合成,结构与破乳性能研究.油田化学.1997,14(4):324-328页
    [40] Milhem O M, Myles C, McKeown N B, Attwood D, D’Emanuele A. Solubility enhancement of a hydrophobic drug using polyamidoamine starburst dendrimers. Proc. Int. Symp. Control. Rel. Bioact. Mater., 1999, 26: 931-932P
    [41] Malik N, Evagorou E G, Duncan R. Dendrimer–platinate: A novel approach to cancer chemotherapy. Anticancer Drugs, 1999, 10(8): 767-776P
    [42] Wang F, Bronich T K, Kabanov A V, Rauh R D, Roovers J. Synthesis and characterization of star poly(3-caprolactone)-b-poly(ethylene glycol) and poly(L-lactide)-b-poly(ethylene glycol) copolymers: Evaluation as drug delivery carriers. Bioconjug. Chem., 2008, 19(7): 1423-1429P
    [43]丛日敏,罗运军,李国平,谭惠民.PAMAM树形分子模板法原位合成发紫光CdS量子点的研究.无机化学学报.2005,21(11):1762-1766页
    [44]章昌华,胡剑青,涂伟萍.聚酰胺胺(PAMAM)树状分子在我国的研究进展.材料导报.2005,19(9):33-40页
    [45]李国平,李杰,罗运军.AgBr纳米簇:PAMAM树形分子模板法制备及光催化性能研究.无机化学学报.2007,23(2):253-258页
    [46] Chen J, Lin S, Yan G, Yang L, Chen X. Preparation and its photocatalysis of Cd1-xZnxS nano-sized solid solution with PAMAM as a template. Catal. Commun., 2008, 9(1): 65-69P
    [47] Scott R W J, Wilson O M, Crooks R M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B,2005, 109(2): 692-704P
    [48] Grohn F, Bauer B J, Akpalu Y A, Jackson C L, Amis E J. Dendrimer templates for the formation of gold nanoclusters. Macromolecules, 2000, 33(16), 6042-6050P
    [49] Knecht M R, Garcia-Martinez J C, Crooks R M. Hydrophobic dendrimers as templates for Au nanoparticles. Langmuir, 2005, 21(25): 11981-11986P
    [50] Auten B J, Hahn B P, Vijayaraghavan G, Stevenson K J, Chandler B D. Preparation and characterization of 3 nm magnetic NiAu nanoparticles. J. Phys. Chem. C, 2008, 112(14): 5365-5372P
    [51] Xu H, Regino C A S, Bernardo M, Koyama Y, Kobayashi H, Choyke P L, Brechbiel M W. Toward improved syntheses of dendrimer-based magnetic resonance imaging contrast agents; New bifunctional diethylenetriaminepentaacetic acid ligands and nonaqueous conjugation chemistry. J. Med. Chem., 2007, 50(14): 3185-3193P
    [52] Abu-Reziq R, Alper H, Wang D, Post M L. Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts. J. Am. Chem. Soc., 2006, 128(15): 5279-5282P
    [53] Gurdag S, Khandare J, Stapels S, Matherly L H, Kannan R M. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug. Chem., 2006, 17(2): 275-283P
    [54] Sheng K C, Kalkanidis M, Pouniotis D S, Esparon S, Tang C K, Apostolopoulos V, Pietersz G A. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J. Immunol., 2008, 38(2): 424-436P
    [55] Kim T I, Baek J U, Yoon J K, Choi J S, Kim K, Park J S. Synthesis and characterization of a novel arginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptake pathway leading totransfection. Bioconjug. Chem., 2007, 18(2): 309-317P
    [56] Elsabahy M, Zhang M, Gan S M, Waldron K C, Leroux J C. Synthesis and enzymatic stability of PEGylated oligonucleotide duplexes and their self-assemblies with polyamidoamine dendrimers. Soft Matter, 2008, 4(2): 294-302P
    [57] Griffin M R. Epidemiology of nonsteroidal anti-inflammatory drug-associated gastrointestinal injury. Am J Med, 1998, 104(3A): 23-29S
    [58] Cheng Y Y, Man N, Xu T W, Fu R Q, Wang X Y, Wang I M, Wen L P. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci., 2007, 96(3): 595-602P
    [59] Amama P B, Maschmann M R, Fisher T S, Sands T D. Dendrimer- templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD. J. Phys. Chem. B, 2006, 110(22): 10636-10644P
    [60] Crump C J, Gilbertson J D, Chandler B D. CO oxidation and toluene hydrogenation by Pt/TiO_2 catalysts prepared from dendrimer encapsulated nanoparticle precursors. Top. Catal., 2008, 49(3): 233-240P
    [61] Garcia-Martinez J C, Wilson O M, Scott R W J, Crooks R M. Extraction of metal nanoparticles from within dendrimer templates. Metal-containing and metallosupramolecular polymers and materials, Chapter 16, 2006: 215-229P
    [62] Huang W, Kuhn J N, Tsung C K, Zhang Y, Habas S E, Yang P, Somorjai G A. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: Catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett., 2008, 8(7): 2027-2034P
    [63] Lemon B I, Crooks R M. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J. Am. Chem.Soc., 2000, 122(51): 12886-12887P
    [64]刘春莲,林深,张晓凤,张晓勤,江菊琼.以PAMAM树形分子为模板剂纳米氧化锌的制备及其光催化性能研究.功能材料.2007,38(4),672-675页
    [65] Gilbertson J D, Vijayaraghavan G, Stevenson K J, Chandler B D. Air and water free solid-phase synthesis of thiol stabilized Au nanoparticles with anchored, recyclable dendrimer templates. Langmuir, 2007, 23(22), 11239-11245P
    [66] King A S, Martin I K, Twyman L. Synthesis and aggregation of amine- cored polyamidoamine dendrons synthesised without invoking a protection / deprotection strategy. J. Polym. Int., 2006, 55(7): 798-807P
    [67] Wang J, Li C Q, Li J, Yang J Z. Demulsification of crude oil emulsion using polyamidoamine dendrimers. Sep. Sci. Technol., 2007, 42(9): 2111-2120P
    [68] Huang J F, Luo H M, Liang C D, Sun I W, Baker G A, Dai S. Hydrophobic br?nsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. J. Am. Chem. Soc., 2005, 127(37): 12784-12785P
    [69] Xin X, Xu G Y, Zhang Z Q, Chen Y J, Wang F. Aggregation behavior of star-like PEO-PPO-PEO block copolymer in aqueous solution. Eur. Polym. J., 2007, 43(7): 3106-3111P
    [70]王俊,邸晓贺,李翠勤,胡凤莲.己二胺为核低代树枝状大分子的合成与性能.化学研究与应用.2008,20(2),117-121页
    [71]武汉大学化学系编.仪器分析.高等教育出版社,2001,151-242页
    [72]伍越寰,李伟昶,沈晓明编.有机化学(第2版).中国科学技术大学出版社,2007,118-162页
    [73]何曼君,张红东,陈维孝,董西侠编著.高分子物理(第3版).复旦大学出版社,2008,290-303页
    [74] Buhleier E, Wehner W, V?gtle F.“Cascade”and“nonskid-chain-like”syntheses of molecular cavity topologies. Synthesis, 1978, 55(2): 155-158P
    [75] Maciejewski M. Concept of trapping topologically by shell molecules. J. Macromol. Sci. A, 1982, A17(4): 689-703P
    [76] Tomalia D A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules, 1986, 19(9): 2466-2468P
    [77] Yang L, Luo Y F, Jia X R, Ji Y, You L P, Zhou Q F, Wei Y. Preparation of monodisperse platinum nanocrystal core-poly(amidoamine) (PAMAM) dendrimer shell structures as monolayer films. J. Phys. Chem. B, 2004, 108(4): 1176-1178P
    [78] Jiang D L, Aida T J. Morphology-dependent photochemical events in aryl ether dendrimer porphyrins: Cooperation of dendron subunits for singlet energy transduction. J. Am. Chem. Soc., 1998, 120(42): 10895-10901P
    [79] Yeow E K, Ghiggino K P, Reek J N, Crossley M J, Bosman A W, Schenning A P, Meijer E W. The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: A time-resolved fluorescence anisotropy study. J. Phys. Chem. B, 2000, 104(12): 2596-2606P
    [80] Tono Y, Kojima C, Haba Y, Takahashi T, Harada A, Yagi S, Kono K. Thermosensitive properties of poly(amidoamine) dendrimers with peripheral phenylalanine residues. Langmuir, 2006, 22(11): 4920-4922P
    [81] Hu J J, Cheng Y Y, Wu Q L, Zhao L B, Xu T W. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers J. Phys. Chem. B, 2009, 113(31): 10650-10659P
    [82] Van Dongen S F M, de Hoog H-P M, Peters R J R W, Nallani M, Nolte R J M, van Hest J C M. Biohybrid polymer capsules. Chem. Rev., 2009, 109(11): 6212-6274P
    [83]朱步瑶,赵国玺.液体表(界)面张力的测定——滴体积法介绍.化学通报.1981,(6):341-346页
    [84] Kalyanasundaram K, Thomas J K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc., 1977, 99(7): 2039-2044P
    [85] Kalyanasundaram K, Goddard E D, Turro N J, Kuo P L. Probes for critical micelle concentration determination. Langmuir, 1985, 1(3): 352-355P
    [86] Edward J T. Molecular volumes and the Stokes-Einstein equation. J. Chem. Edu., 1970, 47(4): 261-270P
    [87] Huang X, Cao M, Wang J, Wang Y. Controllable organization of a carboxylic acid type gemini surfactant at different pH values by adding copper(II) ions. J. Phys. Chem. B., 2006, 110(39): 19479-19486P
    [88] Fan Y R, Li Y J, Yuan G C, Wang Y L, Wang J B, Han C C , Yan H K, Li Z X, Thomas R K. Comparative studies on the micellization of sodium bis(4-phenylbutyl) sulfosuccinate and sodium bis(2-ethylhexyl) sulfosuccinate and their interaction with hydrophobically modified poly(acrylamide). Langmuir, 2005, 21(9): 3814-3820P
    [89]赵国玺.表面活性剂物理化学.北京大学出版社,1984:48-50页
    [90] Prasad K N, Luong T T, Florence A T, Paris J, Vaution C, Seiller M, Puisieux F. Surface activity and association of ABA polyoxyethylene- polyoxypropylene block copolymers in aqueous solution. J. Colloid Interface Sci., 1979, 69(2): 225-231P
    [91] Islam M N, Kato T. Thermodynamic study on surface adsorption and micelle formation of poly(ethylene glycol) mono-n-tetradecyl ethers.Langmuir, 2003, 19(18): 7201-7205P
    [92] Li Y J, Reeve J, Wang Y L, Thomas R K, Wang J B, Yan H K. Microcalorimetric study on micellization of nonionic surfactants with a benzene ring or adamantane in their hydrophobic chains. J. Phys. Chem. B, 2005, 109(33): 16070-16074P
    [93] Schick M J. Effect of temperature on the critical micelle concentration of nonionic detergents thermodynamics of micelle formation. J. Phys. Chem., 1963, 67(9): 1796-1799P
    [94] Crook E H, Trebbi G F, Fordyce D B. Thermodynamic properties of solutions of homogeneous p,t-octylphenoxyethoxyethanols (OPE1-10). J. Phys. Chem., 1964, 68(12): 3592-3599P
    [95] D'Errico G, Paduano L, Khan A J. Temperature and concentration effects on supramolecular aggregation and phase behavior for poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) copolymers of different composition in aqueous mixtures. J. Colloid Interface Sci., 2004, 279(2): 379-390P
    [96] Zhao G Q, Chen S B. Clouding and phase behavior of nonionic surfactants in hydrophobically modified hydroxyethyl cellullose solutions. Langmuir, 2006, 22(22): 9129-9134P
    [97] Grover P K, Ryall R L. Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem. Rev., 2005, 105(1): 1-10P
    [98] Lang W, Zander R. Salting-out of oxygen from aqueous electrolyte solutions: Prediction and measurement. Ind. Eng. Chem. Fundamen., 1986, 25(4): 775-782P
    [99] Lu T, Huang J B, Li Z H, Jia S K, Fu H L. Effect of hydrotropic salt on the assembly transitions and rheological responses of cationic gemini surfactant solutions. J. Phys. Chem. B, 2008, 112(10): 2909-2914P
    [100] Bakshi M S, Kaura A. Fluorescence studies of interactions of ionic surfactants with poly(amidoamine) dendrimers. Colloids Surf., A, 2005, 284(2): 680-686P
    [101] Bakshi M S, Kaura A, Sood R, Kaur G, Yoshimura T, Torigoe K, Esumi K. Topographical and photophysical properties of poly(amidoamine) dendrimers with ionic surfactants. Colloids Surf., A, 2005, 266(1-3): 181-190P
    [102] Cheng Y, Li Y, Wu Q, Xu T. New insights into the interactions between dendrimers and surfactants by two dimensional NOE NMR spectroscopy. J. Phys. Chem. B, 2008, 112(40): 12674-12680P
    [103]杨惠,杨世伟,吴旭,周继柱,王金本.聚酰胺-胺接枝PPO-PEO两亲嵌段树状分子的合成与表面性质.物理化学学报.2009,25(9):1806-1810页
    [104] Zhang W, Dong G J, Yang H, Sun J H, Zhou J Z, Wang J B. Synthesis, surface and aggregation properties of a series of amphiphilic dendritic copolymers. Colloids Surf., A, 2009, 348(1): 45-48P
    [105] Yang H, Han Y C, Yang S W, Zhang W, Tan G R, Wang Y L, Wang J B. Aggregation behaviour of a novel series of polyamidoamine-based dendrimers in aqueous solution. Supramol. Chem., 2009, 21(8): 754-758P
    [106] Zana R, Benrraou M, Rueff R. Alkanediyl-α,ω-bis(dimethylalkyl ammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir, 1991, 7(6): 1072-1075P
    [107] Yoshimura T, Fukai J, Mizutani H, Esumi K. Physicochemical properties of quaternized poly (amidoamine) dendrimers with four octyl chains. J. Colloid Interface Sci., 2002, 255(2): 428-431P
    [108] Esumi K, Saika R, Miyazaki M, Torigoe K, Koide Y. Interactions ofpoly(amidoamine)dendrimers having surface carboxyl groups with cationic surfactants. Colloids Surf., A, 2000, 166(1): 115-121P
    [109] Hoffmann H, Thunig C, Schmiedel P, Munkert U. Surfactant systems with charged multilamellar vesicles and their rheological properties. Langmuir, 1994, 10(11): 3972-3981P
    [110] Montalvo G, Valiente M, Khan A. Shear-induced topology changes in liquid crystals of the soybean lecithin / DDAB / water system. Langmuir, 2007, 23(21): 10518-10524P
    [111] Borges B, Rondón M, Sereno O, Asuaje J. Breaking of water-in-crude-oil emulsions. 3. Influence of salinity and water-oil ratio on demulsifier action. Energy Fuels, 2009, 23(3): 1568-1574P
    [112] Pe(?)a A A, Hirasaki G J, Miller C A. Chemically induced destabilization of water-in-crude oil emulsions. Ind. Eng. Chem. Res., 2005, 44(5): 1139-1149P
    [113] Cunha R E P, Fortuny M, Dariva C, Santos A F. Mathematical modeling of the destabilization of crude oil emulsions using population balance equation. Ind. Eng. Chem. Res., 2008, 47(18): 7094-7103P
    [114]林胜伟,陈振瑜,吕宇玲,何利民.界面张力与乳状液稳定性试验研究.油气田地面工程.2003,22(4):63-64页
    [115]康万利,岳湘安.聚合物对乳状液及液膜的稳定性.石油学报.1997,18(4):122-125页
    [116]高芒来,佟庆笑,孟秀霞.MD-1膜驱剂溶液的界面特性研究.油田化学.2003,20(1):74-77页
    [117] Balassa L L, Othmer D F. Demulsification of crude oils. Extractive and azeotropic distillation, Chapter 7, 1974: 108-121P
    [118] Zhang Z Q, Xu G Y, Wang F, Dong S L, Chen Y J. Demulsification by amphiphilic dendrimer copolymers. J. Colloid Interface Sci., 2005, 282(1):1-4P
    [119] Kang W L, Meng L W, Zhang H Y, Liu S R. Synthesis and demulsibility of the terpolymer demulsifier of acryl resin. Chin. J. Chem., 2008, 26(6): 1137-1140P
    [120]康万利,张红艳,李道山,吴肇亮,李明远,高慧梅.破乳剂对油水界面膜作用机理研究.物理化学学报.2004,20(2):194-198页
    [121]董国君,曹华,檀国荣,樊明红.嵌段聚醚破乳剂的合成及破乳规律.化学工程师.2005,19(10):64-66页
    [122] Wang J, Li C Q, Zhang S Y, Sun F, Ge T J. Synthesis and characterization of lower generation broom molecules. Chin. Chem. Lett., 2008, 19(1): 43-46P
    [123]房秀敏.聚醚型非离子表面活性剂的浊点及其影响因素.精细石油化工.1997,14(2):1-5页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700