炼油企业瓦斯系统优化调度研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯系统是炼油企业能量系统的重要组成部分,并且是炼油企业最主要的燃料源,对瓦斯系统的操作进行优化调度将极大地挖掘炼油企业降本增效的潜力,同时为其节能降耗工作发挥重大作用。然而,目前学术界和工程界对炼油企业瓦斯系统优化调度的研究和应用并不多见,为此,对该课题的研究就显得更为迫切。本文在综述了炼油企业瓦斯系统以及调度问题的国内外研究和应用现状后,对炼油企业瓦斯系统优化调度的相关问题进行了系统而深入的研究,并在此基础上实现了瓦斯系统优化调度在现场中的应用,所取得的研究成果包括:
     1)根据炼油企业的实际情况,将瓦斯系统视为炼油企业能量系统的核心,并且以瓦斯管网的逻辑拓扑结构为基础,建立起集成了瓦斯、蒸汽和电力等能量介质的多周期瓦斯系统优化调度建模框架,为炼油企业瓦斯系统优化调度研究奠定基础。
     2)基于合理的假设,建立了多周期瓦斯系统优化调度MILP模型,并用边际价值分析的方法,对该模型进行了经济分析,以指出瓦斯系统中的瓶颈问题,提出相应的改良方案,以及辅助现场调度决策的生成。
     3)提出了采用模糊可能性规划来处理炼油企业瓦斯系统优化调度问题中瓦斯产量预测、装置能耗预测、目标函数惩罚参数等不确定因素的方法,并利用边际价值分析方法对模型中的不确定性参数以及去模糊化过程中的各项参数进行了灵敏度分析,增加了灵敏度分析的灵活性。
     4)对瓦斯系统中的瓦斯管线做了分类分析,使用广义析取规划(GDP)方法对自产自耗装置管线和带瓦斯源管线进行了建模,并且提出了一种基于仿真的迭代求解策略来处理环状管线的运行状态,从而在保证了调度决策可靠性的基础上,避免了对混合整数非线性规划(MINLP)问题的求解,为瓦斯系统优化调度的实际应用创造了条件。
     5)描述了蒸汽动力系统优化调度的建模过程,并将其与瓦斯系统优化调度模型集成,提出了瓦斯系统和蒸汽动力系统的集成优化调度策略,并实现了瓦斯系统和蒸汽动力系统(即炼油企业能量系统)的全局最优。
     6)以国内某大型炼油企业的瓦斯系统为应用背景,建立了该炼油企业的瓦斯系统优化调度模型,并且提出了系统的工程应用验证方法,以确保调度模型和求解方法的可靠性和调度决策的有效性,最终实现了瓦斯系统优化调度在该炼油企业的应用。
     本文最后对所有研究内容进行总结和分析,并提出进一步研究的若干设想和建议。
Fuel gas system, which is the largest energy source in refinery, is one of the most important parts of refinery's energy system. Optimal scheduling of fuel gas system will play a great part in energy saving, and definitely will bring considerable profit to the refinery at the same time. However, few research works, neither in academic nor in engineering, have been reported on this field. As a result, it is extremely valuable to give a comprehensive research in this problem. After surveyed major research issues in refinery fuel gas system and scheduling problem, some research items about the optimization of fuel gas system scheduling in refinery are investigated systematically. Finally, the application of this optimal scheduling is realized in a real refinery. i he main contributions in this dissertation are listed as follows:
     1) Fuel gas system is considered as core of the energy system according to its important role in refinery. Consequently, a modeling framework for multi-period optimization of fuel gas system scheduling, which integrate all kinds of the energy form such as fuel gas, steam, electricity and so on, is proposed based on the topology structure of fuel gas networks. The modeling framework is the base of the whole research.
     2) Some reasonable assumptions are presented so that an MILP model for multi-period optimization of fuel gas system scheduling can be proposed. Marginal value analysis, which provides additional economic information of the fuel gas system, is introduced into the research. This analytical method is used to identify the system bottleneck, propose the improvement measure and assist decision-making in the case study.
     3) In order to deal with the imprecise natures in the fuel gas system, such as prediction of production rate of fuel gas, prediction of energy demand of equipments and cost coefficient in the objective function, fuzzy possibilistic programming method is introduced. To give the sensitivity analysis of the uncertainty parameters in the fuzzy model, marginal vale analysis method, which will improve the flexibility, is proposed.
     4) The fuel gas pipeline network is classified by its topology structure. A logical modeling method, which is called generalized disjunctive programming(GDP), is introduced to model the pipeline with self-producing-self-consuming equipment and the pipeline with fuel gas source, while an iterative procedure based on pipeline network simulation is proposed to effectively deal with the loop structure pipeline network. Thus, the solution of a complex MINLP formulation is replaced by the sequential MILP problem in condition that the reliability of the scheduling decisions are guaranteed. This makes it possible to execute optimal fuel gas system scheduling in real refinery.
     5) The model for optimization of steam system in refinery is introduced. By integrating this model with that for optimization of fuel gas system, an integrated optimal scheduling strategy which consider steam system and fuel gas system simultaneously is presented. Global optimization will be obtained during scheduling of refinery energy system by using this integrated optimal scheduling strategy.
     6) A model for optimization of fuel gas system scheduling in a domestic complex refinery is proposed. Furthermore, a systematic validation method for engineering application is designed. Through these validations, reliability of the scheduling model and solving strategy and effectiveness of the scheduling decisions is guaranteed, and application of optimal fuel gas system scheduling is realized in this real refinery.
     Finally, a summary of the research referred above is concluded and the prospect of future study is indicated in this dissertation.
引文
[1]Bokic,M.and Dragicevic,S.,MILP optimization of energy supply by using a boiler,a condensing turbine and a heat pump,Energy Conversion and Management,2002,43(4):591-608.
    [2]Marechal,F.and Kalitventzeff,B.,Targeting the integration of multi-period utility systems for site scale process integration,Applied Thermal Engineering,2003,23(14):1763-1784.
    [3]Hallale,N.and Liu,F.,Refinery hydrogen management for clean fuels production,Advances in Environmental Research,2001,6(1):81-98.
    [4]Van den Heever,S.A.and Grossmann,I.E.,A strategy for the integration of production planning and reactive scheduling in the optimization of a hydrogen supply network,Computers and Chemical Engineering,2003,27(12):1813-1839.
    [5]Bagajewicz,M.,Rodera,H.,Savelski,M.,Energy efficient water utilization systems in process plants,Computers and Chemical Engineering,2002,26(1):59-79.
    [6]Karuppiah,R.and Grossmann,I.E.,Global optimization for the synthesis of integrated water systems in chemical process,Computers and Chemical Engineering,2006,30(4):650-673.
    [7]Frangopoulos,C.A.,Lygeros,A.I.,Markou,C.T.,et al.,Thermoeconomic operation optimization of the Hellenic Aspropyrgos refinery combined-cycle cogeneration system,Applied Thermal Engineering,1996,16(12):949-958.
    [8]Beeckman,D.,CIM-OSA:computer integrated manufacturing-open system architecture,International Journal of Computer Integrated Manufacturing,1989,2(2):94-105.
    [9]Williams,T.J.,The Purdue enterprise reference architecture,Computers in Industry,1994,24(2-3):141-158.
    [10]王宏安,荣冈,冯梅等,化工生产执行系统MES,北京:化学工业出版社,2007.
    [11]柴天佑,金以慧,任德祥等,基于三层结构的流程工业现代集成制造系统,控制工程,2002,9(3):1-6.
    [12]Fisher,P.W.and Brennan,D.,Minimize flaring with flare gas recovery,Hydrocarbon Processing,2002,81(6):83-85.
    [13]Schaefer,A.E.,Hydrogen cryogenic purification system,US Patent,4242875,1981.
    [14]Trenin,V.D.,Alekseev,I.A.,Baranov,I.A.,et al.,Full-scale experimental assembly for hydrogen isotopes separation studies by cryogenic distillation:assembly and results of the studies,Fusion Technology,1995,28(10):761-766.
    [15]Zhang,D.,Kodama,A.,Goto,M.,et al.,Recovery of trace hydrogen by cryogenic adsorption,Separation Purification Technology,2004,35(2):105-112.
    [16]Malek,A.and Farooq,S.,Hydrogen purification from refinery fuel gas by pressure swing adsorption,AIChE Journal,1998,44(9):1985-1992.
    [17]Sircar,S.and Golden,T.C.,Purification of hydrogen by pressure swing adsorption,Separation Science and Technology,2000,35(5):667-687.
    [18]Waldron,W.E.and Sircar,S.,Parametric study of a pressure swing adsorption process,Adsorption,2000,6(2):179-188.
    [19]Moss,T.S.,Peachey,N.M.,Snow,R.C.,et al.,Multilayer metal membranes for hydrogen separation,International Journal of Hydrogen Energy,1998,23(2):99-106.
    [20]Lin,Y.M.and Rei,M.H.,Separation of hydrogen from the gas mixture out of catalytic reformer by using supported palladium membrane,Separation and Purification Technology,2001,25(1-3):87-95.
    [21]Adhikari,S.and Fernando,S.,Hydrogen membrane separation techniques,Industrial &Engineering Chemistry Research,2006,45(3):875-881.
    [22]Higgins,R.D.,Cryogenic recovery of liquids from refinery off-gases,US patent,4356014,1982.
    [23]Rowles,H.C.,Grassi,K.S.,Bernhard,D.P.,Process for the recovery and purification of ethylene,US patent,4720293,1988.
    [24]郗宝珍,炼油企业低压瓦斯气回收流程的优化,化学工程师,2005,120(9):48-50.
    [25]Huo,Y.,Wang,Z.,Wang,Y.,et al.,Process for the production of LPG rich in olefins and high quality gasoline,US patent,5326465,1994.
    [26]张建伟,我国吸收法油气回收技术发展状况,石油商技,2001,19(3):21-23.
    [27]李宁,王青宁,王德会等,大型炼油企业轻烃回收流程整合的探讨,炼油技术与工程,2008,38(2):11-14.
    [28]Baker,R.W.,Wijmans,J.G.,Kaschemekat,J.H.,The design of membrane vapor-gas separation systems,Journal of Membrane Science,1998,151(1):55-62.
    [29]Krishna,R.and Paschek,D.,Separation of hydrocarbon mixtures using zeolite membranes:a modelling approach combining molecular simulations with the Maxwell-Stefan theory,Separation and Purification Technology,2000,21(1-2):111-136.
    [30]Matsumoto,M.,Inomoto,Y.,Kondo,K.,Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids,Journal of Membrane Science,2005,246(1):77-81.
    [31]陈楫国,李秀芝,代细珍等,炼厂瓦斯气的回收利用及自动控制,节能,2001,6:9-11.
    [32]曹体友,PLC火炬自动点火控制器的设计及应用,自动化仪表,2002,23(4):65-66.
    [33]赵风翔,火炬自动点火设施在瓦斯回收系统的应用,石油化工安全环保技术,2007,23(2):16-17.
    [34]尹继杰,浅谈威金斯气柜在炼油企业的设计应用,石油商技,2002,20(2):29-31.
    [35]谷涛,低压瓦斯回收装置及相关工艺的选择,节能技术,2004,22(3):43-45.
    [36]赵凤翔,李宗林,炼厂瓦斯气的回收和利用,石油化工安全技术,2005,21(3):20-21.
    [37]Hui,C.W.and Natori,Y.,An industrial application using mixed-integer programming technique:A multi-period utility system model,Computers and Chemical Engineering,1996,20(Suppl.):S1577-S1582.
    [38]Iyer,R.R.and Grossmann I.E.,Optimal multiperiod operational planning for utility systems,Computers and Chemical Engineering,1997,21(8):787-800.
    [39]Kim,J.H.and Han,C.H.,Short-term multiperiod optimal planning of utility systems using heuristics and dynamic programming,Industrial & Engineering Chemistry Research,2001,40(8):1928-1938.
    [40]Varbanov,P.S.,Doyle,S.,Smith R.,Modelling and optimization of utility systems,Chemical Engineering Research and Design,2004,82(A5):561-578.
    [41]Han,I.S.,Lee,Y.H.,Han,C.H.,Modeling and optimization of the condensing steam turbine network of a chemical plant,Industrial & Engineering Chemistry Research,2006,45(2):670-680.
    [42]Yi,H.S.,Kim,J.H.,Han,C.H.,et al.,Periodical replanning with hierarchical repairing for the optimal operation of a utility plant,Control Engineering Practice,2003,11(8):881-894.
    [43]Hirata,K.,Sakamoto,H.,Young,L.O.,et al,Multi-site utility integration- an industrial case study,Computers and Chemical Engineering,2004,28(1-2):139-148.
    [44]Francisco,A.P.O.and Matos,H.A.,Multiperiod synthesis and operational planning of utility systems with environmental concerns,Computers and Chemical Engineering,2004,28(5):745-753.
    [45]Varbanov,P.,Perry,S.,Klemes,J.,et al,Synthesis of industrial utility systems:cost-effective de-carbonisation,Applied Thermal Engineering,2005,25(7):985-1001.
    [46]Eliceche,A.M.,Corvalan,S.M.,Martinez,P.,Environmental life cycle impact as a tool for process optimisation of utility plant,Computers and Chemical Engineering,2007,31(5-6):648-656.
    [47]汝方济,赵士杭,华贲,石化企业热能动力系统的优化调度,石油炼制,1993,24(7):18-21.
    [48]张冰剑,华贲,刘金平等,石化企业蒸汽动力系统的多周期优化运行,华北电力大学学报,2005,32(2):90-92.
    [49]罗向龙,华贲,炼油企业蒸汽动力系统优化调度策略研究,计算机与应用化学,2006,23(11):1057-1060.
    [50]梁彬华,王中华,田宏斌,炼油调度辅助决策系统开发与应用,广东化工,2006,33(5):56-59.
    [51]李树文,炼油企业瓦斯气平衡,辽宁化工,2008,37(7):496-498.
    [52]Zhang,J.D.and Rong,G.,An MILP model for multi-period optimization of fuel gas system scheduling in refinery and its marginal value analysis,Chemical Engineering Research and Design,2008,86(2):141-151.
    [53]Akimoto,K.,Sannomiya,N.,Nishikawa,Y.,et al.,An optimal gas supply for a power plant using a mixed integer programming model,Automatica,1991,27(3):513-518.
    [54]Bemporad,A.and Morari,M.,Control of systems integrating logic,dynamics,and constraints,Automatica,1999,35(3):407-427.
    [55]Kim,J.H.,YI,H.S.,Han,C.,Optimal byproduct gas distribution in iron and steel making process using mixed integer linear programming,International Symposium on Advanced Control of Industrial Process,Kumamoto,Japan,2002,581-586.
    [56]Kim,J.H.,YI,H.S.,Han,C.,A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron- and steel-making process,Chemical Engineering Research and Design,2003,81(8):1015-1025.
    [57]Kim,J.H.,YI,H.S.,Han,C.,Plant-wide optimal byproduct gas distribution and holder level control in the iron and steel making process,Korean Journal of Chemical Engineering,2003,20(3):429-435.
    [58]Simon,J.D.and Azma,H.M.,Exxon experience with large scale linear and nonlinear programming applications,Computers and Chemical Engineering,1983,7(5):605-614.
    [59]Moro,L.F.L.,Zanin,A.C.,Pinto,J.M.,A planning model for refinery diesel production,Computers and Chemical Engineering,1998,22(Suppl.):S1039-S1042.
    [60]Neiro,S.M.S.and Pinto,J.M.,Multiperiod optimization for production planning of petroleum refineries,Chemical Engineering Communications,2005,192(1):62-88.
    [61]Timpe,C.H.and Kallrath,J.,Optimal planning in large multi-site production networks,European Journal of Operational Research,2000,126(2):422-435.
    [62]Jackson,J.R.and Grossmann,I.E.,Temporal decomposition scheme for nonlinear multisite production planning and distribution models,Industrial & Engineering Chemistry Research,2003,42(13):3045-3055.
    [63]Neiro,S.M.S.and Pinto,J.M.,Supply chain optimization of petroleum refinery complexes,In Proceedings of the Fourth International Conference on Foundations of Computer-Aided Process Operations,Florida,USA,2003,59-72.
    [64]Zhang,J.,Zhu,X.X.,Towler,G.P.,A simultaneous optimization strategy for overall integration in refinery planning,Industrial & Engineering Chemistry Research,2001,40(12):2640-2653.
    [65]Li,W.K.,Hui,C.W.,Hua,B.,et al.,Material and energy integration in a petroleum refinery complex,Computer Aided Chemical Engineering,2003,15(Part B):934-939.
    [66]Zhang,B.J.and Hua,B.,Effective MILP model for oil refinery-wide production planning and better energy utilization,Journal of Cleaner Production,2007,15(5):439-448.
    [67]张冰剑,华贲,陆明亮,炼油企业生产计划与公用工程多周期集成优化研究,石油学报(石油加工),2006,22(2):56-68.
    [68]Pinto,J.M.,Joly,M.,Moro,L.F.,Planning and Scheduling models for refinery operations,Computers and Chemical Engineering,2000,24(9-10):2259-2276.
    [69]Floudas,C.A.and Lin,X.,Continuous-time versus discrete-time approaches for scheduling of chemical processes:a review,Computers and Chemical Engineering,2004,28(11): 2109-2129.
    [70]Kondili,E.,Pantelides,C.C.,Sargent,R.W.H.,A general algorithm for short-term scheduling of batch operations -Ⅰ.MILP formulation,Computers and Chemical Engineering,1993,17(2):211-227.
    [71]Bassett,M.H.,Pekny,J.F.,Reklaitis,G.V.,Decomposition techniques for the solution of large-scale scheduling problems,AIChE Journal,1996,42(12):3373-3387.
    [72]Yee,K.L.and Shah,N.,Improving the efficiency of discrete time scheduling formulation,Computers and Chemical Engineering,1998,22(Suppl.1):S403-S410.
    [73]Lee,K.Y.,Park,H.,Lee,I.B.,A novel nonuniform discrete time formulation for short-term scheduling of batch and continuous processes,Industrial & Engineering Chemistry Research,2001,40(22):4902-4911.
    [74]Zhang,X.and Sargent,R.W.H.,The optimal operation of mixed production facilities- a general formulation and some approaches for the solution,Computers and Chemical Engineering,1996,20(6-7):897-904.
    [75]Ierapetritou,M.G.and Floudas,C.A.,Effective continuous-term formulation for short-torm scheduling:1.Multipurpose batch processes,Industrial & Engineering Chemistry Research,1998,37(11):4341-4359.
    [76]Ierapetritou,M.G.and Floudas,C.A.,Effective continuous-term formulation for short-torm scheduling:2.Continuous and semi-continuous processes,Industrial & Engineering Chemistry Research,1998,37(11):4360-4374.
    [77]Ierapetritou,M.G.,Hene,T.S.,Floudas,C.A.,Effective continuous-term formulation for short-term scheduling:3.Multiple intermediate due dates,Industrial & Engineering Chemistry Research,1999,38(9):3446-3461.
    [78]Lin,X.and Floudas,C.A.,Design,synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation,Computers and Chemical Engineering,2001,25(4-6):665-674.
    [79]Ierapetritou,M.G.and Floudas,C.A.,Comments on "an improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants",Industrial &Engineering Chemistry Research,2001,40(22):5040-5041.
    [80]Aytug,H.,Lawley,M.A.,McKay,K.,et al.,Executing production scheduling in the face of uncertainties:a review and some future directions,European Journal of Operational Research,2005,161(1):86-110.
    [81]Ierapetritou,M.G.and Pistikopoulos,E.N.,Batch plant design and operations under uncertainty,Industrial & Engineering Chemistry Research,1996,35(3):772-787.
    [82]Petkov,S.B.and Maranas,C.D.,Multiperiod planning and scheduling of multiproduct batch plants under demand uncertainty,Industrial & Engineering Chemistry Research,1997,36(11):4864-4881.
    [83]Sand,G.,Engell,S.,Markert,A.,et al.,Approximation of an ideal online scheduler for a multiproduct batch plant,Computers and Chemical Engineering,2000,24(2-7):361-367.
    [84]Vin,J.P.and Ierapetritou,M.G.,Robust short-term scheduling of multiproduct batch plants under demand uncertainty,Industrial & Engineering Chemistry Research,2001,40(21):4543-4554.
    [85]Honkomp,S.J.,Mockus,L.,Reklaitis,G.V.,A framework for schedule evaluation with processing uncertainty,Computers and Chemical Engineering,1999,23(4-5):595-609.
    [86]Schmidt,C.W.and Grossmann,I.E.,The exact overall time distribution of a project with uncertain task durations,European Journal of Operational Research,2000,126(3):614-636.
    [87]Balasubramanian,J.and Grossmann,I.E.,A novel branch and bound algorithm for scheduling flowshop plant with uncertain processing times,Computers and Chemical Engineering,2002,26(1):41-57.
    [88]Li,P.,Wendt,M.,Wozny,G.,Optimal production planning for chemical processes under uncertain market conditions,Chemical Engineering & Technology,2004,27(6):641-651.
    [89]Cao,C.,Gu,X.,Xin,Z.,Chance constrained programming models for refinery short-term crude oil scheduling problem,Applied Mathematical Modelling,2008,33(3):1696-1707.
    [90]Bassett,M.H.,Pekny,J.F.,Reklaitis,G.V.,Using detailed scheduling to obtain realistic operating policies for a batch processing facility,Industrial & Engineering Chemistry Research,1997,36(5):1717-1726.
    [91]Gupta,A.and Maranas,C.D.,A two-stage modeling and solution framework for multisite midterm planning under demand uncertainty,Industrial & Engineering Chemistry Research,2000,39(10):3799-3813.
    [92]Vin, J.P. and Ierapetritou, M.G., A new approach for efficient rescheduling of multiproduct batch plants, Industrial & Engineering Chemistry Research, 2000,39(11): 4228-4238
    [93]Tang,O. and Grubbstrom, R.W., Planning and replanning the master production schedule under demand uncertainty, International Journal of Production Economics, 2002, 78(3):323-334.
    [94]Li, P., Arellano-Garcia, H., Wozny, G., Chance constrained programming approach to process optimization under uncertainty, Computers and Chemical Engineering, 2008,32(1-2): 25-45.
    
    [95]Bellman, R.E. and Zadeh, L.A., Decision-making in a fuzzy environment, Management Science, 1970,17(4): 141-164.
    
    [96]Inuiguchi, M., Sakawa, M., Kume, Y., The usefulness of possibilistic programming in production planning problems, International Journal of Production Economics, 1994,33(1-3): 45-52. [
    97]Kuroda, R. and Wang, Z., Fuzzy job shop scheduling, International Journal of Production Economics, 1996,44(1-2): 45-51.
    [98]Balasubramanian, J. and Grossmann I.E., Scheduling optimization under uncertainty-an alternative approach, Computers and Chemical Engineering, 2003,27(4): 469-490.
    [99]Wang, T., A fuzzy robust scheduling approach for product development projects, European Journal of Operational Research, 2004, 152(1): 180-194.
    
    [100] Petrovic, D. and Duenas, A., A fuzzy logic based production scheduling/ rescheduling in the presence of uncertain disruptions, Fuzzy Sets and Systems, 2006,157(16): 2273-2285.
    
    [101] Hsieh, S. and Wu, M.S., Demand and cost forecast error sensitivity analyses in aggregate production planning by possibilistic linear programming models, Journal of Intelligent Manufacturing, 2000,11(4): 355-364.
    
    [102] Perovic, R. and Petrovic, D., Multicriteria ranking of inventory replenishment policies in the presence of uncertainty in customer demand, International Journal of Production Economics, 2001, 71(1-3): 439-446.
    
    [103] Wang, R.C. and Liang, T.F., Applying possibilistic linear programming to aggregate production planning, International Journal of Production Economics, 2005, 98(3):328-341.
    [104]Liang,T.E,Application of interactive possibilistic linear programming to aggregate production planning with multiple imprecise objectives,Production Planning & Control,2007,18(7):548-560.
    [105]Tang,J.F.,Fung,R.Y.K.,Yung,K.L.,Fuzzy modeling and simulation for aggregate production planning,International Journal of System Science,2003,34(12-13):661-673.
    [106]Ramik,J.and Rimanek J.,Inequality relation between fuzzy numbers and its use in fuzzy optimization,Fuzzy Sets and Systems,1985,16(2):123-138.
    [107]Lai,Y.J.and Hwang,C.L.,A new approach to some possibilistic linear programming problems,Fuzzy Sets and Systems,1992,49(2):121-133.
    [108]孙增圻,智能控制理论与技术,北京:清华大学出版社,1997.
    [109]Fang,S.C.,Hu,C.F.,Wang,H.F.,et al.,Linear programming with fuzzy coefficients in constraints,Computers and Mathematics with Applications,1999,37(10):63-76.
    [110]Ammar,S.and Wright,R.,Applying fuzzy-set theory to performance evaluation,Socio-Economic Planning Sciences,2000,34(4):285-302.
    [111]Majozi,T.and Zhu,X.X.,A combined fuzzy set theory and MILP approach in integration of planning and scheduling of batch plants-personnel evaluation and allocation,Computers and Chemical Engineering,2005,29(9):2029-2047.
    [112]Alefeld,G.and Herzberger,J.,Introduction to interval computations,New York:Academic Press,1983.
    [113]Daniels,R.L.and Kouvelis,P.,Robust scheduling to hedge against processing time uncertainty in single-stage production,Management Science,1995,41(2):363-376.
    [114]Montemanni,R.,A mixed integer programming formulation for the total flow time single machine robust scheduling problem with interval data,Journal of Mathematical Modelling and Algorithms,2007,6(2):287-296.
    [115]蒋铮,区间参数不确定系统优化方法及其在汽油调和中的应用研究[博士学位论文],杭州,浙江大学,2005.
    [116]马仲蕃,线性整数规划的数学基础,北京:科学出版社,1995.
    [117]Lee,H.,Pinto,J.M.,Grossmann,I.E.,et al.,Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management,Industrial & Engineering Chemistry Research,1996,35(5):1630-1641.
    [118] Reddy, P.C.P., Karimi, I.A., Srinivasan, R., A new continuous-time formulation for scheduling crude oil operations, Chemical Engineering Science, 2004, 59(6): 1325-1341.
    [119] G(?)the-Lundgren, M., Lundgren, J.T., Persson, J.A., An optimization model for refinery production scheduling, International Journal of Production Economics, 2002, 78(3):255-270.
    [120] Rejowski, R. and Pinto, J.M., Scheduling of a multiproduct pipeline system, Computers and Chemical Engineering, 2003,27(8-9): 1229-1246.
    [121] Pinto, J.M. and Grossmann, I.E., A logic-based approach to scheduling problems with resource constraints, Computers and Chemical Engineering, 1997,21(8): 801-818.
    [122] Neuman, K., Schwindt, C, Trautmann, N., Advanced production scheduling for batch plants in process industries, OR Spectrum, 2002,24(3): 251-279.
    [123] Mendez, C.A and Cerda, J., Optimal scheduling of a resource-constrained multiproduct batch plant supply intermediates to nearby end-product facilities, Computers and Chemical Engineering, 2000,24(2-7): 369-376.
    [124] Mendez, C.A. and Cerda, J., An efficient MILP continuous-time formulation for short-term scheduling of multiproduct continuous facilities, Computers and Chemical Engineering, 2002,26(4-5): 687-695.
    [125] Grossmann, I.E., Van den Heever, S.A., Harjunkoski, I., Discrete optimization methods and their role in the integration of planning and scheduling, AIChE Symposium Series,2002: 150-168.
    [126] Joly, M., Moro, L.F.L., Pinto, J.M., Planning and Scheduling for petroleum refineries using mathematical programming, Brazilian Journal of Chemical Engineering, 2002,19(2): 207-228.
    [127] Iyer, R.R. and Grossmann, I.E., Synthesis and operational planning of utility systems for multiperiod operation, Computers and Chemical Engineering, 1998,22(7-8): 979-993.
    [128] Zhang, N. and Zhu, X.X., Novel modelling and decomposition strategy for total site optimization, Computers and Chemical Engineering, 2006, 30(5): 765-777.
    [129] Wu, D. and Ierapetritou, M.G., Decomposition approaches for the efficient solution ofshort-term scheduling problems, Computers and Chemical Engineering, 2003, 27(8-9):1261-1276.
    [130]Wilkinson,S.J.,Cortier,A.,Shah,N.,et al.,Integrated production and distribution scheduling on a Europe-Wide basis,Computers and Chemical Engineering,1996,20(Suppl.):S1275-S1280.
    [131]Iyer,R.R.,Grossmann,I.E.,Vasantharajan,S.,et al.,Optimal planning and scheduling of offshore oil field infrastructure investment and operations,Industrial & Engineering Chemistry Research,1998,37(4):1380-1397.
    [132]Van den Heever,S.A.and Grossmann,I.E.,An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model,Industrial & Engineering Chemistry Research,2000,39(6):1955-1971.
    [133]Luo,C.and Rong,G.,Hierarchical approach for short-term scheduling in refineries,Industrial & Engineering Chemistry Research,2007,46(11):3656-3668.
    [134]Bl(o|¨)mer,F.and G(u|¨)nther,H.O.,LP-based heuristics for scheduling chemical batch processes,International Journal of Production Research,2000,38(5):1029-1051.
    [135]钱晓龙,唐立靳,刘文新,动态调度的研究方法综述,控制与决策,2001,16(2):141-145.
    [136]Wang,K.,Lohl,T.,Stobbe,M.,et al.,A genetic algorithm for online-scheduling of a multiproduct polymer batch plant,Computers and Chemical Engineering,2000,24(2-7):393-400.
    [137]Hu,X.B.and Chen,W.H.,Genetic algorithm based on receding horizon control for arrival sequencing and scheduling,Engineering Applications of Artificial Intelligence,2005,18(5):633-642.
    [138]Chatfield,D.C.,The economic lot scheduling problem:A pure genetic search approach,Computers and Operations Research,2007,34(10):2865-2881.
    [139]Chen,J.S.,Pan,J.C.H.,Lin,C.M.,A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem,Expert Systems with Applications,2008,34(1):570-577.
    [140]段海滨,王道波,朱家强等,蚁群算法理论及应用研究的进展,控制与决策,2004,19(12):1321-1326.
    [141]Vincent,T.,Monmarche,N.,Tercinet,F.,et al.,An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem,European Journal of Operational Research,2002,142(2):250-257.
    [142]Chandrasekharan,R.and Hans,Z.,Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs,European Journal of Operational Research,2004,155(2):426-438.
    [143]Christian,B.and Michael,S.,An ant colony optimization algorithm for shop scheduling problems,Journal of Mathematical Modelling and Algorithms,2004,3(3):285-308.
    [144]Dorigo,M.and Di Caro,G.,Ant colony optimization:a new meta-heuristic,Proceedings of the 1999 Congress on Evolutionary Computation,Washington,D.C.,USA,1999,2:1470-1477.
    [145]Zhao,X.Q.and Rong,G.,Blending scheduling under uncertainty based on particle swarm optimization algorithm,Chinese Journal of Chemical Engineering,2005,13(4):535-541.
    [146]Pan,H.and Wang,L.,Blending Scheduling under uncertainty based on particle swarm optimization with hypothesis test,Lecture Notes in Computer Science,2006,4115(2006):109-120.
    [147]Liao,C.J.,Tseng,C.T.,Luarn,P.,A discrete version of particle swarm optimization for flowshop scheduling problems,Computers and Operations Research,2007,34(10):3099-3111.
    [148]张利彪,周春光,刘小华等,粒子群算法在求解优化问题中的应用,吉林大学学报(信患科学版),2005,23(4):385-389.
    [149]Dell'Amico,M.and Trubian,M.,Applying tabu search to the job-shop scheduling problem,Annals of Operations Research,1993,41(3):231-252.
    [150]Pezzella,F.and Merelli,E.,A tabu search method guided by shifting bottleneck for the job shop scheduling problem,European Journal of Operational Research,2000,120(2):297-310.
    [151]Ponnambalam,S.G.,Aravindan,P.,Rajesh,S.V.,A tabu search algorithm for job shop scheduling,The International Journal of Advanced Manufacturing Technology,2000,16(10):765-771.
    [152]王凌,车间调度及其遗传算法,北京:清华大学出版社,2003.
    [153]Dahal,K.P.and Chakpitak,N.,Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches,Electric Power Systems Research,2007,77(7):771-779.
    [154]Sadegheih,A.,Sequence optimization and design of allocation using GA and SA,Applied Mathematics and Computation,2007,186(2):1723-1730.
    [155]Zhang,C.Y.,Li,P.G.,Rao,Y.Q.,et al.,A very fast TS/SA algorithm for the job shop scheduling problem,Computers and Operations Research,2008,35(1):282-294.
    [156]李霄峰,徐立云,邵惠鹤,柔性炼钢连铸仿真调度系统及其关键技术,系统仿真学报,2002,14(2):207-210.
    [157]Magalhaes,M.V.O.,Moro,L.F.L.,Smania,P.,et al.,SIPP-A solution for refinery scheduling,Proceedings of 1998 NPRA Computer Conference,Washington,D.C.,USA,1998,NPRA,1-6.
    [158]章建栋,冯毅萍,荣冈,流程工业综合自动化系统的仿真技术及其应用,计算机集成制造系统,2007,13(9):1690-1699.
    [159]Artiba,A.and Riane,F.,An application of a planning and scheduling multi-model approach in the chemical industry,Computers in Industry,1998,36(3):209-229.
    [160]Paolucci,M.,Sacile,R.,Boccalatte,A.,Allocating crude oil supply to port and refinery tanks:a simulation-based decision support system,Decision Support Systems,2002,33(1):39-54.
    [161]Chryssolouris,G.,Papakostas,N.,Mourtzis,D.,Refinery short-term scheduling with tank farm,inventory and distillation management:An integrated simulation-based approach,European Journal of Operational Research,2005,166(3):812-827.
    [162]Filip,F.G.,Donciulescu,A.D.,Neagu,G.,Decision support for blend monitoring in process industries,Computers in Industry,1998,36(1-2):13-19.
    [163]Mendez,C.A.,Grossmann,I.E.,Harjunkoski,I.,et al.,A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations,Computers and Chemical Engineering,2006,30(4):614-634.
    [164]Micheletto,S.M.,Carvalho,M.C.A.,Pinto,J.M.,Operational optimization of the utility system of an oil refinery,Computers & Chemical Engineering,2008,32(1-2):170-185.
    [165]罗春鹏,炼油企业生产调度研究[博士学位论文],杭州,浙江大学,2008,.
    [166]Li,W.K.,Liang,X.,Hui,C.W.,Plant-wide planning and marginal value analysis for a refinery complex,16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering,Garmiscc-Parten kirchen,Germany,2006,Elsevier:2117-2122.
    [167]Davis,J.,Overcoming fuel gas containment limitations to energy improvement,http://txspace.tamu.edu/bitstrearn/handle/1969.1/6024/ESL-IE-04-04-15.pdf%3FseFseque =1,2004.
    [168]White,D.C.,Advanced automation technology reduces refinery energy costs,Oil & gas Journal,2005,103(37):45-53.
    [169]Hillier,ES.andLieberman,G.J.,运筹学导论(第8版),北京:清华大学出版社,2006.
    [170]Hui,C.W.,Determining marginal values of intermediate materials and utilities using a site model,Computers and Chemical Engineering,2000,24(2-7):1023-1029.
    [171]Cheung,K.Y.,Hui,C.W.,Sakamoto,H.,et al.,Marginal values analysis for chemical industry,Computer Aided Chemical Engineering,2003,15(Part A):178-183.
    [172]Hirata,K.,Chan,P.,Sakamoto,H.,et al.,Pricing utilities for large-scale chemical production site,Computer Aided Chemical Engineering,2006,21(Part A):557-562.
    [173]Hirata,K.,Sakamoto,H.,Cheung,K.Y.,et al.,Simultaneous site-wide energy,waste and production optimization-industrial case studies,14~(th) European Symposium on Computer Aided Process Engineering,Lisbon,Portugal,2004,Elsevier:925-930.
    [174]Li,W.K.and Hui,C.W.,Debottlenecking and retrofitting for a refinery using marginal value analysis,sensitivity analysis and parametric programming,Computer Aided Chemical Engineering,2003,15(Part A):268-273.
    [175]Li,W.K.and Hui,C.W.,Applying marginal value analysis in refinery planning,Chemical Engineering Communications,2007,194(7):962-974.
    [176]Sun,C.K.,Uraikul,V.,Chan,C.W.,et al.,An integrated expert system/operations research approach for the optimization of natural gas pipeline operations,Engineering Application of Artificial intelligence,2000,13(4):465-475.
    [177]Sadeghi,M.and Hosseini,H.M.,Energy supply planning in Iran by using fuzzy linear programming approach(regarding uncertainties of investment costs),Energy Policy,2006,34(9):993-1003.
    [178](O|¨)zgen,D.,(O|¨)n(u|¨)t,S.,G(u|¨)ls(u|¨)n,B.,et al.,A two-phase possibilistic linear programming methodology for multi-objective supplier evaluation and order allocation problems,Information Sciences,2008,178(2):485-500.
    [179] Liang, T.F., Application of possibilistic linear programming to multi-objective distribution planning decisions, Journal of Chinese Institute of Industrial Engineers, 2007, 24(2):97-109.
    [180] Muela, E., Schweickardt, G., Garces, F., Fuzzy possibilistic model for medium-term power generation planning with environmental criteria, Energy Policy, 2007, 35(11):5643-5655.
    [181] Wang, J. and Shu, Y.F., A possibilistic decision model for new product supply chain design, European Journal of Operation Research, 2007, 177(2): 1044-1061.
    [182] Vasant, P.M., Barsoum, N.N., Bhattacharya, A., Possibilistic optimization in planning decision of construction industry, International Journal of Production Economics, 2008,111(2): 664-675.
    [183] Torabi, S.A. and Hassini, E., An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 2008, 159(2):193-214.
    [184] Inuiguchi, M. and Ramik, J., Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem, Fuzzy Sets and Systems, 2000, 111(1): 3-28.
    [185] Cater, R., Pipeline optimization: Dynamic programming after 30 years, Proceeding of the 30~(th) PSIG Annual Meeting, 1998, Paper number: PSIG-9803.
    
    [186] Wong, P.J. and Larson, R.E., Optimization of natural gas pipeline systems via dynamic programming, IEEE Transactions on Automatic Control, 1968, 13(5): 475-481.
    
    [187] De Wolf, D., and Smeers Y., The gas transmission problem solved by extension of the simplex algorithm, Management Science, 2000,46(11): 1454-1465.
    [188] M(?)ller, M., A mixed integer approach for the transient case of gas network optimization,PhD thesis, Darmstadt University of Technology, 2004.
    [189] Martin, A., M(?)ller, M., Moritz, S., Mixed integer models for the stationary case of gas network optimization, Mathematical Programming, 2006, 105(2-3): 563-582.
    [190] Turkay, M. and Grossmann, I.E., Logic-based MINLP algorithms for the optimal synthesis of process networks, Computers and Chemical Engineering, 1996, 20(8): 959-978.
    [191] Van den Heever, S.A. and Grossmann, I.E., Disjunctive multiperiod optimization method for design and planning of chemical process systems, Computers and Chemical Engineering,1999,23(8):1075-1095.
    [192]Grossmann,I.E and Lee,S.,Generalized convex disjunctive programming:Nonlinear convex hull relaxation,Computational Optimization and Applications,2003,26(1):83-100.
    [193]Vecchietti,A.,LEE,S.,Grossmann,I.E.,Modeling of discrete/continuous optimization problems:characterization and formulation of disjunctions and their relaxations,Computers and Chemical Engineering,2003,27(3):433-448.
    [194]Lee,S.and Grossmann,I.E.,Logic-based modeling and solution of nonlinear discrete/continuous optimization problems,Annals of Operations Research,2005,139(1):267-288.
    [195]Papoulias,S.A.and Grossmann,I.E.,A structural optimization approach in process synthesis.I:Utility systems,Computers and Chemical Engineering,1983,7(6):695-706.
    [196]Bruno,J.C.,Fernandez,E,Grossmann,I.E.,A rigorous MINLP model for the optimal synthesis and operation of utility plants,Chemical Engineering Research and Design,1998,76(Part A):246-258
    [197]Mavromatis,S.P.and Kokossis,A.C.,Conceptual optimisation of utility networks for operational variations-I.Targets and level optimization,Chemical Engineering Science,1998,53(8):1585-1608.
    [198]Mavromatis,S.P.and Kokossis,A.C.,Conceptual optimisation of utility networks for operational variations-Ⅱ.Network development and optimization,Chemical Engineering Science,1998,53(8):1609-1630.
    [199]Yokoyama,R.,Hasegawa,Y.,Ito,K.,A MILP decomposition approach to large scale optimization in structural design of energy supply systems,Energy Conversion &Management,2002,43(6):771-790.
    [200]罗向龙,华贲,张冰剑,石化企业蒸汽动力系统的多周期运行优化,计算机与应用化学,2006,23(1):41-45.
    [201]Shang,Z.and Kokossis,A.,A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation,Computers and Chemical Engineering,2004,28(9):1673-1688.
    [202]Shang,Z.and Kokossis,A.,A systematic approach to the synthesis and design of flexible utility systems,Chemical Engineering Science,2005,60(16):4431-4451.
    [203]赵小强,炼厂生产调度问题研究,杭州:浙江大学博士论文,2006.
    [204]Lee,M.H.,Lee,S.J.,Han,C.,et al.,Hierarchical on-line data reconciliation and optimization for an industrial utility plant,Computers and Chemical Engineering,1998,22(Suppl.):S247-S254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700